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Some challenges to traditional model selection
methods

• Model selection uncertainty can often be very high, which hurts

both reliability of interpretation and estimation/prediction accu-

racy

• War between different camps of model selection principles/methods

• Global comparison may not be telling the whole truth

• ...



Rivalry Between AIC and BIC

• When the true model is among the candidates,

– BIC is consistent in terms of selecting the true model (Nishii

(1984), Haughton (1999))

– BIC is asymptotically efficient (e.g., Shao (1997))

• For a nonparametric setting, AIC is asymptotically efficient (Shi-

bata (1981), Li (1987), Polyak and Tsybakov (1990))

• AIC is minimax-rate optimal for both parametric and nonparamet-

ric situations

• A commonly told story is: BIC should be used for a parametric

case and AIC should be used for a nonparametric case.



Let δ be a model selection rule to choose between f̂n,1(x) and f̂n,2(x).

Let Aδ be the event that model 2 is selected.

The risk of the estimator based on δ at a given x0 is

E
(
f(x0) −

(
f̂n,1(x0)IAc

δ
+ f̂n,2(x0)IAδ

))2

Is the story about AIC and BIC accurate?



A simple demonstration

Consider

Yi = α + βxi + εi, i = 1, 2, ..., n,

• x ∈ [−1, 1] is the design variable with xn = 0

• {εi} are Gaussian errors

Our interest: point prediction of Y at a new value x0 under the

squared error loss

Model 0: Yi = α + εi

Model 1: Yi = α + βxi + εi



• n = 25, 100, 200, 1000

• x0 = 0.5

• σ = 0.5
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• The nice property of BIC being asymptotically efficient in this

setting is not quite in line with the simulation results (cf. Foster

and George (1994)).

• Pointwise convergence may not be reliable.



Moving Beyond the Debate Between AIC and BIC

Barron, Yang, Yu (1995): adaptive MDL

Hansen and Yu (1997): adaptive MDL

Tibshirani and Rao (1997): adaptive penalty based on CV

Foster and George (2000): empirical Bayes

Shen and Ye (2002): adaptive penalty in terms of generalized degree

of freedom

...



What properties of AIC and BIC can be
combined?

• Can an adaptive model selection criterion be asymptotically effi-

cient for both parametric and nonparametric cases?

• Can consistency of BIC and minimax-rate optimality be achieved

at the same time?

• None of the above can be obtained with a criterion of the form

−log-likelihood + λn × model dimension



Let {ϕ0 = 1, ϕ1, ...} be orthonormal trigonometric basis on [0, 1] and

assume that X1 has a uniform distribution.

Consider the series expansion models:

Yi = α0 + α1ϕ1(Xi) + ... + αmϕm(Xi) + εi,

for m ≥ 1.

The projection estimator for model m

f̂m(x) =
m∑

i=0

α̂iϕi(x),

where α̂i = 1
n

∑n
j=1 Yjϕi(Xj).



Suppose f(x) =
∑

i≥0 αiϕi(x), is bounded, differentiable, and satis-

fying

‖
∑

i≥k+1

αiϕi ‖4= O


‖

∑

i≥k+1

αiϕi ‖2




Which m to use?



Selection between AIC and BIC

Let m̂n,AIC and m̂n,BIC be the models selected by AIC and BIC.

Define

f̂n,BIC(x) =

m̂n,BIC∑

i=0

α̂iϕi(x)

and define f̂n,AIC(x) to be

{ ∑m̂n,AIC

i=0 α̂iϕi(x) if m̂n,AIC 6= m̂n,BIC
∑m̂n,AIC+1

i=0 α̂iϕi(x) otherwise.



Cross validation (CV) is to be used for selection between AIC and

BIC. Let

̂̂
f(x) =

{
f̂n,BIC if BIC is selected

f̂n,AIC if AIC is selected.

Assumption 1: When f is not in the candidate models, we suppose

1. AIC is asymptotically efficient
∥∥∥f − f̂n,AIC

∥∥∥
2

infm

∥∥∥f − f̂m

∥∥∥
2

→ 1 in prob.

2. BIC is suboptimal in the sense that there exists a constant c > 1

such that with probability going to 1,
∥∥∥f − f̂n,BIC

∥∥∥
2∥∥∥f − f̂n,AIC

∥∥∥
2

≥ c



Theorem 1. Consider the delete-n2 CV with n1 → ∞ and n1 =

o(n2). The CV method is consistent for selection between AIC and BIC.

Consequently, we have

∥∥∥∥f −
̂̂
f

∥∥∥∥
2

2

infm

∥∥∥f − f̂m

∥∥∥
2

2

→ 1 in prob.

Thus the asymptotic efficiency of AIC and BIC for exclusive situa-

tions can be integrated by adaptive model selection. Can we go further?



Recall:

• a key property of BIC is consistency in selection

• a key property of AIC is minimax-rate optimality for estimating

the regression function for both parametric and nonparametric sit-

uations

Can we have these hallmark properties combined?



Theorem 2. Consider two nested parametric models, model 0 and

model 1.

1. No model selection criterion can be both consistent in selection and

minimax-rate adaptive at the same time.

2. For any model selection criterion, if the resulting estimator is pointwise-

risk adaptive, then the worst-case risk of the estimator cannot con-

verge at the minimax optimal rate under the larger model.

3. Model averaging, BMA included, cannot solve the problem either.

4. For any model selection rule with the false selection probability

under model 0 converging at order qn for some qn decreasing to

zero, the worst case risk of the resulting estimator is at least of

order (− log qn) /n.

See Leeb and Pötscher (2005) for closely related results.



• An implication: model identification and optimal rate estimation

are not totally compatible

• From the results, the model selection criterion of the form

−log-likelihood + λn × model dimension

CAN do as well as any other model selection method in terms

of false selection probability and uniform rate of convergence, but

CANNOT compete with adaptive model selection in terms of asymp-

totic efficiency for both parametric and nonparametric cases.



Localized cross validation to improve over global
model selection

CV is widely used in statistical applications.

Allen (1974), Stone (1974), Geisser (1975), ...

Different versions:

• delete-one

• delete-n2

• k-fold



Properties of CV were investigated in:

Li (1987), Shao (1993), Zhang (1993); Wong (1983), Speckman (1985),

Burman (1990), Härdle, Hall and Marron (1988), Hall and Johnstone

(1992) and more

Different goals for using CV

• prediction error estimation

• model selection as the end product

• model selection as an intermediate step



CV Paradox

• Suppose a statistician’s original data splitting scheme works for

consistency in selection.

• The same amount of (or more) independent and identically dis-

tributed data is given to the statistician.

• He decides to add half of the new data to the estimation part and

the remaining half to the evaluation part.

• He naturally thinks that with improvement in both the training

and evaluation components, the comparison of the candidate pro-

cedures becomes more reliable.

Is that the case?



A simulation

We compare two different uses of Fisher’s LDA method.

• n = 100

• For 40 observations with Y = 1, we generate three independent

random variables X1, X2, X3, all standard-normally distributed

• For the remaining 60 observations with Y = 0, we generate the

three predictors with N(0.4, 1), N(0.3, 1) and N(0, 1) distributions

• We compare LDA based on only X1 and X2 with LDA based on

all of the three predictors.



Is MORE automatically helpful for selecting the better procedure?

We evenly split the additional observations. The initial data splitting

ratio is 30/70.

n = 100 300 500 700 900
0.835 0.825 0.803 0.768 0.772



How about maintaining the ratio of 30/70 in data splitting?

n = 100 300 500 700 900
0.835 0.892 0.868 0.882 0.880



How about an increasing ratio in favor of evaluation size?

Say, 70%, 75%, 80%, 85%, and 90%, respectively.

n = 100 300 500 700 900
0.835 0.912 0.922 0.936 0.976



When the estimation size is increased by e.g. half of the original

sample size, since the estimation accuracy is improved for both of the

classifiers, their difference may no longer be distinguishable with the

same order of evaluation size (albeit increased).

The surprising requirement of the evaluation part in CV to be dom-

inating in size (i.e., n2/n1 → ∞) for differentiating nested parametric

models was first noted by Shao (1993) in the context of linear regression.

What happens when comparing two general statistical procedures?



Motivation for considering localized selection

The relative performance of candidate procedures depends on x.

A numerical demonstration

Consider estimating f on [−1, 1] with n = 100 and σ = 0.3. The true

f is

0.5x + 0.1 exp(−200(x + 0.25)2)

− 0.1 exp(−200(x − 0.25)2).

A typical realization of the data is:
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Consider a simple linear model and also smoothing spline.

Global selection versus local selection

• Randomly split the data into two parts, find the linear estimate

f̂L and the SS estimate f̂SS using the first part and compute the

prediction error on the second part. Repeat 50 times to choose the

linear estimate or the SS estimate (based on the full data). Let

f̂G(x) be the resulting estimator.

• Consider estimators of the form

f̂(x; c) = f̂L(x)I{|x|≥c} + f̂SS(x)I{|x|<c}.

Use CV similarly to choose c in the range of [0, 1] at a grid of width

0.01. Let f̂NG(x) be the resulting estimator.



At a given x0, compute the risks of f̂G(x0) and f̂NG(x0) based on

200 replications. The risk ratio is:
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Approaches in non-global selection

Consider two procedures δ1 and δ2 with risks R(δ1; x; n) and R(δ2; x; n)

at a given x.

Let A∗ = {x : R(δ1; x; n) ≤ R(δ2; x; n)}. Ideally, one would use δ1

on A∗ and δ2 on (A∗)
c
. In reality, one can consider various sets of A of

different degrees of locality and try to find the best one. Two examples:

1. At each given x0, one considers a local neighborhood around x0

and tries to find the candidate that performs better in the local

area.

2. One considers a collection of sets of a certain mathematical form

and tries to identify the one with best performance. Here the

collection may depend on the sample size. The size of the collection

can be pre-determined or adaptively chosen.



Implementation

When one has little idea on the form of A∗, as is often true when

the input dimension is high, one can take advantage of classification

methods.

• Splits the data into two parts. The first part is used to obtain the

estimates from the candidate procedures, and then make predic-

tions for the second part of the data.

• Based on the relative predictive performance in each case, we create

a new variable that simply indicates which estimate is the better

one.

• Apply any sensible classification method to relate the performance

indication variable to the covariates.



Example (continued). We focus on one realization of the data with

n = 200. We fit a logistic regression model with three terms: 1, x and

x2 to find the region where the linear estimator performs better than the

smoothing spline estimator. The estimated probability that the linear

model performs better at x is

p̂(x) =
1

1 + exp (0.379 − 0.025x − 1.497x2)
.

Note that p̂(x) > 0.5 corresponds to x < (−0.51) or x > 0.49, which

is very sensible from our knowledge of the true mean function. This

suggests the following combined estimate of the regression function

f̂(x) =

{
f̂L(x) if x < (−0.51) or x > 0.49

f̂SS(x) otherwise.
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Localized CV selection (L-CV)

For a given x0, consider the ball centered at x0 with radius rn for

some rn > 0.

• We randomly split the data into a training set of size n1 and a test

set of size n2.

• Fit the regression procedures on the first part of data.

• For evaluation, consider only the data points in the test set that

are in the given neighborhood of x0. Let ̂(x0) = ̂n(x0) be the

procedure that has the smaller average squared prediction error.

• This process is repeated with a number of random splittings of the

observations to avoid the splitting bias. The procedure that wins

more frequently among the permutations is the final winner.



Shao (1993) derived consistency of CV for linear models, and showed

the surprising requirement of n2/n1 → ∞.

Question: Under what conditions, the above L-CV is consistent in

selection?

Assume that f̂1,n and f̂2,n converge exactly at rate {pn} and {qn} in

probability at ηn-neighborhood of x0 respectively.

Theorem 3: Under some conditions, as long as n1, n2, and rn are

chosen to satisfy √
n2rd

n max(pn1 , qn1) → ∞,

we have that with probability going to 1, the better procedure f̂j∗(x0),n

will be selected.



Implications: the delete-n2 CV is consistent:

• if max(pn, qn) = O(n−1/2), with the choice n1 → ∞ and rd
nn2/n1 →

∞;

• or if max(pn, qn)n1/2 → ∞, with any choice such that n1 → ∞ and

rd
nn1/n2 = O(1).

Thus compared to Shao (1993), the story can be very different for

comparing two general estimators (locally). The proportion of the eval-

uation part can even be of a smaller order.

Caution on empirical comparisons of different methods.



Is sparse linear model combination a powerful
regression procedure?

Problem setup of regression learning

• Data: Consider the regression setting

Yi = f(Xi) + εi, i = 1, ...n,

– (Xi, Yi)
n
i=1, (X, Y ) are i.i.d. copies

– X (any dimension) has a distribution PX

– ε has a normal distribution with mean zero and variance σ2 >

0

• Needs to estimate f



• Let δ be an estimation procedure producing f̂i(x) at each sample

size i ≥ 1.

• Let ‖ · ‖ denote the L2 norm with respect to the distribution of X .

• Performance measure is

R (f ; n; δ) = E‖f − f̂n‖
2.



• Rate of convergence of the risk depends on characteristics of f and

nature of δ.

• Implications:

– One should try to use a good characterization of the target

function, especially for high-dimensional regression

– A good learning procedure needs to be flexible

∗ Adaptive estimation

∗ Model selection and model combining



• Positive pictures

– minimax-rate adaptivity

– simultaneous variable selection and regression estimation

• Question: How many regression functions can be served well by

any given regression procedure?



• Fix a regression procedure δ.

• Let b2
n be a non-increasing sequence with b2

n → 0 as n → ∞.

• Assume that the true regression function has the L2 norm bounded

by a known constant A > 0.



• Consider the class of regression function F({b2
n}; δ):

{f :‖ f ‖≤ A and R (f ; n; δ) ≤ b2
n for all n ≥ 1}.

This, called maxiset, is the collection of the regression functions

for which the estimation procedure δ achieves the given accuracy

b2
n at each sample size n.

• How large can F({b2
n}; δ) be? For certain specific procedures (such

as wavelet shrinkage), Kerkyacharian and Picard (2002), Autin, Pi-

card and Rivoirard (2006) successfully characterized the set F({b2
n}; δ).

But we are interested in any regression procedure.



How to measure largeness?

• Metric entropy is a proper quantity to measure largeness of a set

in a metric space.

• For a given class of regression functions F , let M (ǫ;F) be the

logarithm of maximum number of points that are more than ǫ

apart under ‖ · ‖ .

• That how fast M (ǫ;F) approaches infinity as ǫ → 0 captures the

massiveness of F .

• Let b2
0 = A2 + 2 log 2 and define Bk =

∑k
i=0 b2

i for k ≥ 1 and

B0 = b2
0.



Theorem 3

• Take b2
n = Cn−γ for some constant C > 0 and 0 < γ ≤ 1. When

γ < 1, for every regression procedure δ, for ǫ ≤ 3C1/2, we must

have

M
(
ǫ;F({b2

n}; δ)
)
≤ C

′

(
1

ǫ

) 2(1−γ)
γ

,

where C
′

is a constant depending only on γ, C and A.

• When γ = 1, for every regression procedure δ, for ǫ ≤ 3C1/2, we

have

M
(
ǫ;F({b2

n}; δ)
)
≤ C

′′

log

(
1

ǫ

)

for some constant C
′′

depending only on A and C.

• For a general sequence {b2
n}, we have

M
(
3bk;F({b2

n}; δ)
)
≤ ⌈Bk−1⌉ for all k ≥ 1.



Tightness of the bounds

• For smoothness function classes, the minimax rate of convergence is

usually determined by a smoothness parameter α (e.g., the number

of derivatives that f has) with the rate n−2α/(2α+d), where d is the

dimension of f . The metric entropy order of such a class is typically

(1/ǫ)
d/α

as ǫ → 0.

• For γ = 2α/(2α + d), 2 (1 − γ) /γ = d/α and accordingly the en-

tropy upper bound given above for F({b2
n}; δ) is of order (1/ǫ)d/α .

This order matches the metric entropy of smoothness classes with

convergence rates n−2α/(2α+d).

• Thus in terms of order, the upper bounds in the theorem can not

be generally improved.



Sparse estimation and model combination

• For each k ≥ 1, let Φk = {ϕk,1, ..., ϕk,Lk
} be a collection of Lk

linearly independent functions.

• Given k, 1 ≤ m ≤ LK and I = Ik,m = {i1, ..., im} as a subset

of {1, 2, ..., Lk} with m terms in Φk, consider approximation of a

function f by linear combinations

m∑

l=1

θlϕk,il
, (θ1, ..., θm) ∈ Rm.

• When m is small compared to Lk, the terms used in the linear

combination is a sparse subset of Φk. Such sparse approximation

is very useful to improve estimation accuracy.



• For each choice of (k, m, I), one fits the model

Yi =
m∑

l=1

θlϕk,il
(Xi) + εi, 1 ≤ i ≤ n.

• Since one does not know which subset provides a good approxi-

mation, one may select a model according to a certain appropriate

criterion or do a proper model combination.

We assume σ2 is upper bounded by a known constant σ2 < ∞.



Theorem 4

For any given regression procedure δ, there exists a procedure δ̃ based

on sparse approximation such that:

• for every regression function f with ‖ f ‖∞< ∞, if R(f ; δ; n) ≤

Cn−γ for all n for some constant C > 0 and 0 < γ < 1, then

R(f ; δ̃; n) ≤ C̃n−γ holds for all n for some constant C̃ > 0;

• if R(f ; δ; n) ≤ Cn−1 for all n for some constant C > 0, then

R(f ; δ̃; n) ≤ C̃n−1 log n holds for some constant C̃ > 0.



Discussion

• The theorem says that as far as polynomial rates of convergence

are concerned, under the squared L2 loss, estimation based on a

certain sparse approximation can do as well as any given regression

procedure (but loosing a logarithmic factor for the parametric rate

of convergence).

• Is it possible to give a more formal complete class theorem for

nonparametric estimation?



Conclusion and discussion

• Adaptive model selection can lead to a step forward, but there is

a fundamental limitation

• Localized selection can much improve estimation accuracy

• In a certain sense, sparse linear model combination can be as pow-

erful as any regression procedure

• Much more remains to be done...



Combining forecasting procedures

Problem of Interest:

Forecasting a real-valued continuous random quantity Y

Data Available:

Y1, ..., Yn−1 (previous realizations of Y )

X1, ..., Xn−1, Xn (outside information)

Mean squared error decomposition:

E (Yn − ŷn)2 = E (mn − ŷn)2 + Evn,

mn : the conditional mean of Yn

vn : the conditional variance of Yn



Two directions for combining forecasts

Suppose there are M forecasters

#1: ŷ1,1, ŷ1,2, ..., ŷ1,n

#2: ŷ2,1, ŷ2,2, ..., ŷ2,n

....

#M: ŷM,1, ŷM,2, ..., ŷM,n

• Combining for adaptation: The goal is to combine the forecasts

so as to perform automatically as well as the best forecaster.

The best forecaster j∗ (unknown) minimizes

1

n

n∑

i=1

E (mi − ŷj,i)
2

over j = 1, ..., M



• Combining for improvement: A possible goal is to find a linear

combination of the forecasts to beat the best individual forecaster.

Want to find θ = (θ1, ..., θM ) such that

1

n

n∑

i=1

E


mi −

M∑

j=1

θj ŷj,i




2

is much smaller than

inf
1≤j≤M

1

n

n∑

i=1

E (mi − ŷj,i)
2



Weights for predicting Yn

Weight for forecaster # j, 1 ≤ j ≤ M

wj,n =

1

(v̂j,1····̂vj,n−1)
1/2 exp

(
− 1

2

∑n−1
i=1 (Yi − ŷj,i)

2
/v̂j,i

)

∑M
l=1 the above quantity

The combined forecast is:

ŷ∗
n =

M∑

l=1

wj,nŷj,n.

We call the algorithm Aggregated Forecasting Through Exponential

Re-weighting (AFTER).



A theoretical result on AFTER

Theorem 5: Under some conditions, the combined forecast satisfies

1

n

n∑

i=1

E (mi − ŷ∗
i )2 ≤ C

{
log M

n
+

inf
1≤j≤M

(
1

n

n∑

i=1

E (mi − ŷj,i)
2

+
1

n

n∑

i=1

E (vi − v̂j,i)
2

)}

Thus, the combined forecast performs as well as the best forecaster

up to a constant factor, penalty log M/n, and a penalty due to variance

estimation. For nonparametric forecasting, the penalties are negligible.



A time series data example

Monthly sales of new one-family houses in US from Jan. 1987 to Nov.

1995 (n = 107)

The last 20 were used for performance assessment

Consider ARIMA(p, d, q) with p, q = 0, ..., 5, d = 0, 1

ASPE of AIC, BIC, HQ, and AFTER:

AIC BIC HQ AFTER

ASPE 18.7 17.4 16.8 12.5
Reduction 33% 28% 26% —



Random AR models: 110 random models with order uniformlly

distributed between 1 and 8 and coefficients uniformly distributed be-

tween [−10, 10].
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Combining for improvement: gain and price

Consider linear combinations of M forecasts:

ŷθ
n =

M∑

j=1

θj ŷj,n,

where θ = (θ1, ..., θM) satisfies
∑M

j=1 |θj | ≤ 1.

The corresponding average cumulative mean square error is:

1

n

n∑

i=1

E
(
mi − ŷθ

i

)2
.

The best linear combination θ∗ minimizes the above quantity over θ

satisfying the constraint.



Linear combining is potentially advantageous compared to combining

for adaptation if

1

n

n∑

i=1

E
(
mi − ŷθ∗

i

)2

≪ inf
1≤j≤M

1

n

n∑

i=1

E (mi − ŷj,i)
2 .

What is the price to pay for pursuing the best linear combination?

For simplicity, consider M = nτ for some τ > 0 and the case when

the conditional variances vn are known.



Upper bound on constrained linear combining

Theorem 6: One can construct a combined forecast such that the

average cumulative mean squared error is bounded above by a multiple

of

1

n

n∑

i=1

E
(
mi − ŷθ∗

i

)2

+





log n
n1−τ when 0 ≤ τ < 1/2(

τ log n
n

)1/2

when τ ≥ 1/2

Similar results were obtained earlier in regression by Juditsky and

Nemirovski (2000), Yang (2004), Tsybakov (2003)



Lower bounding on linear combining

Theorem 7: For every combining method, there exists a case such

that the average cumulative mean squared error is lower bounded by

1

n

n∑

i=1

E
(
mi − ŷθ∗

i

)2

+C

{ 1
n1−τ when 0 ≤ τ ≤ 1/2(

log n
n

)1/2

when τ > 1/2

Note that the upper and lower bounds match up to at most a loga-

rithmic factor. Thus Theorems 6 and 7 determine the price one has to

pay for pursuing the best linear combination of the original forecasts.



Gain:

Reduction from inf1≤j≤M
1
n

∑n
i=1 E (mi − ŷj,i)

2

to 1
n

∑n
i=1 E

(
mi − ŷθ∗

i

)2

Price for combining M = nτ forecasts:{ 1
n1−τ when 0 ≤ τ ≤ 1/2(

log n
n

)1/2

when τ > 1/2

Whether it is better to combine for adaptation or combine for im-

provement depends on the comparison between the gain and price.

A multi-purpose combining was carried out such that it is both con-

servative and aggressive whichever is better.

Bunea, Tsybakov and Wegkamp (2005) obtained aggregated estima-

tors that are simultaneously optimal for linear aggregation and sparse

aggregation.



Conclusion and discussion

• Adaptive model selection can lead to a step forward, but there is

a fundamental limitation

• Localized selection can much improve estimation accuracy

• In a certain sense, sparse linear model combination can be as pow-

erful as any regression procedure

• Combining procedures significantly improve estimation/prediction

accuracy over model selection when model selection uncertainty is

high

• Combining procedures can also improve over the best individual

candidate in various situations (but the issue is tricky!)



Mixing on the product space

Kullback-Leibler (K-L) divergence: for densities p, q

D(p ‖ q) =

∫
p log

p

q

Some simple but key facts:

1. Under K-L, a density can be uniformly close to many densities

that are far away from each other:

D(p ‖
∑

j

wjqj) ≤ inf
j

(
log

1

wj
+ D(p ‖ qj)

)



2. Let p(n)(x1, ..., xn) and q(n)(x1, ..., xn) be two joint densities.

p(n)(x1, ..., xn) = p1(x1) · p2(x2|x1) · · · ·pn(xn|x
n−1)

q(n)(x1, ..., xn) = q1(x1) · q2(x2|x1) · · · ·qn(xn|x
n−1).

Then we have

D(p(n) ‖ q(n))

= ED(p1 ‖ q1) + ED(p2 ‖ q2)... + ED(pn ‖ qn)



3. Let X1, ...Xn be iid ∼ p(x). Consider an estimation procedure that

produces estimators p̂1, p̂2, ..., p̂n based on no data, X1, X2, ..., Xn−1,

respectively. Let

q(n)(x1, ..., xn) = p̂1(x1)p̂2(x2) · · · · · p̂n(xn).

Then

n∑

i=1

ED(p ‖ p̂i) = D(pn ‖ q(n)).


