Presenter's Name: Colin O. Wu National Heart, Lung, and Blood Institute National Institutes of Health

Department of Health and Human Services

A Statistical Method for Adjusting Covariates in Linkage Analysis With Sib Pairs

Colin O. Wu, Gang Zheng, JingPing Lin, Eric Leifer and Dean Follmann

Office of Biostatistics Research, DECA, NHLBI

1. Framingham Heart Study (GAW13)

- 1.1 First Generation:
- 5209 subjects (2336 men & 2873 women);
- 29 to 62 years old when recruited;
- 1644 spouse pairs;
- Continuously examined every 2 years since 1948
 - medical history
 - physical exams
 - laboratory tests.

1.2 Second Generation (full dataset):

- 5124 of the original participants' adult children & spouses of these adult children;
- 2616 subjects are offspring of original spouse pairs;
- 34 are stepchildren;
- 898 offspring are children with only one parent in the study;
- 1576 are spouses of the offspring;
- Offspring cohort followed every 4 years;
- Interval between Exams 1&2 is 8 years.

1.3 Second Generation (sib-pair subset)

- 482 multi-sib families
 - from 330 pedigrees;
- Observed trait:

systolic blood pressure;

- Covariates:
 - 1. age (in years),
 - 2. gender (0=female, 1=male),
 - 3. drinking

(average daily alcohol consumption in ml).

 Genotype data: 398 random markers with an average of 10cM apart.

2. Methods for Linkage Analysis

2.1 Methods based on identity by descent (IBD)

 Association in pedigrees between phenotype and IBD sharing at loci linked to trait loci;

Linkage for qualitative traits

 IBD sharing conditional on phenotypes:
 e.g. affected sib-pair methods
 (Hauser & Boehnke, 1998).

Linkage for quantitative trait loci (QTL)

 phenotypes conditional on IBD sharing,
 e.g. Haseman & Elston (1972), Amos (1994);
 extremely discordant sib-pairs,
 e.g. Risch & Zhang (1995, 1996).

2.2 The Haseman-Elston method

- X_{1i}, X_{2i} : observed traits for 1st and 2nd sibs;
- $Y_j = \left(X_{1j} X_{2j}\right)^2$

- squared trait difference in jth pair;

$$X_{ij} = \mu + g_{ij} + e_{ij},$$

 μ : the overall mean trait value,

- g_{ii} : the genetic effect on the (i, j)-th sib,
- e_{ii} : the environmental effect on the (i, j)-th sib.

HE Model without Covariate Adjustment: Assumptions: (i) one locus determines g_{ij} , (ii) two alleles, *B* and *b*, (iii) gene frequencies *p* and *q*. Genotypic values:

a for a BB individual; $g_{ij} = d \text{ for a } Bb \text{ individual;}$ -a for a bb individual. $E\left(Y_j \mid \pi_j\right) = \alpha + \beta \pi_j,$

 π_j = proportion of genes IBD for the *j*-th pair, α , β : unknown parameters.

Linkage:

Negative $\beta \Rightarrow$ potential linkage between QTL & marker locus. Hypothesis Testing Problem: $H_0: \beta = 0$ (no linkage) $H_1: \beta < 0$ (linkage)

Limitations:

- Covariate effects are not included.
- Genetic and environmental effects are additive.
- Method may not have sufficient power.

2.3 HE Method with Linear Covariate Adjustment (SAGE SIBPAL)

- Involve families with more than 2 sibs.
- Can use other measures of trait difference
 e.g. the mean-corrected cross-product.
- Include covariate effects in linear regression
 - e.g. Elston, Buxbaum, Jacobs and Olson (2000)

"Haseman and Elston Revisted".

Linear generalization: $Z_{ii}^{(1)}, \dots, Z_{ii}^{(p)}$: covariates for (i, j)-th sib, $Z_{ij} = (\pi_i, Z_{ij}^{(1)}, ..., Z_{ij}^{(p)})^{T}$: covariate vector, $Z_{i}^{(l)}$: covariate for the *j*-th sib pair, e.g. $Z_{j}^{(l)} = \left(Z_{1j}^{(l)} - Z_{2j}^{(l)} \right)$ or $\left| Z_{1j}^{(l)} - Z_{2j}^{(l)} \right|$, $Z_{j} = \left(Z_{j}^{(0)}, ..., Z_{j}^{(p)}\right)^{T}, Z_{j}^{(0)} \equiv \pi_{j}.$ $E\left(Y_{j} \mid \pi_{j}, Z_{j}^{(1)}, ..., Z_{j}^{(p)}\right) = \alpha + \sum_{l=1}^{p} \left(\beta_{l} Z_{j}^{(l)}\right).$

Linkage: $\beta_0 < 0 \implies \text{linkage.}$

Covariate effects:

 $\beta_l \neq 0, \ l = 1,..., p \implies \text{effect of the } l\text{-th covariate.}$ Limitation: Only the information in Z_j is used $\Leftrightarrow \left(Z_{1j}^{(l)}, Z_{2j}^{(l)}\right)$ is reduced to $Z_j^{(l)}$. For example, use $Z_j = \left| age_{1j} - age_{2j} \right|^2$.

3. The Proposed Method

- 3.1. Modeling the covariates
 - Goal: To generalize the HE regression model that includes the covariates $(Z_{1j}^{(l)}, Z_{2j}^{(l)})$.
 - Assumptions:
 - (i) The covariates are not affected by the gene and the environment.
 - (ii) The effects of gene and environment are additive.

Cross-sectional data:

$$X_{ij} = \mu \left(Z_{ij}^{(1)}, ..., Z_{ij}^{(p)} \right) + g_{ij} + e_{ij},$$

 $\mu(Z_{ij}^{(1)},...,Z_{ij}^{(p)}) = \text{ mean of } X_{ij} \text{ given } (Z_{ij}^{(1)},...,Z_{ij}^{(p)}).$ Equivalent form:

$$X_{ij}^{*} = X_{ij} - \mu \left(Z_{ij}^{(1)}, ..., Z_{ij}^{(p)} \right)$$

= covariate adjusted trait

 $=g_{ij}+e_{ij}.$

Regression models for covariates: Linear model:

$$\mu\left(Z_{ij}^{(1)},...,Z_{ij}^{(p)}\right) = \theta_0 + \sum_{l=1}^{p} \left(\theta_l Z_{ij}^{(l)}\right).$$

Equivalently,

$$X_{ij}^{*} = X_{ij} - \left\{ \theta_{0} + \sum_{l=1}^{p} \left(\theta_{l} Z_{ij}^{(l)} \right) \right\}$$

 $= g_{ij} + e_{ij};$ $\theta = (\theta_0, ..., \theta_p)^T : \text{ linear coefficients.}$

General parametric models – e.g. nonlinear models : $\mu(Z_{ij}^{(1)},...,Z_{ij}^{(p)}) = \mu\{(Z_{ij}^{(1)},...,Z_{ij}^{(p)});\theta\}.$ Nonparametric models (Härdle, 1991): $\mu(Z_{ii}^{(1)},...,Z_{ii}^{(p)}) = \text{smooth function of } Z_{ii}^{(l)}.$ Semiparametric models (Bickel et al., 2000). Longitudinal data: (Repeated measurements over time)

For *j*-th sib pair:

 $n_{1j} = n_{2j} = n_j = \text{number of repeated measurements,}$ $T_{ijk} = \text{time of the } k \text{-th measurement,}$ $k = 1, \dots, n_{ij}.$ $X_{ijk}^* = X_{ijk} - \mu \left(T_{ijk}, Z_{ijk}^{(1)}, \dots, Z_{ijk}^{(p)} \right)$ $= g_{ij} + e_{ij}.$

Notation:

$$X_{ijk} = \text{observed trait,}$$

$$Z_{ijk}^{(1)}, ..., Z_{ijk}^{(p)} = \text{covariates at time } T_{ijk},$$

$$\mu \left(T_{ijk}, Z_{ijk}^{(1)}, ..., Z_{ijk}^{(p)} \right) = \text{ conditional mean of } X_{ijk},$$

$$X_{ijk}^* = \text{ covariate adjusted trait.}$$
Linear model (Verbeke & Molenberghs, 2000):

$$X_{ijk}^* = X_{ijk} - \left\{ \theta_0 + \theta_{00} T_{ijk} + \sum_{l=1}^p \left(\theta_l Z_{ijk}^{(l)} \right) \right\},$$

$$\theta = \left(\theta_0, \theta_{00}, \theta_1, ..., \theta_p \right) : \text{ linear coefficients.}$$

3.2 Covariate adjusted linkage detection

- General Procedure:
- Select a regression model for the covariates.
- Estimate the covariate adjusted trait based on the above regression model.
- Apply the linkage procedures, such as the HE model or the variance-components model, using the estimated adjusted trait values and genotypic values.

3.3 Cross-sectional data Covariate adjusted HE model:

 $Y_j^* = (X_{1j}^* - X_{2j}^*)^2$: adjusted squared trait difference. Same derivation in HE (1972) \Rightarrow

 $E\left(Y_{j}^{*} \mid \pi_{j}\right) = \alpha + \beta \pi_{j}.$

 α , β : unknown parameters. Testing problem: $H_0: \beta = 0$ (no linkage),

 $H_1: \beta < 0$ (linkage).

Estimation of adjusted trait values:

Data from sib pairs are correlated
 ⇒ Existing estimation methods for independent data can not be directly applied.

Two approaches:

- Use methods for correlated data, such as GEE – treat each family as a subject, each member as a single observation.
- 2) Resample independent observations:

- i. Randomly sample one member from each family.
- Estimate the parameters and adjusted trait values using the re-sampled data and procedures for independent data, such as LSE, MLE, etc.
- iii. Repeat the previous steps many times and compute the estimates using the average of the estimates from the re-sampled data.

This leads to consistent estimates when the sample size (number of families) is large (Hoffman et al., 2001).

Procedure for linear adjustment model:

Step 1: Estimate θ by $\hat{\theta}$, a consistent estimator. Step 2: Estimate X_{ij}^* and Y_j^* by $\hat{X}_{ij}^* = X_{ij} - \mu \left\{ \left(Z_{ij}^{(1)}, \dots, Z_{ij}^{(p)} \right); \hat{\theta} \right\},$ $\hat{Y}_j^* = \left(\hat{X}_{1j}^* - \hat{X}_{2j}^* \right)^2.$

Step 3: Fit the HE model using \hat{Y}_{j}^{*} and test $\beta = 0$ vs. $\beta < 0$.

3.5 Longitudinal data

$$Y_{jk}^* = \left(X_{1jk}^* - X_{2jk}^*\right)^2$$

 adjusted squared difference in *j*-th pair at *k*-th measurement;

 $\overline{Y}_{j}^{*} = \sum_{k=1}^{n_{j}} \left(Y_{jk}^{*} / n_{j} \right) : \text{ mean adjusted difference;}$ $E\left(\overline{Y}_{j}^{*} \mid \pi_{j}\right) = \alpha + \beta \pi_{j}.$

Linkage detection:

 $\beta = 0$ (no linkage); $\beta < 0$ (linkage).

Two sources of potential correlations in the estimation of adjusted trait values:

- i. Correlation within a sibintra-subject correlation.
- ii. Correlation between sibs within a family Image: Intra-family correlation.

I Nested longitudinal data.

Image: Methods for longitudinal estimation can not be directly applied (Morris, Vannucci, Brown and Carroll, 2003, JASA).

Resampling approach:

- Randomly select one sib from each family
 Resampled data contain repeated measurements of independent sibs.
- ii. Estimate the covariate adjusted trait values from the above resampled data based on longitudinal estimation methods (GEE, MLE, REMLE, etc.).
- iii. Repeat the above steps many times and estimate the parameters using the averages of the estimates from the resampled data.
- iv. Fit the HE model using existing procedure.

4. Framingham Heart Study

Features of the data:

- Clustered data from families;
- Repeated measurements;
- Multi-sib families;
- Continuous and categorical covariates.

Variables:

- Quantitative trait: SBP;
- Covariates: age, gender (0=female, 1=male), drinking (average daily consumption).

SAGE HE Model:

Use
$$\overline{Y}_{j} = \sum_{k=1}^{n_{j}} \left(X_{1jk} - X_{2jk} \right)^{2} / n_{j}$$
 in place of Y_{j} ;
 $Z_{j}^{(1)} = \left| age_{1j} - age_{2j} \right|^{2}$: age difference between sibs;
 $Z_{j}^{(2)} = \left| gender_{1j} - gender_{2j} \right|$: 0 if same sex, 1 if different sex;
 $Z_{j}^{(3)} = \left| drinking_{1j} - drinking_{2j} \right|^{2}$;
Fit regression:
 $E\left(\overline{Y}_{j} \mid \pi_{j}, Z_{j}\right) = \alpha + \beta \pi_{j} + \beta_{1} Z_{j}^{(1)} + \beta_{2} Z_{j}^{(2)} + \beta_{3} Z_{j}^{(3)}$.
No linkage: $\beta = 0$; Linkage: $\beta < 0$.

New HE Model:

Use linear model with 1000 resampling replications; μ {(age, gender, drinking); θ } = $\theta_0 + \theta_1 \times age$

+ θ_2 × gender + θ_3 × drinking;

 $X_{ijk}^* = X_{ijk} - \mu \left\{ (\text{age, gender, drinking}); \hat{\theta} \right\};$

 $\overline{Y}_{j}^{*} = \sum_{k=1}^{n_{j}} \left(X_{1jk}^{*} - X_{2jk}^{*} \right)^{2} / n_{j} : \text{ average squared trait difference.}$

Fit regression:

 $E\left(\overline{Y}_{j}^{*} \mid \pi_{j}, Z_{j}\right) = \alpha + \beta \pi_{j}.$

No linkage: $\beta = 0$; Linkage: $\beta < 0$.

			p-value	
Chr	Marker	Position	NEW	SAGE
1	GATA72H0	76	0.040746	0.33494
	ATA4E02	192	0.033218	0.15464
	GATA7C01	202	0.010822	0.09183
	GATA48B0	212	0.043310	0.38933
	GGAA23C0	218	0.016387	0.21180
	ATA 29C07	247	0.006878	0.00372
2	GGAA20G1	28	0.026882	0.41348
	GATA11H1	38	0.007994	0.24336
	ATA27D04	74	0.034850	0.17500
3	GATA148E	90	0.041733	0.48637
	GATA84B1	124	0.048563	0.13348
	GATA68F0	1.35	0.035703	0.21774
	GATA4A10	153	0.038260	0.14335
4	ATA 26B08	1.30	0.027294	0.08898
	GATA11E0	143	0.015789	0.07446
	GATA5B02	208	0.023081	0.24038
5	GATA31H1	9	0.003679	0.01131
	GATA3E10	23	0.028696	0.00347
	GATA145D	40	0.046002	0.07233
	GATA7C06	45	0.034828	0.22713
	GATA21D0	59	0.003568	0.12899
	GATA2H09	1.39	0.026949	0.03943
	GATA6E05	160	0.046726	0.03440

Table 1. Comparison of SAGE HE and NEW HE methods in two-point analysis

			p-value	
Chr	Marker	Position	NEW	SAGE
6	GATA11E0	73	0.052419	0.03843
	GATA31	119	0.046214	0.04366
	GATA32B0	138	0.022104	0.10438
	GATA165G	155	0.003483	0.01098
	242zg5	166	0.022416	0.07021
	GATA81B0	173	0.005961	0.01083
7	GATA13G1	50	0.032951	0.12551
	GATA31A1	58	0.029264	0.18204
	GATA24D1	70	0.001847	0.07439
	GATA118G	79	0.004014	0.17304
	ATA22G07	187	0.007621	0.02528
8	GATA25C1	22	0.025332	0.19608
	GATA23D0	26	0.002706	0.04254
	GATA72C1	37	0.004479	0.01447
	GATA21C1	140	0.046820	0.26550
9	GATA62F0	14	0.09318	0.02752
	GATA21A0	22	0.12223	0.04280
	GATA27A1	32	0.00321	0.00901
	GATA7D12	66	0.03145	0.12940
	GATA21F0	80	0.02700	0.06084
	183xh10	92	0.02049	0.07986
	ATA59H06	147	0.00930	0.09181
10	GATA70E1	46	0.003619	0.07436
	GATA87G0	94	0.046017	0.22637
	GGAA2F11	117	0.006402	0.00256
	GATA64A0	125	0.000170	0.00224
	198zb4	171	0.039178	0.18715

Table 2. Comparison of SAGE HE and NEW HE methods in two-point analysis

			p-value	
Chr	Marker	Position	NEW	SAGE
12	ATA27A06	49	0.003387	0.00083
	GATA91H0	56	0.009377	0.04915
	GATA5A09	57	0.020412	0.00958
	GGAT2G06	68	0.002970	0.00226
	GATA73H0	78	0.0001.39	0.00062
	GATA3F02	81	0.006071	0.05091
	GATA 26D0	83	0.010513	0.19872
	GATA63D1	95	0.013884	0.01942
14	GATA43H0	28	0.010066	0.12741
15	GATA151F	60	0.017276	0.20761
	GATA73F0	101	0.050374	0.02575
16	GGAA3G05	58	0.036188	0.093515
	GATA27A0	122	0.009387	0.09375
17	GTAT1A05	1	0.033590	0.29007
	GAAT2C03	11	0.016140	0.27796
	GATA28D1	100	0.006351	0.04783
	044xg3	117	0.008744	0.09982
	217yd10	126	0.002232	0.11083
18	3212029	7	0.017048	0.021697
	GATASSA1	13	0.013188	0.027941
19	GATA 29B0	88	0.021196	0.039963
21	GATA70B0	58	0.046708	0.35981

Table 3. Comparison of SAGE HE and NEW HE methods in two-point analysis

5. Discussion

- Advantages for covariate adjustment:
- ✓ small variation for the estimates;
- \checkmark better interpretation for the model.
- Directions of further research:
- Non-additive models, e.g. covariate-gene and covariate-environment interactions;
- Covariate adjustment with other measures of the trait difference;
- Methods of model selection;
- ✓ Models with general pedigrees.