VARIATIONAL APPROXIMATIONS IN SEMIPARAMETRIC REGRESSION

Matt Wand
University of Wollongong, AUSTRALIA

VARIATIONAL APPROXIMATIONS IN SEMIPARAMETRIC REGRESSION

Matt Wand
University of Wollongong, AUSTRALIA
(joint with Peter Hall (Uni. Melbourne) and John Ormerod (Uni. Wollongong))

First...

Primer on Variational Approximation
‘Undergraduate’ Variational Approximation

‘Undergraduate’ Variational Approximation

Consider the

> Bayesian Poisson regression model

$$
\left[y_{i} \mid \beta\right] \stackrel{\text { ind. }}{\sim} \text { Poisson }\left(\exp \left(\beta_{0}+\beta_{1} x_{1 i}+\ldots+\beta_{k} x_{k i}\right)\right)
$$

Prior on regression coefficients: $\left(\beta_{0}, \ldots, \beta_{k}\right) \sim N(0, F)$.

‘Undergraduate’ Variational Approximation

Consider the
Bayesian Poisson regression model

$$
\left[y_{i} \mid \beta\right] \stackrel{\text { ind. }}{\sim} \text { Poisson }\left(\exp \left(\beta_{0}+\beta_{1} x_{1 i}+\ldots+\beta_{k} x_{k i}\right)\right)
$$

Prior on regression coefficients: $\left(\beta_{0}, \ldots, \beta_{k}\right) \sim N(0, F)$.

Matrix notation:
$p(y \mid \beta)=\exp \left\{y^{T} X \beta-1^{T} \exp (X \beta)-1^{T} \log (y!)\right\}, \quad \beta \sim N(0, F)$

The log marginal likelihood is (ignoring constants):
$\log p(y)=\log \int_{\mathbb{R} p} p(y \mid \beta) p(\beta) d \beta$

The log marginal likelihood is (ignoring constants):

$$
\begin{aligned}
\log p(y) & =\log \int_{\mathbb{R} p} p(y \mid \boldsymbol{\beta}) \boldsymbol{p}(\boldsymbol{\beta}) d \boldsymbol{\beta} \\
& =\log \int_{\mathbb{R} p} \exp \left\{\boldsymbol{y}^{T} \boldsymbol{X} \widetilde{\boldsymbol{\beta}}-1^{T} \exp (\boldsymbol{X} \widetilde{\boldsymbol{\beta}})-\frac{1}{2} \widetilde{\boldsymbol{\beta}}^{T} \boldsymbol{F}^{-1} \widetilde{\boldsymbol{\beta}}\right\} d \widetilde{\boldsymbol{\beta}}
\end{aligned}
$$

The log marginal likelihood is (ignoring constants):

$$
\begin{aligned}
\log p(\boldsymbol{y})= & \log \int_{\mathbb{R} p} \boldsymbol{p}(\boldsymbol{y} \mid \boldsymbol{\beta}) \boldsymbol{p}(\boldsymbol{\beta}) d \boldsymbol{\beta} \\
= & \log \int_{\mathbb{R}} p \exp \left\{\boldsymbol{y}^{T} \boldsymbol{X} \widetilde{\boldsymbol{\beta}}-1^{T} \exp (\boldsymbol{X} \widetilde{\boldsymbol{\beta}})-\frac{1}{2} \widetilde{\boldsymbol{\beta}}^{T} \boldsymbol{F}^{-1} \widetilde{\boldsymbol{\beta}}\right\} d \widetilde{\boldsymbol{\beta}} \\
= & \log \int_{\mathbb{R}} p \exp \left\{\boldsymbol{y}^{T} \boldsymbol{X} \widetilde{\boldsymbol{\beta}}-1^{T} \exp (\boldsymbol{X} \widetilde{\boldsymbol{\beta}})-\frac{1}{2} \widetilde{\boldsymbol{\beta}}^{T} \boldsymbol{F}^{-1} \widetilde{\boldsymbol{\beta}}\right\} \\
& \quad \times \frac{(2 \pi)^{-p / 2}|\Sigma|^{-1 / 2} \exp \left\{-\frac{1}{2}(\widetilde{\boldsymbol{\beta}}-\mu)^{T} \Sigma^{-1}(\widetilde{\boldsymbol{\beta}}-\mu)\right\}}{(2 \pi)^{-p / 2}|\Sigma|^{-1 / 2} \exp \left\{-\frac{1}{2}(\widetilde{\boldsymbol{\beta}}-\mu)^{T} \Sigma^{-1}(\widetilde{\boldsymbol{\beta}}-\mu)\right\}} d \widetilde{\boldsymbol{\beta}}
\end{aligned}
$$

The log marginal likelihood is (ignoring constants):

$$
\begin{aligned}
& \log p(y)=\log \int_{\mathbb{R} p} p(y \mid \beta) p(\beta) d \beta \\
& =\log \int_{\mathbb{R}} \boldsymbol{e x p}\left\{\boldsymbol{y}^{T} \boldsymbol{X} \widetilde{\boldsymbol{\beta}}-1^{T} \exp (\boldsymbol{X} \widetilde{\boldsymbol{\beta}})-\frac{1}{2} \widetilde{\boldsymbol{\beta}}^{T} \boldsymbol{F}^{-1} \widetilde{\boldsymbol{\beta}}\right\} d \widetilde{\boldsymbol{\beta}} \\
& =\log \int_{\mathbb{R}} \boldsymbol{p} \exp \left\{\boldsymbol{y}^{T} \boldsymbol{X} \widetilde{\boldsymbol{\beta}}-1^{T} \exp (\boldsymbol{X} \widetilde{\boldsymbol{\beta}})-\frac{1}{2} \widetilde{\boldsymbol{\beta}}^{T} \boldsymbol{F}^{-1} \widetilde{\boldsymbol{\beta}}\right\} \\
& \times \frac{(2 \pi)^{-p / 2}|\Sigma|^{-1 / 2} \exp \left\{-\frac{1}{2}(\widetilde{\boldsymbol{\beta}}-\mu)^{T} \Sigma^{-1}(\widetilde{\boldsymbol{\beta}}-\mu)\right\}}{(2 \pi)^{-p / 2}|\Sigma|^{-1 / 2} \exp \left\{-\frac{1}{2}(\widetilde{\boldsymbol{\beta}}-\mu)^{T} \Sigma^{-1}(\widetilde{\boldsymbol{\beta}}-\mu)\right\}} d \widetilde{\boldsymbol{\beta}} \\
& =\log \boldsymbol{E}_{\widetilde{\boldsymbol{\beta}} \sim N(\mu, \Sigma)}\left[\frac{\exp \left\{\boldsymbol{y}^{T} \boldsymbol{X} \widetilde{\boldsymbol{\beta}}-1^{T} \exp (\boldsymbol{X} \widetilde{\boldsymbol{\beta}})-\frac{1}{2} \widetilde{\boldsymbol{\beta}}^{T} \boldsymbol{F}^{-1} \widetilde{\boldsymbol{\beta}}\right\}}{(2 \pi)^{-p / 2}|\Sigma|^{-1 / 2} \exp \left\{-\frac{1}{2}(\widetilde{\boldsymbol{\beta}}-\boldsymbol{\mu})^{T} \Sigma^{-1}(\widetilde{\boldsymbol{\beta}}-\boldsymbol{\mu})\right\}}\right]
\end{aligned}
$$

The log marginal likelihood is (ignoring constants):

$$
\begin{aligned}
& \log p(y)=\log \int_{\mathbb{R} p} p(y \mid \beta) p(\beta) d \beta \\
& =\log \int_{\mathbb{R}} \boldsymbol{e x p}\left\{\boldsymbol{y}^{T} \boldsymbol{X} \widetilde{\boldsymbol{\beta}}-1^{T} \exp (\boldsymbol{X} \widetilde{\boldsymbol{\beta}})-\frac{1}{2} \widetilde{\boldsymbol{\beta}}^{T} \boldsymbol{F}^{-1} \widetilde{\boldsymbol{\beta}}\right\} d \widetilde{\boldsymbol{\beta}} \\
& =\log \int_{\mathbb{R}} \boldsymbol{e x p}\left\{\boldsymbol{y}^{T} \boldsymbol{X} \widetilde{\boldsymbol{\beta}}-1^{T} \exp (\boldsymbol{X} \widetilde{\boldsymbol{\beta}})-\frac{1}{2} \widetilde{\boldsymbol{\beta}}^{T} \boldsymbol{F}^{-1} \widetilde{\boldsymbol{\beta}}\right\} \\
& \times \frac{(2 \pi)^{-p / 2}|\Sigma|^{-1 / 2} \exp \left\{-\frac{1}{2}(\widetilde{\boldsymbol{\beta}}-\mu)^{T} \Sigma^{-1}(\widetilde{\boldsymbol{\beta}}-\mu)\right\}}{(2 \pi)^{-p / 2}|\Sigma|^{-1 / 2} \exp \left\{-\frac{1}{2}(\widetilde{\boldsymbol{\beta}}-\mu)^{T} \Sigma^{-1}(\widetilde{\boldsymbol{\beta}}-\mu)\right\}} d \widetilde{\boldsymbol{\beta}} \\
& =\log \boldsymbol{E}_{\widetilde{\boldsymbol{\beta}} \sim N(\mu, \Sigma)}\left[\frac{\exp \left\{\boldsymbol{y}^{T} \boldsymbol{X} \widetilde{\boldsymbol{\beta}}-1^{T} \exp (\boldsymbol{X} \widetilde{\boldsymbol{\beta}})-\frac{1}{2} \widetilde{\boldsymbol{\beta}}^{T} \boldsymbol{F}^{-1} \widetilde{\boldsymbol{\beta}}\right\}}{(2 \pi)^{-p / 2}|\Sigma|^{-1 / 2} \exp \left\{-\frac{1}{2}(\widetilde{\boldsymbol{\beta}}-\boldsymbol{\mu})^{T} \Sigma^{-1}(\widetilde{\boldsymbol{\beta}}-\mu)\right\}}\right] \\
& \geq \boldsymbol{E}_{\widetilde{\boldsymbol{\beta}} \sim N(\mu, \Sigma)}\left(\log \left[\frac{\exp \left\{\boldsymbol{y}^{T} \boldsymbol{X} \widetilde{\boldsymbol{\beta}}-1^{T} \exp (\boldsymbol{X} \widetilde{\boldsymbol{\beta}})-\frac{1}{2} \widetilde{\boldsymbol{\beta}}^{T} \boldsymbol{F}^{-1} \widetilde{\boldsymbol{\beta}}\right\}}{(2 \pi)^{-p / 2}|\Sigma|^{-1 / 2} \exp \left\{-\frac{1}{2}(\widetilde{\boldsymbol{\beta}}-\boldsymbol{\mu})^{T} \Sigma^{-1}(\widetilde{\boldsymbol{\beta}}-\mu)\right\}}\right]\right)
\end{aligned}
$$

The log marginal likelihood is (ignoring constants):

$$
\begin{aligned}
& \log p(y)=\log \int_{\mathbb{R} p} p(y \mid \beta) p(\beta) d \boldsymbol{\beta} \\
& =\log \int_{\mathbb{R} p} \exp \left\{\boldsymbol{y}^{T} \boldsymbol{X} \widetilde{\boldsymbol{\beta}}-1^{T} \exp (\boldsymbol{X} \widetilde{\boldsymbol{\beta}})-\frac{1}{2} \widetilde{\boldsymbol{\beta}}^{T} \boldsymbol{F}^{-1} \widetilde{\boldsymbol{\beta}}\right\} d \widetilde{\boldsymbol{\beta}} \\
& =\log \int_{\mathbb{R}} \boldsymbol{e x p}\left\{\boldsymbol{y}^{T} \boldsymbol{X} \widetilde{\boldsymbol{\beta}}-1^{T} \exp (\boldsymbol{X} \widetilde{\boldsymbol{\beta}})-\frac{1}{2} \widetilde{\boldsymbol{\beta}}^{T} \boldsymbol{F}^{-1} \widetilde{\boldsymbol{\beta}}\right\} \\
& \times \frac{(2 \pi)^{-p / 2}|\Sigma|^{-1 / 2} \exp \left\{-\frac{1}{2}(\widetilde{\boldsymbol{\beta}}-\mu)^{T} \Sigma^{-1}(\widetilde{\boldsymbol{\beta}}-\mu)\right\}}{(2 \pi)^{-p / 2}|\Sigma|^{-1 / 2} \exp \left\{-\frac{1}{2}(\widetilde{\boldsymbol{\beta}}-\mu)^{T} \Sigma^{-1}(\widetilde{\boldsymbol{\beta}}-\mu)\right\}} d \widetilde{\boldsymbol{\beta}} \\
& =\log \boldsymbol{E}_{\widetilde{\boldsymbol{\beta}} \sim N(\mu, \Sigma)}\left[\frac{\exp \left\{\boldsymbol{y}^{T} \boldsymbol{X} \widetilde{\boldsymbol{\beta}}-1^{T} \exp (\boldsymbol{X} \widetilde{\boldsymbol{\beta}})-\frac{1}{2} \widetilde{\boldsymbol{\beta}}^{T} \boldsymbol{F}^{-1} \widetilde{\boldsymbol{\beta}}\right\}}{(2 \pi)^{-p / 2}|\Sigma|^{-1 / 2} \exp \left\{-\frac{1}{2}(\widetilde{\boldsymbol{\beta}}-\boldsymbol{\mu})^{T} \Sigma^{-1}(\widetilde{\boldsymbol{\beta}}-\boldsymbol{\mu})\right\}}\right] \\
& \geq \boldsymbol{E}_{\widetilde{\boldsymbol{\beta}} \sim N(\mu, \Sigma)}\left(\log \left[\frac{\exp \left\{\boldsymbol{y}^{T} \boldsymbol{X} \widetilde{\boldsymbol{\beta}}-1^{T} \exp (\boldsymbol{X} \widetilde{\boldsymbol{\beta}})-\frac{1}{2} \widetilde{\boldsymbol{\beta}}^{T} \boldsymbol{F}^{-1} \widetilde{\boldsymbol{\beta}}\right\}}{(2 \pi)^{-p / 2}|\Sigma|^{-1 / 2} \exp \left\{-\frac{1}{2}(\widetilde{\boldsymbol{\beta}}-\boldsymbol{\mu})^{T} \Sigma^{-1}(\widetilde{\boldsymbol{\beta}}-\boldsymbol{\mu})\right\}}\right]\right) \\
& =y^{T} \boldsymbol{X} \boldsymbol{\mu}-1^{T} \exp \left\{\boldsymbol{X} \mu+\frac{1}{2} \text { diagonal }\left(\boldsymbol{X} \Sigma \boldsymbol{X}^{T}\right)\right\}-\frac{1}{2} \mu^{T} \Sigma^{-1} \mu \\
& -\frac{1}{2}\left\{\operatorname{tr}\left(\boldsymbol{F}^{-1} \boldsymbol{\Sigma}\right)+\log |\boldsymbol{\Sigma}|\right\}
\end{aligned}
$$

The log marginal likelihood is (ignoring constants):

$$
\begin{aligned}
& \log p(y)=\log \int_{\mathbb{R} p} p(y \mid \beta) p(\beta) d \boldsymbol{\beta} \\
& =\log \int_{\mathbb{R} p} \exp \left\{\boldsymbol{y}^{T} \boldsymbol{X} \widetilde{\boldsymbol{\beta}}-1^{T} \exp (\boldsymbol{X} \widetilde{\boldsymbol{\beta}})-\frac{1}{2} \widetilde{\boldsymbol{\beta}}^{T} \boldsymbol{F}^{-1} \widetilde{\boldsymbol{\beta}}\right\} d \widetilde{\boldsymbol{\beta}} \\
& =\log \int_{\mathbb{R}} \boldsymbol{e x p}\left\{\boldsymbol{y}^{T} \boldsymbol{X} \widetilde{\boldsymbol{\beta}}-1^{T} \exp (\boldsymbol{X} \widetilde{\boldsymbol{\beta}})-\frac{1}{2} \widetilde{\boldsymbol{\beta}}^{T} \boldsymbol{F}^{-1} \widetilde{\boldsymbol{\beta}}\right\} \\
& \times \frac{(2 \pi)^{-p / 2}|\Sigma|^{-1 / 2} \exp \left\{-\frac{1}{2}(\widetilde{\boldsymbol{\beta}}-\mu)^{T} \Sigma^{-1}(\widetilde{\boldsymbol{\beta}}-\mu)\right\}}{(2 \pi)^{-p / 2}|\Sigma|^{-1 / 2} \exp \left\{-\frac{1}{2}(\widetilde{\boldsymbol{\beta}}-\mu)^{T} \Sigma^{-1}(\widetilde{\boldsymbol{\beta}}-\mu)\right\}} d \widetilde{\boldsymbol{\beta}} \\
& =\log \boldsymbol{E}_{\widetilde{\boldsymbol{\beta}} \sim N(\mu, \Sigma)}\left[\frac{\exp \left\{\boldsymbol{y}^{T} \boldsymbol{X} \widetilde{\boldsymbol{\beta}}-1^{T} \exp (\boldsymbol{X} \widetilde{\boldsymbol{\beta}})-\frac{1}{2} \widetilde{\boldsymbol{\beta}}^{T} \boldsymbol{F}^{-1} \widetilde{\boldsymbol{\beta}}\right\}}{(2 \pi)^{-p / 2}|\Sigma|^{-1 / 2} \exp \left\{-\frac{1}{2}(\widetilde{\boldsymbol{\beta}}-\boldsymbol{\mu})^{T} \Sigma^{-1}(\widetilde{\boldsymbol{\beta}}-\boldsymbol{\mu})\right\}}\right] \\
& \geq \boldsymbol{E}_{\widetilde{\boldsymbol{\beta}} \sim N(\mu, \Sigma)}\left(\log \left[\frac{\exp \left\{\boldsymbol{y}^{T} \boldsymbol{X} \widetilde{\boldsymbol{\beta}}-1^{T} \exp (\boldsymbol{X} \widetilde{\boldsymbol{\beta}})-\frac{1}{2} \widetilde{\boldsymbol{\beta}}^{T} \boldsymbol{F}^{-1} \widetilde{\boldsymbol{\beta}}\right\}}{(2 \boldsymbol{\pi})^{-p / 2}|\Sigma|^{-1 / 2} \exp \left\{-\frac{1}{2}(\widetilde{\boldsymbol{\beta}}-\boldsymbol{\mu})^{T} \Sigma^{-1}(\widetilde{\boldsymbol{\beta}}-\mu)\right\}}\right]\right) \\
& =\boldsymbol{y}^{T} \boldsymbol{X} \boldsymbol{\mu}-1^{T} \exp \left\{\boldsymbol{X} \boldsymbol{\mu}+\frac{1}{2} \text { diagonal }\left(\boldsymbol{X} \boldsymbol{\Sigma} \boldsymbol{X}^{\boldsymbol{T}}\right)\right\}-\frac{1}{2} \boldsymbol{\mu}^{T} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu} \\
& -\frac{1}{2}\left\{\operatorname{tr}\left(\boldsymbol{F}^{-1} \boldsymbol{\Sigma}\right)+\log |\boldsymbol{\Sigma}|\right\}
\end{aligned}
$$

$=\log \underline{p(y, \mu, \Sigma)}$ for all $\mu(\boldsymbol{p} \times 1)$ and symmetric positive definite $\Sigma(\boldsymbol{p} \times p)$.

The log marginal likelihood is (ignoring constants):

$$
\begin{aligned}
& \log p(y)=\log \int_{\mathbb{R} p} p(y \mid \beta) p(\beta) d \boldsymbol{\beta} \\
& =\log \int_{\mathbb{R} p} \exp \left\{\boldsymbol{y}^{T} \boldsymbol{X} \widetilde{\boldsymbol{\beta}}-1^{T} \exp (\boldsymbol{X} \widetilde{\boldsymbol{\beta}})-\frac{1}{2} \widetilde{\boldsymbol{\beta}}^{T} \boldsymbol{F}^{-1} \widetilde{\boldsymbol{\beta}}\right\} d \widetilde{\boldsymbol{\beta}} \\
& =\log \int_{\mathbb{R}} \boldsymbol{e x p}\left\{\boldsymbol{y}^{T} \boldsymbol{X} \widetilde{\boldsymbol{\beta}}-1^{T} \exp (\boldsymbol{X} \widetilde{\boldsymbol{\beta}})-\frac{1}{2} \widetilde{\boldsymbol{\beta}}^{T} \boldsymbol{F}^{-1} \widetilde{\boldsymbol{\beta}}\right\} \\
& \times \frac{(2 \pi)^{-p / 2}|\Sigma|^{-1 / 2} \exp \left\{-\frac{1}{2}(\widetilde{\boldsymbol{\beta}}-\mu)^{T} \Sigma^{-1}(\widetilde{\boldsymbol{\beta}}-\mu)\right\}}{(2 \pi)^{-p / 2}|\Sigma|^{-1 / 2} \exp \left\{-\frac{1}{2}(\widetilde{\boldsymbol{\beta}}-\mu)^{T} \Sigma^{-1}(\widetilde{\boldsymbol{\beta}}-\mu)\right\}} d \widetilde{\boldsymbol{\beta}} \\
& =\log \boldsymbol{E}_{\widetilde{\boldsymbol{\beta}} \sim N(\mu, \Sigma)}\left[\frac{\exp \left\{\boldsymbol{y}^{T} \boldsymbol{X} \widetilde{\boldsymbol{\beta}}-1^{T} \exp (\boldsymbol{X} \widetilde{\boldsymbol{\beta}})-\frac{1}{2} \widetilde{\boldsymbol{\beta}}^{T} \boldsymbol{F}^{-1} \widetilde{\boldsymbol{\beta}}\right\}}{(2 \pi)^{-p / 2}|\Sigma|^{-1 / 2} \exp \left\{-\frac{1}{2}(\widetilde{\boldsymbol{\beta}}-\boldsymbol{\mu})^{T} \Sigma^{-1}(\widetilde{\boldsymbol{\beta}}-\boldsymbol{\mu})\right\}}\right] \\
& \geq \boldsymbol{E}_{\widetilde{\boldsymbol{\beta}} \sim N(\mu, \Sigma)}\left(\log \left[\frac{\exp \left\{\boldsymbol{y}^{T} \boldsymbol{X} \widetilde{\boldsymbol{\beta}}-1^{T} \exp (\boldsymbol{X} \widetilde{\boldsymbol{\beta}})-\frac{1}{2} \widetilde{\boldsymbol{\beta}}^{T} \boldsymbol{F}^{-1} \widetilde{\boldsymbol{\beta}}\right\}}{(2 \boldsymbol{\pi})^{-p / 2}|\Sigma|^{-1 / 2} \exp \left\{-\frac{1}{2}(\widetilde{\boldsymbol{\beta}}-\boldsymbol{\mu})^{T} \Sigma^{-1}(\widetilde{\boldsymbol{\beta}}-\mu)\right\}}\right]\right) \\
& =\boldsymbol{y}^{T} \boldsymbol{X} \boldsymbol{\mu}-1^{T} \exp \left\{\boldsymbol{X} \mu+\frac{1}{2} \text { diagonal }\left(\boldsymbol{X} \boldsymbol{\Sigma} \boldsymbol{X}^{T}\right)\right\}-\frac{1}{2} \mu^{T} \Sigma^{-1} \boldsymbol{\mu} \\
& -\frac{1}{2}\left\{\operatorname{tr}\left(\boldsymbol{F}^{-1} \boldsymbol{\Sigma}\right)+\log |\boldsymbol{\Sigma}|\right\} \\
& =\log \underline{p(y, \mu, \Sigma)} \text { for all } \mu(\boldsymbol{p} \times 1) \text { and symmetric positive definite } \Sigma(\boldsymbol{p} \times p) \text {. }
\end{aligned}
$$

Next...

A Bit About Semiparametric Regression

Grmbridted Saribs in Statistival and Probatilistic Mathenatics

Seminarametric

 Reyression and R. Cown

Approximate 95\% Conf. Int. for Contrasts

Mixed Model Framework

Previous analysis was done completely using linear mixed models

$$
\begin{gathered}
y=\boldsymbol{X} \beta+Z u+\varepsilon \\
{\left[\begin{array}{l}
u \\
\varepsilon
\end{array}\right] \sim N\left(\left[\begin{array}{l}
0 \\
\mathbf{0}
\end{array}\right],\left[\begin{array}{cc}
G & 0 \\
\mathbf{0} & \boldsymbol{R}
\end{array}\right]\right)}
\end{gathered}
$$

Tricking Mixed Models to do Smoothing

$$
y_{i}=\beta_{0}+\beta_{1} x_{i}+\sum_{k=1}^{K} u_{k}\left(x_{i}-\kappa_{k}\right)_{+}+\varepsilon_{i}
$$

A: $\boldsymbol{u}_{\boldsymbol{k}}$'s fixed
B: u_{k} i.i.d. $N\left(0, \sigma_{u}^{2}\right)$

Other Bases

We often replace $\left(x-\kappa_{k}\right)_{+}$by nicer $z_{k}(x)$:

$$
f(x)=\beta_{0}+\beta_{1} x+\sum_{k=1}^{K} u_{k} z_{k}(x)
$$

with

$$
u_{k} \text { i.i.d. } N\left(0, \sigma_{u}^{2}\right)
$$

Particularly nice $z_{k}(x)$ are those arising from O'Sullivan Statist. Sci. (1986) (see e.g. Wand \& Ormerod, Aust. N.Z. J. Statist., 2008).

Brmbritjo Saribs in Strilsithal and Probitilistic Mathematios

Semiparamotric

 Reyression and R Cown

Keep Updated!

Semiparametric Regression During 2003-2007.
D. RUPPERT, M.P. WAND \& R.J. CARROLL
J. American Statist. Assoc. (under review)

Available now on Wand web-site!

Question

Is it possible to do an
entire semiparametric regression analysis
without touching the keyboard?

Answer

YES
via a graphical models approach
(and WinBUGS)

The Graphical Models

viewpoint of

Semiparametric Regression

A recent trend in semiparametric regression is increased use of

hierarchical Bayesian modelling

Bayesian Hierarchical Model for Spinal Bone Mineral Data

$$
\begin{aligned}
& {\left[y_{i j} \mid \beta, u_{\mathrm{sbj}}, u_{\mathrm{spl}}, \sigma_{\mathrm{sbj}}^{2}, \sigma_{\mathrm{spl}}^{2}, \sigma_{\varepsilon}^{2}\right] \stackrel{\mathrm{ind}}{\sim} N\left(\beta^{T} x_{i}+u_{i, \mathrm{sbj}}+f\left(\mathrm{age}_{i j} ; \sigma_{\mathrm{spl}}^{2}\right), \sigma_{\varepsilon}^{2}\right)} \\
& {\left[u_{\mathrm{sbj}} \mid \sigma_{\mathrm{sbj}}^{2}\right] \sim N\left(0, \sigma_{\mathrm{sbj}}^{2} I\right), \quad\left[u_{\mathrm{spl}} \mid \sigma_{\mathrm{spl}}^{2}\right] \sim N\left(0, \sigma_{\mathrm{spl}}^{2} I\right)} \\
& {[\beta] \sim N\left(0, \sigma_{\beta}^{2} I\right),\left[1 / \sigma_{\mathrm{sbj}}^{2}\right] \sim \operatorname{Gamma}\left(A_{\mathrm{sbj}}, B_{\mathrm{sbj}}\right)} \\
& {\left[1 / \sigma_{\mathrm{spl}}^{2}\right] \sim \operatorname{Gamma}\left(A_{\mathrm{spl}}, B_{\mathrm{spl}}\right),\left[1 / \sigma_{\varepsilon}^{2}\right] \sim \operatorname{Gamma}\left(A_{\varepsilon}, B_{\varepsilon}\right)}
\end{aligned}
$$

Directed Acyclic Graph (DAG) Representation

Inference Problem in Graphical Models Jargon

$\mathcal{E}=$ evidence nodes $=\{y\}$

$\mathcal{H}=$ hidden nodes $=\left\{\beta, u_{凶 \dot{w}}, u_{\varphi p}, \sigma_{\alpha,}^{2}, \sigma_{q,}^{2}, \sigma_{\varepsilon}^{2}\right\}$

Probability Calculus Problem

$$
p(\mathcal{H} \mid \mathcal{E})=\frac{p(\mathcal{H}, \mathcal{E})}{p(\mathcal{E})}
$$

Probability Calculus Problem

$$
p(\mathcal{H} \mid \mathcal{E})=\frac{p(\mathcal{H}, \mathcal{E})}{p(\mathcal{E})}
$$

For current problem:

$$
p\left(\beta, u_{\mathrm{sbj}}, u_{\mathrm{spl}}, \sigma_{\mathrm{sbj}}^{2}, \sigma_{\mathrm{spl}}^{2}, \sigma_{\varepsilon}^{2} \mid y\right)=\frac{p\left(\beta, u_{\mathrm{sbj}}, u_{\mathrm{spl}}, \sigma_{\mathrm{sbj}}^{2}, \sigma_{\mathrm{spl}}^{2}, \sigma_{\varepsilon}^{2}, y\right)}{p(y)}
$$

The MCMC Solution

Most common method for solving probability calculus problems is

Monte Carlo Markov Chain (MCMC).

The MCMC Solution

Most common method for solving probability calculus problems is

Monte Carlo Markov Chain (MCMC). Software packages WinBUGS

Lunn, D.J., Thomas, A., Best, N. \& Spiegelhalter, D. (2000). WinBUGS a Bayesian modelling framework: concepts, structure, and extensibility. Statistics and Computing, 10, 325-337.

and BRugs

Ligges, U., Thomas, A., Spiegelhalter, D., Best, N., Lunn, D., Rice, K. \& Sturtz, S. (2007). BRugs 0.4.
provide an effective means of fitting.

WinBUGS Code

```
model
{
    for(i in 1:numObs)
    {
        mu[i] <- beta0 + uSbj[idnum[i]] + betaB*black[i] + betaH*hispanic[i]
                + betaW*white[i] + betaAge*sage[i] + inprod(uSpl[],Zspl[i,])
        sSBMD[i] ~ dnorm(mu[i],tauErr)
    }
    for (iSbj in 1:numSbj)
    {
        uSbj[iSbj] ~ dnorm(0,tauSbj)
    }
    for (iSpl in 1:numSpl)
    {
        uSpl[iSpl] ~ dnorm(0,tauSpl)
    }
    beta0 ~ dnorm(0,1.0E-8) ; betaB ~ dnorm(0,1.0E-8)
    betaH ~ dnorm(0,1.0E-8) ; betaW ~ dnorm(0,1.0E-8)
    betaAge ~ dnorm(0,1.0E-8) ; tauSbj ~ dgamma(0.01,0.01)
    tauSpl ~ dgamma(0.01,0.01) ; tauErr ~ dgamma(0.01,0.01)
    sigSbj <- 1/sqrt(tauSbj) ; sigSpl <- 1/sqrt(tauSpl)
    sigErr <- 1/sqrt(tauErr)
}
```

Alternatively, we can specify model in WinBUGS using its

graphical model drawing facility

parameter	trace	$\operatorname{lag} 1$	acf	density	summary								
intercept	Hymymy		$\\|\\|\\|\\|\\|\\|\\|-\\| \mu+$										
black	yhyy. whymy		$\\|\\|\\|\\|\\|\\|\\|$										
hispanic	Nind why				posterior mean: 0.0171 95\% credible interval: (-0.0193,0.0536)								
white	WHy/y				posterior mean: 0.0299 95\% credible interval: (-0.0108,0.0679)								
$\sigma_{\text {sbj }}$	HMNMMMMM"				posterior mean: 0.11 95\% credible interval: $(0.0999,0.121)$								
degrees of freedom for \mathfrak{f}		on											
σ_{ε}					posterior mean: 0.0329 95\% credible interval: $(0.0304,0.0356) 32$								

Non-standard Semiparametric Regression

Graphical models approach to semiparametric regression is
more advantageous
when situation is non-standard.
Examples:

- Missing data.
- Measurement error.

Nonparametric Regression with Missingness in Predictor

$$
y_{i}=f\left(x_{i}\right)+\varepsilon_{i}, \quad \varepsilon_{i} \text { i.i.d. } N\left(0, \sigma_{\varepsilon}^{2}\right), \quad 1 \leq i \leq n
$$

$x_{i} \stackrel{\text { ind }}{\sim} N\left(\mu_{x}, \sigma_{x}^{2}\right), \quad$ but some are missing
(completely at random).

Hierarchical Bayes Model for Missingness Example

$$
\begin{gathered}
{\left[y_{i} \mid x_{i}, \beta, u, \sigma_{\varepsilon}^{2}\right] \stackrel{\text { ind. }}{\sim} N\left(\beta_{0}+\beta_{1} x_{i}+\sum_{k=1}^{K} u_{k} z_{k}\left(x_{i}\right), \sigma_{\varepsilon}^{2}\right)} \\
{\left[u \mid \sigma_{u}^{2}\right] \sim N\left(0, \sigma_{u}^{2} I\right), \quad\left[x_{i} \mid \mu_{x}, \sigma_{x}^{2}\right] \stackrel{\text { ind. }}{\sim} N\left(\mu_{x}, \sigma_{x}^{2}\right)} \\
{[\beta] \sim N\left(0, \sigma_{\beta}^{2} I\right), \quad\left[\mu_{x}\right] \sim N\left(0, \sigma_{\mu_{x}}^{2}\right)} \\
{\left[\sigma_{u}^{2}\right] \sim \operatorname{IG}\left(A_{u}, B_{u}\right), \quad\left[\sigma_{\varepsilon}^{2}\right] \sim \operatorname{IG}\left(A_{\varepsilon}, B_{\varepsilon}\right), \quad\left[\sigma_{x}^{2}\right] \sim \operatorname{IG}\left(A_{x}, B_{x}\right)}
\end{gathered}
$$

parameter	trace	$\operatorname{lag} 1$	acf	density	summary
μ_{x}		$\frac{1}{2}$,		posterior mean: 0.477 95\% credible interval: (0.457,0.497)
σ_{x}		等		\mathcal{S}^{i}	
σ_{ε}		5			posterior mean: 0.333 95\% credible interval: (0.306,0.366)
degrees of freedom for f			HHHWHOTH		posterior mean: 13.8 95\% credible interval: $(11.8,16.1)$
first quartile of x					$\begin{gathered} \text { posterior mean: -0.973 } \\ 95 \% \text { credible interval: } \\ (-1.08,-0.863) \end{gathered}$
second quart. of x		2			posterior mean: -0.483 95% credible interval: (-0.583,-0.386)
third quartile of x					posterior mean: 0.793 95\% credible interval: (0.668,0.922) 39

parameter	trace	$\operatorname{lag} 1$	acf	density	summary
x_{10}^{mis}					posterior mean: 0.537 95\% credible interval: (0.118,0.709)
$\mathrm{x}_{18}^{\mathrm{mis}}$					posterior mean: 0.406 95% credible interval: (0.288,0.816)
x_{27}^{mis}		\mid			posterior mean: 0.515 95% credible interval: (0.148,0.734)
x_{44}^{mis}					posterior mean: 0.492 95\% credible interval: (0.204,0.762)
x_{59}^{mis}					posterior mean: 0.462 95\% credible interval: (0.231,0.788)

References for last segment...

SEMIPARAMETRIC REGRESSION AND GRAPHICAL MODELS

Wand, M.P. (2009) Aust. N.Z. J. Statist. (invited)

References for last segment...

SEMIPARAMETRIC REGRESSION AND GRAPHICAL MODELS

Wand, M.P. (2009) Aust. N.Z. J. Statist. (invited)

NON-STANDARD SEMIPARAMETRIC REGRESSION VIA BRUGS

Marley, J.K. and Wand, M.P. (2009) unpublished manuscript
(both on Wand web-site)

Summary of Talk so Far

Summary of Talk so Far

- Semiparametric regression flexible and powerful body of methodology.

Summary of Talk so Far

- Semiparametric regression flexible and powerful body of methodology.
- Hierarchical Bayesian models and directed acyclic graphs (DAGs) effective general approach to fitting and inference (esp. if situation is non-standard).

Summary of Talk so Far

- Semiparametric regression flexible and powerful body of methodology.
- Hierarchical Bayesian models and directed acyclic graphs (DAGs) effective general approach to fitting and inference (esp. if situation is non-standard).
- Markov Chain Monte Carlo (MCMC) and software packages WinBUGS and BRugs facilitate fitting and inference.

Summary of Talk so Far

- Semiparametric regression flexible and powerful body of methodology.
- Hierarchical Bayesian models and directed acyclic graphs (DAGs) effective general approach to fitting and inference (esp. if situation is non-standard).
- Markov Chain Monte Carlo (MCMC) and software packages WinBUGS and BRugs facilitate fitting and inference.
- Main drawback of MCMC: SLOWNESS!!

Possibly faster alternate approach, (mainly) from Computer Science, is:

Variational Approximation.

Possibly faster alternate approach, (mainly) from Computer Science, is:

Variational Approximation.

These have led (quite recently!) to:

Variational Inference Engines.

Prototype Package for Variational Inference

VIBES: A VARIATIONAL INFERENCE ENGINE FOR BAYESIAN NETWORKS
by Bishop, Spiegelhalter \& Winn (2002)
NIPs Proceedings

Beyond VIBES

The developers of VIBES (Cambridge, UK) have just released (only 32 days ago!) a
new and improved variational inference engine named

Infer.NET
(research.microsoft.com/infernet)

These Computer Science guys now even put their

conference talks on the web...

videolectures.net/abi07_winn_ipi

Variational Approximation Research 'Schools'

location
key researchers
Berkeley, USA
Cambridge, UK

Jordan, Jaakkola (now MIT),...
MacKay, Bishop, Ghahramani, Winn, Minka,...

Glasgow, UK
Titterington, Wang,...

Variational Approximation Research 'Schools'

location

Berkeley, USA Jordan, Jaakkola (now MIT),...

Cambridge, UK

Glasgow, UK

Wollongong, Australia Ormerod, Wand

Illustration of Berkeley for Simple Problem: Bayesian Logistic Regression

$$
\operatorname{logit}\left\{P\left(y_{i}=1\right)\right\}=\beta_{0}+\beta_{1} x_{i}, \quad 1 \leq i \leq n ; \quad \beta_{0}, \beta_{1} \sim N\left(0,10^{8} I\right)
$$

Illustration of Berkeley for Simple Problem: Bayesian Logistic Regression

$$
\operatorname{logit}\left\{P\left(y_{i}=1\right)\right\}=\beta_{0}+\beta_{1} x_{i}, \quad 1 \leq i \leq n ; \quad \beta_{0}, \beta_{1} \sim N\left(0,10^{8} I\right)
$$

Posterior for slope $\boldsymbol{p}\left(\boldsymbol{\beta}_{1} \mid \boldsymbol{y}\right)$ depends on intractable integral:

$$
\begin{gathered}
\int_{-\infty}^{\infty} \exp \left\{\beta_{0} 1^{T} y-1^{T} b\left(\beta_{0} 1+\beta_{1} x\right)-\beta_{0}^{2} /\left(2 \times 10^{8}\right)\right\} d \beta_{0} \\
\text { where } b(x)=\log \left(1+e^{x}\right)
\end{gathered}
$$

The Variational Approximation Trick

Write $-b(x)$ variationally:

$$
-b(x)=-\log \left(1+e^{x}\right)=\max _{\xi}\left\{A(\xi) x^{2}+B(\xi) x+C(\xi)\right\}
$$

The Variational Approximation Trick

Write $-\boldsymbol{b}(\boldsymbol{x})$ variationally:

$$
-b(x)=-\log \left(1+e^{x}\right)=\max _{\xi}\left\{A(\xi) x^{2}+B(\xi) x+C(\xi)\right\}
$$

$$
\begin{aligned}
& A(\xi)=-\tanh (\xi / 2) /(4 \xi) \\
& B(\xi)=-1 / 2 \\
& C(\xi)=\xi / 2-\log \left(1+e^{\xi}\right)+\xi \tanh (\xi / 2) / 4
\end{aligned}
$$

$-\mathrm{b}(\mathrm{x})=-\log (1+\exp (\mathrm{x}))$

Family of Variational (Approximate) Solutions

$$
\begin{gathered}
{\left[\beta_{1} \mid y ; \xi\right] \sim N\left(\mu(\xi), \sigma^{2}(\xi)\right)} \\
\mu(\xi)=\frac{\left(2 n \bar{\lambda}(\xi)+10^{-8}\right)\left(x^{T} y-\bar{x} / 2\right)}{\left(2 n \bar{\lambda}(\xi)+10^{-8}\right)\left\{2\left(x^{2}\right)^{T} \lambda(\xi)+10^{-8}\right\}-4\left\{\lambda(\xi)^{T} x\right\}} \\
\sigma^{2}(\xi)=\left[2\left(x^{2}\right)^{T} \lambda(\xi)+10^{-8}-4\left\{\lambda(\xi)^{T} x\right\}^{2} /\left\{2 n \bar{\lambda}(\xi)+10^{-8}\right\}\right]^{-1} \\
\text { where } \quad \lambda(\xi)=\tanh (\xi / 2) /(4 \xi) .
\end{gathered}
$$

Choice of Variational Parameters

Choice of

$$
\xi=\left(\xi_{1}, \ldots, \xi_{n}\right)
$$

can be made via an EM argument.

Reference: Jaakkola \& Jordan, Statistics and Computing, 2000.

Full Algorithm

Let $\left[\boldsymbol{\beta}_{0}, \boldsymbol{\beta}_{1} \mid \boldsymbol{y} ; \boldsymbol{\xi}\right] \sim N(\mu(\xi), \Sigma(\xi))$ be var. approx. to $\left[\boldsymbol{\beta}_{0}, \boldsymbol{\beta}_{1} \mid \boldsymbol{y}\right]$. CYCLE:

1. $\Sigma(\xi)^{-1} \leftarrow 10^{-8} I+2 X^{T} \operatorname{diag}\{\lambda(\xi)\} X$
2. $\mu(\xi) \leftarrow \Sigma(\xi) X^{T}\left(y-\frac{1}{2} 1\right)$
3. $\xi \leftarrow \sqrt{\text { diagonal }\left[X\left\{\Sigma(\xi)+\mu(\xi) \mu(\xi)^{T}\right\} X^{T}\right]}$

We have recently developed alternative variational approximation methods
that give promising results.

We have recently developed alternative variational approximation methods
that give promising results.

I will call these
Wollongong I
and
Wollongong II

Berkeley versus Wollongong I

Berkeley Variational Approximation Answer

Wollongong I Variational Approximation Answer

Berkeley versus Wollongong II

Berkeley Variational Approximation Answer

Wollongong II Variational Approximation Answer

Details of Wollongong I

$$
\text { posterior of slope }=p\left(\beta_{1} \mid y\right)=\frac{p\left(\beta_{1}, y\right)}{p(y)} \propto p\left(\beta_{1}, y\right)
$$

Details of Wollongong I

$$
\text { posterior of slope }=p\left(\beta_{1} \mid y\right)=\frac{p\left(\beta_{1}, y\right)}{p(y)} \propto p\left(\beta_{1}, y\right)
$$

$$
\boldsymbol{p}\left(\boldsymbol{\beta}_{1}, \boldsymbol{y}\right)=\int_{-\infty}^{\infty}\left[\boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{0}, \boldsymbol{y}\right] \boldsymbol{d} \boldsymbol{\beta}_{0}
$$

Details of Wollongong I

$$
\text { posterior of slope }=p\left(\beta_{1} \mid y\right)=\frac{p\left(\beta_{1}, y\right)}{p(y)} \propto p\left(\beta_{1}, y\right)
$$

$$
\begin{aligned}
\boldsymbol{p}\left(\boldsymbol{\beta}_{1}, \boldsymbol{y}\right) & =\int_{-\infty}^{\infty}\left[\boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{0}, \boldsymbol{y}\right] d \boldsymbol{\beta}_{0} \\
& =e^{-\beta_{1}^{2} /\left(2 \times 10^{8}\right)} \int_{-\infty}^{\infty} \exp \left\{\boldsymbol{\beta}_{0} 1^{T} \boldsymbol{y}-1^{T} \boldsymbol{b}\left(\boldsymbol{\beta}_{0} 1+\boldsymbol{\beta}_{1} \boldsymbol{x}\right)-\boldsymbol{\beta}_{0}^{2} /\left(2 \times 10^{8}\right)\right\} d \boldsymbol{\beta}_{0}
\end{aligned}
$$

Details of Wollongong I

$$
\text { posterior of slope }=p\left(\beta_{1} \mid y\right)=\frac{p\left(\beta_{1}, y\right)}{p(y)} \propto p\left(\beta_{1}, y\right)
$$

$$
\begin{aligned}
\boldsymbol{p}\left(\boldsymbol{\beta}_{1}, \boldsymbol{y}\right)= & \int_{-\infty}^{\infty}\left[\boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{0}, \boldsymbol{y}\right] \boldsymbol{d} \boldsymbol{\beta}_{0} \\
= & e^{-\beta_{1}^{2} /\left(2 \times 10^{8}\right)} \int_{-\infty}^{\infty} \exp \left\{\boldsymbol{\beta}_{0} 1^{T} \boldsymbol{y}-1^{T} \boldsymbol{b}\left(\boldsymbol{\beta}_{0} 1+\boldsymbol{\beta}_{1} \boldsymbol{x}\right)-\boldsymbol{\beta}_{0}^{2} /\left(2 \times 10^{8}\right)\right\} \boldsymbol{d} \boldsymbol{\beta}_{0} \\
\geq & e^{-\beta_{1}^{2} /\left(2 \times 10^{8}\right)} \int_{-\infty}^{\infty} \exp \left\{\boldsymbol{\beta}_{0} 1^{T} \boldsymbol{y}-\left(\boldsymbol{\beta}_{0} 1+\boldsymbol{\beta}_{1} \boldsymbol{x}\right)^{T} \operatorname{diag}\{A(\xi)\}\left(\boldsymbol{\beta}_{0} 1+\boldsymbol{\beta}_{1} \boldsymbol{x}\right)\right. \\
& \left.\quad-\boldsymbol{B}(\boldsymbol{\xi})^{T}\left(\boldsymbol{\beta}_{0} 1+\boldsymbol{\beta}_{1} \boldsymbol{x}\right)-1^{T} C(\xi)-\boldsymbol{\beta}_{0}^{2} /\left(2 \times 10^{8}\right)\right\} \boldsymbol{d} \boldsymbol{\beta}_{0}
\end{aligned}
$$

Details of Wollongong I

$$
\text { posterior of slope }=p\left(\beta_{1} \mid y\right)=\frac{p\left(\beta_{1}, y\right)}{p(y)} \propto p\left(\beta_{1}, y\right)
$$

$$
\begin{aligned}
\boldsymbol{p}\left(\boldsymbol{\beta}_{1}, \boldsymbol{y}\right)= & \int_{-\infty}^{\infty}\left[\boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{0}, \boldsymbol{y}\right] d \boldsymbol{\beta}_{0} \\
= & e^{-\beta_{1}^{2} /\left(2 \times 10^{8}\right)} \int_{-\infty}^{\infty} \exp \left\{\boldsymbol{\beta}_{0} 1^{T} \boldsymbol{y}-1^{T} \boldsymbol{b}\left(\boldsymbol{\beta}_{0} 1+\boldsymbol{\beta}_{1} \boldsymbol{x}\right)-\boldsymbol{\beta}_{0}^{2} /\left(2 \times 10^{8}\right)\right\} d \boldsymbol{\beta}_{0} \\
\geq & e^{-\beta_{1}^{2} /\left(2 \times 10^{8}\right)} \int_{-\infty}^{\infty} \exp \left\{\boldsymbol{\beta}_{0} 1^{T} \boldsymbol{y}-\left(\boldsymbol{\beta}_{0} 1+\boldsymbol{\beta}_{1} \boldsymbol{x}\right)^{T} \operatorname{diag}\{A(\xi)\}\left(\boldsymbol{\beta}_{0} 1+\boldsymbol{\beta}_{1} \boldsymbol{x}\right)\right. \\
& \left.\quad-\boldsymbol{B}(\boldsymbol{\xi})^{T}\left(\boldsymbol{\beta}_{0} 1+\boldsymbol{\beta}_{1} \boldsymbol{x}\right)-1^{T} C(\boldsymbol{\xi})-\boldsymbol{\beta}_{0}^{2} /\left(2 \times 10^{8}\right)\right\} \boldsymbol{d} \boldsymbol{\beta}_{0} \\
= & \text { explicit function of } \boldsymbol{\beta}_{1} \text { and } \boldsymbol{\xi}
\end{aligned}
$$

Details of Wollongong I

$$
\text { posterior of slope }=p\left(\beta_{1} \mid y\right)=\frac{p\left(\beta_{1}, y\right)}{p(y)} \propto p\left(\beta_{1}, y\right)
$$

$$
\begin{aligned}
\boldsymbol{p}\left(\boldsymbol{\beta}_{1}, \boldsymbol{y}\right)= & \int_{-\infty}^{\infty}\left[\boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{0}, \boldsymbol{y}\right] \boldsymbol{d} \boldsymbol{\beta}_{0} \\
= & e^{-\beta_{1}^{2} /\left(2 \times 10^{8}\right)} \int_{-\infty}^{\infty} \exp \left\{\boldsymbol{\beta}_{0} 1^{T} \boldsymbol{y}-1^{T} \boldsymbol{b}\left(\boldsymbol{\beta}_{0} 1+\boldsymbol{\beta}_{1} \boldsymbol{x}\right)-\boldsymbol{\beta}_{0}^{2} /\left(2 \times 10^{8}\right)\right\} \boldsymbol{d} \boldsymbol{\beta}_{0} \\
\geq & e^{-\beta_{1}^{2} /\left(2 \times 10^{8}\right)} \int_{-\infty}^{\infty} \exp \left\{\boldsymbol{\beta}_{0} 1^{T} \boldsymbol{y}-\left(\boldsymbol{\beta}_{0} 1+\boldsymbol{\beta}_{1} \boldsymbol{x}\right)^{T} \operatorname{diag}\{\boldsymbol{A}(\boldsymbol{\xi})\}\left(\boldsymbol{\beta}_{0} 1+\boldsymbol{\beta}_{1} \boldsymbol{x}\right)\right. \\
& \left.\quad-\boldsymbol{B}(\boldsymbol{\xi})^{T}\left(\boldsymbol{\beta}_{0} \mathbf{1}+\boldsymbol{\beta}_{1} \boldsymbol{x}\right)-1^{T} C(\boldsymbol{\xi})-\boldsymbol{\beta}_{0}^{2} /\left(2 \times 10^{8}\right)\right\} \boldsymbol{d} \boldsymbol{\beta}_{0} \\
= & \operatorname{explicit} \text { function of } \boldsymbol{\beta}_{1} \text { and } \boldsymbol{\xi} \\
= & \text { explicit }\left(\boldsymbol{\beta}_{1} ; \boldsymbol{\xi}\right), \quad \text { (say) }
\end{aligned}
$$

Details of Wollongong I (continued)

Set up a grid: $\beta_{1}^{[1]}, \ldots, \beta_{1}^{[G]}$ over domain of $p\left(\beta_{1} \mid y\right)$.

Details of Wollongong I (continued)

Set up a grid: $\beta_{1}^{[1]}, \ldots, \beta_{1}^{[G]}$ over domain of $p\left(\beta_{1} \mid y\right)$.
For $1 \leq g \leq G$ choose $\boldsymbol{\xi}=\widehat{\boldsymbol{\xi}}^{[g]}$ to maximise $\operatorname{explicit}\left(\beta_{1}^{[g]}, \xi\right)$.

Details of Wollongong I (continued)

Set up a grid: $\beta_{1}^{[1]}, \ldots, \beta_{1}^{[G]}$ over domain of $p\left(\beta_{1} \mid y\right)$.
For $1 \leq g \leq G$ choose $\xi=\widehat{\xi}^{[g]}$ to maximise $\operatorname{explicit}\left(\beta_{1}^{[g]}, \xi\right)$.

This gives

$$
\operatorname{explicit}\left(\beta_{1}^{[1]}, \widehat{\xi}^{[1]}\right), \ldots, \operatorname{explicit}\left(\beta_{1}^{[G]}, \widehat{\xi}^{[G]}\right)
$$

as an approximation to

$$
p\left(\beta_{1}^{[1]}, y\right), \ldots, p\left(\beta_{1}^{[G]}, y\right) .
$$

Details of Wollongong I (continued)

Set up a grid: $\beta_{1}^{[1]}, \ldots, \beta_{1}^{[G]}$ over domain of $p\left(\beta_{1} \mid y\right)$.
For $1 \leq g \leq G$ choose $\xi=\widehat{\xi}^{[g]}$ to maximise $\operatorname{explicit}\left(\beta_{1}^{[g]}, \xi\right)$.

This gives

$$
\operatorname{explicit}\left(\beta_{1}^{[1]}, \widehat{\xi}^{[1]}\right), \ldots, \operatorname{explicit}\left(\beta_{1}^{[G]}, \widehat{\xi}^{[G]}\right)
$$

as an approximation to

$$
p\left(\beta_{1}^{[1]}, y\right), \ldots, p\left(\beta_{1}^{[G]}, y\right)
$$

Final step: Normalise using (one-dimensional) quadrature to approximate $\boldsymbol{p}\left(\boldsymbol{\beta}_{1} \mid \boldsymbol{y}\right)$.

Jaakkola \& Jordan idea applied
grid-wise
rather than globally.

Berkeley versus Wollongong I

Berkeley Variational Approximation Answer

Wollongong I Variational Approximation Answer

Details of Wollongong II

Consider the

> Bayesian Poisson regression model

$$
p(y \mid \beta)=\exp \left\{y^{T} X \beta-1^{T} \log \left(1+e^{X \beta}\right)-1^{T} \log (y!)\right\}
$$

$$
\boldsymbol{\beta}_{p \times 1} \sim N(0, F)
$$

The log marginal likelihood is (ignoring constants):
$\log p(y)=\log \int_{\mathbb{R}^{p}} p(y \mid \beta) p(\beta) d \beta$

The log marginal likelihood is (ignoring constants):

$$
\begin{aligned}
\log p(\boldsymbol{y}) & =\log \int_{\mathbb{R}} p(y \mid \boldsymbol{\beta}) \boldsymbol{p}(\boldsymbol{\beta}) d \boldsymbol{\beta} \\
& =\log \int_{\mathbb{R}} \exp \left\{\boldsymbol{y}^{T} \boldsymbol{X} \widetilde{\boldsymbol{\beta}}-1^{T} \exp (\boldsymbol{X} \widetilde{\boldsymbol{\beta}})-\frac{1}{2} \widetilde{\boldsymbol{\beta}}^{T} \boldsymbol{F}^{-1} \widetilde{\boldsymbol{\beta}}\right\} d \widetilde{\boldsymbol{\beta}}
\end{aligned}
$$

The log marginal likelihood is (ignoring constants):

$$
\begin{aligned}
\log \boldsymbol{p}(\boldsymbol{y})= & \log \int_{\mathbb{R} p} \boldsymbol{p}(\boldsymbol{y} \mid \boldsymbol{\beta}) \boldsymbol{p}(\boldsymbol{\beta}) \boldsymbol{d} \boldsymbol{\beta} \\
= & \log \int_{\mathbb{R} p} \exp \left\{\boldsymbol{y}^{T} \boldsymbol{X} \widetilde{\boldsymbol{\beta}}-1^{T} \exp (\boldsymbol{X} \widetilde{\boldsymbol{\beta}})-\frac{1}{2} \widetilde{\boldsymbol{\beta}}^{T} \boldsymbol{F}^{-1} \widetilde{\boldsymbol{\beta}}\right\} d \widetilde{\boldsymbol{\beta}} \\
= & \log \int_{\mathbb{R} p} \exp \left\{\boldsymbol{y}^{T} \boldsymbol{X} \widetilde{\boldsymbol{\beta}}-1^{T} \exp (\boldsymbol{X} \widetilde{\boldsymbol{\beta}})-\frac{1}{2} \widetilde{\boldsymbol{\beta}}^{T} \boldsymbol{F}^{-1} \widetilde{\boldsymbol{\beta}}\right\} \\
& \quad \times \frac{(2 \pi)^{-p / 2}|\Sigma|^{-1 / 2} \exp \left\{-\frac{1}{2}(\widetilde{\boldsymbol{\beta}}-\mu)^{T} \Sigma^{-1}(\widetilde{\boldsymbol{\beta}}-\mu)\right\}}{(2 \pi)^{-p / 2}|\Sigma|^{-1 / 2} \exp \left\{-\frac{1}{2}(\widetilde{\boldsymbol{\beta}}-\mu)^{T} \Sigma^{-1}(\widetilde{\boldsymbol{\beta}}-\mu)\right\}} d \widetilde{\boldsymbol{\beta}}
\end{aligned}
$$

The log marginal likelihood is (ignoring constants):

$$
\begin{aligned}
\log \boldsymbol{p}(\boldsymbol{y})= & \log \int_{\mathbb{R} p} \boldsymbol{p}(\boldsymbol{y} \mid \boldsymbol{\beta}) \boldsymbol{p}(\boldsymbol{\beta}) d \boldsymbol{\beta} \\
= & \log \int_{\mathbb{R}^{p}} \exp \left\{\boldsymbol{y}^{T} \boldsymbol{X} \widetilde{\boldsymbol{\beta}}-1^{T} \exp (\boldsymbol{X} \widetilde{\boldsymbol{\beta}})-\frac{1}{2} \widetilde{\boldsymbol{\beta}}^{T} \boldsymbol{F}^{-1} \widetilde{\boldsymbol{\beta}}\right\} d \widetilde{\boldsymbol{\beta}} \\
= & \log \int_{\mathbb{R} p} \exp \left\{\boldsymbol{y}^{T} \boldsymbol{X} \widetilde{\boldsymbol{\beta}}-1^{T} \exp (\boldsymbol{X} \widetilde{\boldsymbol{\beta}})-\frac{1}{2} \widetilde{\boldsymbol{\beta}}^{T} \boldsymbol{F}^{-1} \widetilde{\boldsymbol{\beta}}\right\} \\
& \quad \times \frac{(2 \boldsymbol{\pi})^{-p / 2}|\Sigma|^{-1 / 2} \exp \left\{-\frac{1}{2}(\widetilde{\boldsymbol{\beta}}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\widetilde{\boldsymbol{\beta}}-\mu)\right\}}{(2 \pi)^{-p / 2}|\Sigma|^{-1 / 2} \exp \left\{-\frac{1}{2}(\widetilde{\boldsymbol{\beta}}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\widetilde{\boldsymbol{\beta}}-\boldsymbol{\mu})\right\}} d \widetilde{\boldsymbol{\beta}} \\
& \quad \log \boldsymbol{E}_{\widetilde{\boldsymbol{\beta}} \sim N(\mu, \Sigma)}\left[\frac{\exp \left\{\boldsymbol{y}^{T} \boldsymbol{X} \widetilde{\boldsymbol{\beta}}-1^{T} \exp (\boldsymbol{X} \widetilde{\boldsymbol{\beta}})-\frac{1}{2} \widetilde{\boldsymbol{\beta}}^{T} \boldsymbol{F}^{-1} \widetilde{\boldsymbol{\beta}}\right\}}{(2 \pi)^{-p / 2}|\Sigma|^{-1 / 2} \exp \left\{-\frac{1}{2}(\widetilde{\boldsymbol{\beta}}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\widetilde{\boldsymbol{\beta}}-\boldsymbol{\mu})\right\}}\right]
\end{aligned}
$$

The log marginal likelihood is (ignoring constants):

$$
\begin{aligned}
\log \boldsymbol{p}(\boldsymbol{y})= & \log \int_{\mathbb{R} p} \boldsymbol{p}(\boldsymbol{y} \mid \boldsymbol{\beta}) \boldsymbol{p}(\boldsymbol{\beta}) \boldsymbol{d} \boldsymbol{\beta} \\
= & \log \int_{\mathbb{R} p} \exp \left\{\boldsymbol{y}^{T} \boldsymbol{X} \widetilde{\boldsymbol{\beta}}-1^{T} \exp (\boldsymbol{X} \widetilde{\boldsymbol{\beta}})-\frac{1}{2} \widetilde{\boldsymbol{\beta}}^{T} \boldsymbol{F}^{-1} \widetilde{\boldsymbol{\beta}}\right\} \boldsymbol{d} \widetilde{\boldsymbol{\beta}} \\
= & \log \int_{\mathbb{R} p} \exp \left\{\boldsymbol{y}^{T} \boldsymbol{X} \widetilde{\boldsymbol{\beta}}-1^{T} \exp (\boldsymbol{X} \widetilde{\boldsymbol{\beta}})-\frac{1}{2} \widetilde{\boldsymbol{\beta}}^{T} \boldsymbol{F}^{-1} \widetilde{\boldsymbol{\beta}}\right\} \\
& \quad \times \frac{(2 \pi)^{-p / 2}|\Sigma|^{-1 / 2} \exp \left\{-\frac{1}{2}(\widetilde{\boldsymbol{\beta}}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\widetilde{\boldsymbol{\beta}}-\boldsymbol{\mu})\right\}}{(2 \pi)^{-p / 2}|\Sigma|^{-1 / 2} \exp \left\{-\frac{1}{2}(\widetilde{\boldsymbol{\beta}}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\widetilde{\boldsymbol{\beta}}-\boldsymbol{\mu})\right\}} \boldsymbol{d} \\
& \quad \log \boldsymbol{E}_{\widetilde{\boldsymbol{\beta}} \sim N(\mu, \Sigma)}\left[\frac{\exp \left\{\boldsymbol{y}^{T} \boldsymbol{X} \widetilde{\boldsymbol{\beta}}-1^{T} \exp (\boldsymbol{X} \widetilde{\boldsymbol{\beta}})-\frac{1}{2} \widetilde{\boldsymbol{\beta}}^{T} \boldsymbol{F}^{-1} \widetilde{\boldsymbol{\beta}}\right\}}{(2 \pi)^{-p / 2}|\Sigma|^{-1 / 2} \exp \left\{-\frac{1}{2}(\widetilde{\boldsymbol{\beta}}-\boldsymbol{\mu})^{T} \Sigma^{-1}(\widetilde{\boldsymbol{\beta}}-\boldsymbol{\mu})\right\}}\right] \\
\geq & \boldsymbol{E}_{\widetilde{\beta} \sim N(\mu, \Sigma)}\left(\log \left[\frac{\exp \left\{\boldsymbol{y}^{T} \boldsymbol{X} \widetilde{\boldsymbol{\beta}}-1^{T} \exp (\boldsymbol{X} \widetilde{\boldsymbol{\beta}})-\frac{1}{2} \widetilde{\boldsymbol{\beta}}^{T} \boldsymbol{F}^{-1} \widetilde{\boldsymbol{\beta}}\right\}}{(2 \pi)^{-p / 2}|\Sigma|^{-1 / 2} \exp \left\{-\frac{1}{2}(\widetilde{\boldsymbol{\beta}}-\boldsymbol{\mu})^{T} \Sigma^{-1}(\widetilde{\boldsymbol{\beta}}-\boldsymbol{\mu})\right\}}\right]\right)
\end{aligned}
$$

The log marginal likelihood is (ignoring constants):

$$
\begin{aligned}
& \log p(y)=\log \int_{\mathbb{R} p} p(y \mid \beta) p(\beta) d \boldsymbol{\beta} \\
& =\log \int_{\mathbb{R} p} \exp \left\{\boldsymbol{y}^{T} \boldsymbol{X} \widetilde{\boldsymbol{\beta}}-1^{T} \exp (\boldsymbol{X} \widetilde{\boldsymbol{\beta}})-\frac{1}{2} \widetilde{\boldsymbol{\beta}}^{T} \boldsymbol{F}^{-1} \widetilde{\boldsymbol{\beta}}\right\} d \widetilde{\boldsymbol{\beta}} \\
& =\log \int_{\mathbb{R}} \boldsymbol{e x p}\left\{\boldsymbol{y}^{T} \boldsymbol{X} \widetilde{\boldsymbol{\beta}}-1^{T} \exp (\boldsymbol{X} \widetilde{\boldsymbol{\beta}})-\frac{1}{2} \widetilde{\boldsymbol{\beta}}^{T} \boldsymbol{F}^{-1} \widetilde{\boldsymbol{\beta}}\right\} \\
& \times \frac{(2 \pi)^{-p / 2}|\Sigma|^{-1 / 2} \exp \left\{-\frac{1}{2}(\widetilde{\beta}-\mu)^{T} \Sigma^{-1}(\widetilde{\beta}-\mu)\right\}}{(2 \pi)^{-p / 2}|\Sigma|^{-1 / 2} \exp \left\{-\frac{1}{2}(\widetilde{\boldsymbol{\beta}}-\mu)^{T} \Sigma^{-1}(\widetilde{\beta}-\mu)\right\}} d \widetilde{\boldsymbol{\beta}} \\
& =\log \boldsymbol{E}_{\widetilde{\boldsymbol{\beta}} \sim N(\mu, \Sigma)}\left[\frac{\exp \left\{\boldsymbol{y}^{T} \boldsymbol{X} \widetilde{\boldsymbol{\beta}}-1^{T} \exp (\boldsymbol{X} \widetilde{\boldsymbol{\beta}})-\frac{1}{2} \widetilde{\boldsymbol{\beta}}^{T} \boldsymbol{F}^{-1} \widetilde{\boldsymbol{\beta}}\right\}}{(2 \pi)^{-p / 2}|\Sigma|^{-1 / 2} \exp \left\{-\frac{1}{2}(\widetilde{\boldsymbol{\beta}}-\boldsymbol{\mu})^{T} \Sigma^{-1}(\widetilde{\boldsymbol{\beta}}-\mu)\right\}}\right] \\
& \geq \boldsymbol{E}_{\widetilde{\boldsymbol{\beta}} \sim N(\mu, \Sigma)}\left(\log \left[\frac{\exp \left\{\boldsymbol{y}^{T} \boldsymbol{X} \widetilde{\boldsymbol{\beta}}-1^{T} \exp (\boldsymbol{X} \widetilde{\boldsymbol{\beta}})-\frac{1}{2} \widetilde{\boldsymbol{\beta}}^{T} \boldsymbol{F}^{-1} \widetilde{\boldsymbol{\beta}}\right\}}{(2 \pi)^{-p / 2}|\Sigma|^{-1 / 2} \exp \left\{-\frac{1}{2}(\widetilde{\boldsymbol{\beta}}-\boldsymbol{\mu})^{T} \Sigma^{-1}(\widetilde{\boldsymbol{\beta}}-\boldsymbol{\mu})\right\}}\right]\right) \\
& =\boldsymbol{y}^{T} \boldsymbol{X} \boldsymbol{\mu}-1^{T} \exp \left\{\boldsymbol{X} \boldsymbol{\mu}+\frac{1}{2} \text { diagonal }\left(\boldsymbol{X} \boldsymbol{\Sigma} \boldsymbol{X}^{T}\right)\right\}-\frac{1}{2} \boldsymbol{\mu}^{T} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu} \\
& -\frac{1}{2}\left\{\operatorname{tr}\left(\boldsymbol{F}^{-1} \boldsymbol{\Sigma}\right)+\log |\boldsymbol{\Sigma}|\right\} \\
& =\log \underline{p(\boldsymbol{y}, \boldsymbol{\mu}, \boldsymbol{\Sigma})}=\text { variational lower bound on } \log \boldsymbol{p}(\boldsymbol{y})
\end{aligned}
$$

Variational Approximation of Poisson Regression Bayes Factor

We have just shown $p(y) \geq \underline{p(y ; \mu, \Sigma)}$ for all $\mu_{p \times 1}$ and $\Sigma_{p \times p}$.

Variational Approximation of Poisson Regression Bayes Factor

We have just shown $p(y) \geq \underline{p(y ; \mu, \Sigma)}$ for all $\mu_{p \times 1}$ and $\Sigma_{p \times p}$.
$p(y ; \mu, \Sigma)$ is relatively easy to compute (1D numerical integration; nice integrands).

Variational Approximation of Poisson Regression Bayes Factor

We have just shown $p(y) \geq \underline{p(y ; \mu, \Sigma)}$ for all $\mu_{p \times 1}$ and $\Sigma_{p \times p}$.
$p(y ; \mu, \Sigma)$ is relatively easy to compute (1D numerical integration; nice integrands).

We choose these variational parameters (μ, Σ) to maximise the right-hand-side (i.e. make bound as tight as we can).

Berkeley versus Wollongong I

Berkeley Variational Approximation Answer

Wollongong I Variational Approximation Answer

Berkeley versus Wollongong II

Berkeley Variational Approximation Answer

Wollongong II Variational Approximation Answer

Conclusions Thus Far

Conclusions Thus Far

- Hierarchical Bayes models and DAGs are useful structure for semiparametric regression.

Conclusions Thus Far

- Hierarchical Bayes models and DAGs are useful structure for semiparametric regression.
- We can always fall back on Markov chain Monte Carlo (MCMC) and BUGS.

Conclusions Thus Far

- Hierarchical Bayes models and DAGs are useful structure for semiparametric regression.
- We can always fall back on Markov chain Monte Carlo (MCMC) and BUGS.
- But MCMC slow, requires convergence assessment.

Conclusions Thus Far

- Hierarchical Bayes models and DAGs are useful structure for semiparametric regression.
- We can always fall back on Markov chain Monte Carlo (MCMC) and BUGS.
- But MCMC slow, requires convergence assessment.
- Variational inference engines emerging as a (better?) alternative.

Conclusions Thus Far

- Hierarchical Bayes models and DAGs are useful structure for semiparametric regression.
- We can always fall back on Markov chain Monte Carlo (MCMC) and BUGS.
- But MCMC slow, requires convergence assessment.
- Variational inference engines emerging as a (better?) alternative.
- Wollongong variational inference 'school' showing early promising results.

Conclusions Thus Far

- Hierarchical Bayes models and DAGs are useful structure for semiparametric regression.
- We can always fall back on Markov chain Monte Carlo (MCMC) and BUGS.
- But MCMC slow, requires convergence assessment.
- Variational inference engines emerging as a (better?) alternative.
- Wollongong variational inference 'school' showing early promising results.
- But bugger all ('diddly-squat' in US) in the way of theory.

Start of...

NEW THEORETICAL RESULTS FOR
Generalised Linear Mixed Models (GLMMs)
(Note - we now switch to being frequentists!)

Some Simple GLMMs

Logistic Response

$$
\begin{gathered}
\operatorname{logit}\left\{P\left(y_{i j}=1 \mid \boldsymbol{U}_{i}\right)\right\}=\beta_{0}+\boldsymbol{\beta}_{1} \boldsymbol{x}_{i}+\boldsymbol{U}_{\boldsymbol{i}} \\
\boldsymbol{U}_{i} \stackrel{\text { ind. }}{\sim} \boldsymbol{N}\left(0, \sigma_{U}^{2}\right)
\end{gathered}
$$

Poisson Response

$$
\begin{gathered}
y_{i j}=1 \mid U_{i} \sim \text { Poisson }\left\{\exp \left(\beta_{0}+\beta_{1} x_{i}+U_{i}\right)\right\} \\
U_{i} \stackrel{\text { ind. }}{\sim} N\left(0, \sigma_{U}^{2}\right)
\end{gathered}
$$

Relevance Check

GLMMs are really, really important.

No time to explain.
Just take my word for it!

Exponential Family Models

name	canonical link	$b(\eta)$	$c(y, \phi)$	ϕ
Bernoulli	$\eta=\operatorname{logit}(\mu)$	$\log \left(1+e^{\eta}\right)$	0	1
Poisson	$\eta=\ln (\mu)$	e^{η}	$-\ln (y!)$	1
$N\left(\mu, \sigma^{2}\right)$	$\eta=\mu$	$\eta^{2} / 2$	$\left(y^{2} / \sigma^{2}-\ln \left(2 \pi \sigma^{2}\right)\right) / 2$	σ^{2}

Exponential Family GLM

$$
\log p(y ; \beta, \phi)=\left\{y^{T} X \beta-1^{T} b(X \beta)\right\} / \phi+1^{T} c(y, \phi)
$$

GLMM Extension

$$
\begin{gathered}
\log \{p(y \mid u)\}=\left\{y^{T}(X \beta+Z u)-1^{T} b(X \beta+Z u)\right\} / \phi \\
+1^{T} c(y, \phi) \\
u \sim N(0, G)
\end{gathered}
$$

Maximum Likelihood Estimation

Likelihood is:

$$
\begin{aligned}
\mathcal{L}(\beta, G, \phi)= & p(y ; \beta, G) \\
= & \int_{\mathbb{R}^{q}} p(y, u) d u \\
= & \int_{\mathbb{R}^{q}} p(y \mid u) p(u) d u \\
= & (2 \pi)^{-q / 2}|G|^{-1 / 2} \int_{\mathbb{R}^{q}} \exp \left[\left\{y^{T}(X \beta+Z u)-1^{T} b(X \beta+Z \imath\right.\right. \\
& \left.\left.\quad+1^{T} c(y, \phi)-\frac{1}{2} u^{T} G^{-1} u\right\}\right] d u
\end{aligned}
$$

GLMMs Big Headache

The likelihood involves an intractable integral
(often high-dimensional).

Poisson Random Intercept Example

Likelihood is:

$$
\begin{aligned}
& \mathcal{L}\left(\beta, \sigma^{2}\right)=\left(\sigma^{2}\right)^{-m / 2} \times \text { const. } \\
& \quad \times \int_{\mathbb{R}^{m}} \exp \left\{y^{T}(X \beta+Z u)-1^{T} \exp (X \beta+Z u)-\frac{1}{2 \sigma^{2}} u^{T} u\right\} d u
\end{aligned}
$$

Poisson Random Intercept Example

Likelihood is:

$$
\begin{aligned}
& \mathcal{L}\left(\beta, \sigma^{2}\right)=\left(\sigma^{2}\right)^{-m / 2} \times \text { const. } \\
& \quad \times \int_{\mathbb{R}^{m}} \exp \left\{y^{T}(X \beta+Z u)-1^{T} \exp (X \beta+Z u)-\frac{1}{2 \sigma^{2}} u^{T} u\right\} d u
\end{aligned}
$$

Log-likelihood is (ignoring constants):

$$
\begin{aligned}
& \ell\left(\beta, \sigma^{2}\right)=-(m / 2) \log \left(\sigma^{2}\right) \\
& \quad+\log \int_{\mathbb{R}^{m}} \exp \left\{y^{T}(X \beta+Z \widetilde{u})-1^{T} \exp (X \beta+Z \widetilde{u})-\frac{1}{2 \sigma^{2}} \widetilde{u}^{T} \widetilde{u}\right\} d \widetilde{u}
\end{aligned}
$$

Variational Transform of Problem

$$
\begin{aligned}
\ell\left(\boldsymbol{\beta}, \sigma^{2}\right)=\log & \int_{\mathbb{R}^{m}} \exp \left\{\boldsymbol{y}^{T}(X \boldsymbol{\beta}+\boldsymbol{Z} \widetilde{\boldsymbol{u}})-1^{T} \exp (X \boldsymbol{\beta}+\boldsymbol{Z} \widetilde{\boldsymbol{u}})-\frac{1}{2 \sigma^{2}} \widetilde{\boldsymbol{u}}^{T} \widetilde{\boldsymbol{u}}\right\} \\
& \times \frac{(2 \pi)^{-m / 2}|\Sigma|^{-1 / 2} \exp \left\{-\frac{1}{2}(\widetilde{\boldsymbol{u}}-\mu)^{T} \Sigma^{-1}(\widetilde{\boldsymbol{u}}-\mu)\right\}}{(2 \pi)^{-m / 2}|\Sigma|^{-1 / 2} \exp \left\{-\frac{1}{2}(\widetilde{\boldsymbol{u}}-\mu)^{T} \Sigma^{-1}(\widetilde{\boldsymbol{u}}-\mu)\right\}} d \widetilde{\boldsymbol{u}}-\frac{m}{2} \log \left(\sigma^{2}\right)
\end{aligned}
$$

Variational Transform of Problem

$$
\begin{aligned}
\ell\left(\boldsymbol{\beta}, \sigma^{2}\right)= & \log \int_{\mathbb{R}^{m}} \exp \left\{\boldsymbol{y}^{T}(\boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{Z} \widetilde{\boldsymbol{u}})-1^{T} \exp (\boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{Z} \widetilde{\boldsymbol{u}})-\frac{1}{2 \sigma^{2}} \widetilde{\boldsymbol{u}}^{T} \widetilde{\boldsymbol{u}}\right\} \\
& \times \frac{(2 \pi)^{-m / 2}|\Sigma|^{-1 / 2} \exp \left\{-\frac{1}{2}(\widetilde{\boldsymbol{u}}-\boldsymbol{\mu})^{T} \Sigma^{-1}(\widetilde{\boldsymbol{u}}-\mu)\right\}}{(2 \pi)^{-m / 2}|\Sigma|^{-1 / 2} \exp \left\{-\frac{1}{2}(\widetilde{\boldsymbol{u}}-\boldsymbol{\mu})^{T} \Sigma^{-1}(\widetilde{\boldsymbol{u}}-\boldsymbol{\mu})\right\}} d \widetilde{\boldsymbol{u}}-\frac{m}{2} \log \left(\sigma^{2}\right) \\
= & \log E_{\widetilde{\boldsymbol{u}} \sim N(\mu, \Sigma)}\left[\frac{\exp \left\{\boldsymbol{y}^{T}(X \beta+\boldsymbol{Z} \widetilde{\boldsymbol{u}})-1^{T} \exp (X \boldsymbol{\beta}+\boldsymbol{Z} \widetilde{\boldsymbol{u}})\right\}-\frac{1}{2 \sigma^{2}} \widetilde{\boldsymbol{u}}^{T} \widetilde{\boldsymbol{u}}}{\left(2 \pi \sigma^{2}\right)^{-m / 2}|\Sigma|^{-1 / 2} \exp \left\{-\frac{1}{2}(\widetilde{\boldsymbol{u}}-\boldsymbol{\mu})^{T} \Sigma^{-1}(\widetilde{\boldsymbol{u}}-\boldsymbol{\mu})\right\}}\right.
\end{aligned}
$$

Variational Transform of Problem

$$
\begin{aligned}
\ell\left(\boldsymbol{\beta}, \sigma^{2}\right)= & \log \int_{\mathbb{R}^{m}} \exp \left\{\boldsymbol{y}^{T}(X \boldsymbol{\beta}+\boldsymbol{Z} \widetilde{\boldsymbol{u}})-1^{T} \exp (X \boldsymbol{\beta}+\boldsymbol{Z} \widetilde{\boldsymbol{u}})-\frac{1}{2 \sigma^{2}} \widetilde{\boldsymbol{u}}^{T} \widetilde{\boldsymbol{u}}\right\} \\
& \times \frac{(2 \pi)^{-m / 2}|\Sigma|^{-1 / 2} \exp \left\{-\frac{1}{2}(\widetilde{\boldsymbol{u}}-\mu)^{T} \Sigma^{-1}(\widetilde{\boldsymbol{u}}-\mu)\right\}}{(2 \pi)^{-m / 2}|\Sigma|^{-1 / 2} \exp \left\{-\frac{1}{2}(\widetilde{\boldsymbol{u}}-\boldsymbol{\mu})^{T} \Sigma^{-1}(\widetilde{\boldsymbol{u}}-\mu)\right\}} d \widetilde{\boldsymbol{u}}-\frac{m}{2} \log \left(\sigma^{2}\right) \\
= & \log E_{\widetilde{u} \sim N(\mu, \Sigma)}\left[\frac{\exp \left\{\boldsymbol{y}^{T}(X \beta+Z \widetilde{\boldsymbol{u}})-1^{T} \exp (X \beta+Z \widetilde{\boldsymbol{u}})\right\}-\frac{1}{2 \sigma^{2}} \widetilde{\boldsymbol{u}}^{T} \widetilde{\boldsymbol{u}}}{\left(2 \pi \sigma^{2}\right)^{-m / 2}|\Sigma|^{-1 / 2} \exp \left\{-\frac{1}{2}(\widetilde{\boldsymbol{u}}-\mu)^{T} \Sigma^{-1}(\widetilde{\boldsymbol{u}}-\mu)\right\}}\right. \\
\geq & E_{\widetilde{u} \sim N(\mu, \Sigma)} \log \left\{\frac{\exp \left\{y^{T}(X \beta+Z \widetilde{\boldsymbol{u}})-1^{T} e^{X \beta+Z \widetilde{u}}-\frac{1}{2 \sigma^{2}} \widetilde{\boldsymbol{u}}^{T} \widetilde{\boldsymbol{u}}\right\}}{\left(2 \pi \sigma^{2}\right)^{-m / 2}|\Sigma|^{-1 / 2} \exp \left\{-\frac{1}{2}(\widetilde{\boldsymbol{u}}-\mu)^{\left.T \Sigma^{-1}(\widetilde{\boldsymbol{u}}-\mu)\right\}}\right\}}\right\}
\end{aligned}
$$

Variational Transform of Problem

$$
\begin{aligned}
& \ell\left(\boldsymbol{\beta}, \sigma^{2}\right)=\log \int_{\mathbb{R}^{m}} \exp \left\{\boldsymbol{y}^{T}(\boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{Z} \widetilde{\boldsymbol{u}})-1^{T} \exp (\boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{Z} \widetilde{\boldsymbol{u}})-\frac{1}{2 \sigma^{2}} \widetilde{\boldsymbol{u}}^{T} \widetilde{\boldsymbol{u}}\right\} \\
& \times \frac{(2 \pi)^{-m / 2}|\Sigma|^{-1 / 2} \exp \left\{-\frac{1}{2}(\widetilde{u}-\mu)^{T} \Sigma^{-1}(\widetilde{u}-\mu)\right\}}{(2 \pi)^{-m / 2}|\Sigma|^{-1 / 2} \exp \left\{-\frac{1}{2}(\widetilde{u}-\mu)^{T} \Sigma^{-1}(\widetilde{u}-\mu)\right\}} d \widetilde{u}-\frac{m}{2} \log \left(\sigma^{2}\right) \\
& =\log E_{\widetilde{u} \sim N(\mu, \Sigma)}\left[\frac{\exp \left\{y^{T}(X \beta+Z \widetilde{u})-1^{T} \exp (X \beta+Z \widetilde{u})\right\}-\frac{1}{2 \sigma^{2}} \widetilde{u}^{T} \widetilde{\boldsymbol{u}}}{\left(2 \pi \sigma^{2}\right)^{-m / 2}|\Sigma|^{-1 / 2} \exp \left\{-\frac{1}{2}(\widetilde{\boldsymbol{u}}-\mu)^{T} \Sigma^{-1}(\widetilde{u}-\mu)\right\}}\right. \\
& \geq \quad E_{\widetilde{u} \sim N(\mu, \Sigma)} \log \left\{\frac{\exp \left\{\boldsymbol{y}^{T}(X \boldsymbol{\beta}+\boldsymbol{Z} \widetilde{\boldsymbol{u}})-1^{T} e^{X \beta+Z \widetilde{u}}-\frac{1}{2 \sigma^{2}} \widetilde{\boldsymbol{u}}^{T} \widetilde{\boldsymbol{u}}\right\}}{\left(2 \pi \sigma^{2}\right)^{-m / 2}|\Sigma|^{-1 / 2} \exp \left\{-\frac{1}{2}(\widetilde{\boldsymbol{u}}-\mu)^{T} \Sigma^{-1}(\widetilde{u}-\mu)\right\}}\right\} \\
& =\boldsymbol{y}^{T}(\boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{Z} \boldsymbol{\mu})-1^{T} \exp \left\{\boldsymbol{X} \boldsymbol{\beta}+Z \mu+\frac{1}{2} \operatorname{diagonal}\left(\boldsymbol{Z} \boldsymbol{\Sigma} \boldsymbol{Z}^{T}\right)\right\} \\
& -\frac{1}{2 \sigma^{2}}\left\{\mu^{T} \boldsymbol{\mu}+\operatorname{tr}(\Sigma)\right\}+\frac{1}{2} \log |\Sigma|-\frac{m}{2} \log \left(\sigma^{2}\right)
\end{aligned}
$$

Variational Transform of Problem

$$
\begin{aligned}
& \ell\left(\boldsymbol{\beta}, \sigma^{2}\right)=\log \int_{\mathbb{R}^{m}} \exp \left\{\boldsymbol{y}^{T}(\boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{Z} \widetilde{\boldsymbol{u}})-1^{T} \exp (\boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{Z} \widetilde{\boldsymbol{u}})-\frac{1}{2 \sigma^{2}} \widetilde{\boldsymbol{u}}^{T} \widetilde{\boldsymbol{u}}\right\} \\
& \times \frac{(2 \pi)^{-m / 2}|\Sigma|^{-1 / 2} \exp \left\{-\frac{1}{2}(\widetilde{u}-\mu)^{T} \Sigma^{-1}(\widetilde{u}-\mu)\right\}}{(2 \pi)^{-m / 2}|\Sigma|^{-1 / 2} \exp \left\{-\frac{1}{2}(\widetilde{u}-\mu)^{T} \Sigma^{-1}(\widetilde{u}-\mu)\right\}} d \widetilde{u}-\frac{m}{2} \log \left(\sigma^{2}\right) \\
& =\log E_{\widetilde{u} \sim N(\mu, \Sigma)}\left[\frac{\exp \left\{y^{T}(X \boldsymbol{\beta}+Z \widetilde{\boldsymbol{u}})-1^{T} \exp (X \boldsymbol{\beta}+\boldsymbol{Z} \widetilde{\boldsymbol{u}})\right\}-\frac{1}{2 \sigma^{2}} \widetilde{\boldsymbol{u}}^{T} \widetilde{\boldsymbol{u}}}{\left(2 \pi \sigma^{2}\right)^{-m / 2}|\Sigma|^{-1 / 2} \exp \left\{-\frac{1}{2}(\widetilde{\boldsymbol{u}}-\mu)^{\left.T \Sigma^{-1}(\widetilde{\boldsymbol{u}}-\mu)\right\}}\right.}\right. \\
& \geq \quad E_{\widetilde{u} \sim N(\mu, \Sigma)} \log \left\{\frac{\exp \left\{\boldsymbol{y}^{T}(X \boldsymbol{\beta}+\boldsymbol{Z} \widetilde{\boldsymbol{u}})-1^{T} e^{X \beta+Z \widetilde{u}}-\frac{1}{2 \sigma^{2}} \widetilde{u}^{T} \widetilde{u}\right\}}{\left(2 \pi \sigma^{2}\right)^{-m / 2}|\Sigma|^{-1 / 2} \exp \left\{-\frac{1}{2}(\widetilde{u}-\mu)^{T} \Sigma^{-1}(\widetilde{u}-\mu)\right\}}\right\} \\
& =\boldsymbol{y}^{T}(\boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{Z} \boldsymbol{\mu})-1^{T} \exp \left\{\boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{Z} \boldsymbol{\mu}+\frac{1}{2} \text { diagonal }\left(\boldsymbol{Z} \boldsymbol{\Sigma} \boldsymbol{Z}^{T}\right)\right\} \\
& -\frac{1}{2 \sigma^{2}}\left\{\mu^{T} \mu+\operatorname{tr}(\Sigma)\right\}+\frac{1}{2} \log |\Sigma|-\frac{m}{2} \log \left(\sigma^{2}\right) \\
& \equiv \underline{\ell\left(\beta, \sigma^{2}, \mu, \Sigma\right)}
\end{aligned}
$$

Variational Transform of Problem

$$
\begin{aligned}
& \ell\left(\boldsymbol{\beta}, \sigma^{2}\right)=\log \int_{\mathbb{R}^{m}} \exp \left\{\boldsymbol{y}^{T}(\boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{Z} \widetilde{\boldsymbol{u}})-1^{T} \exp (\boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{Z} \widetilde{\boldsymbol{u}})-\frac{1}{2 \sigma^{2}} \widetilde{\boldsymbol{u}}^{T} \widetilde{\boldsymbol{u}}\right\} \\
& \times \frac{(2 \pi)^{-m / 2}|\Sigma|^{-1 / 2} \exp \left\{-\frac{1}{2}(\widetilde{u}-\mu)^{T} \Sigma^{-1}(\widetilde{u}-\mu)\right\}}{(2 \pi)^{-m / 2}|\Sigma|^{-1 / 2} \exp \left\{-\frac{1}{2}(\widetilde{u}-\mu)^{T} \Sigma^{-1}(\widetilde{u}-\mu)\right\}} d \widetilde{u}-\frac{m}{2} \log \left(\sigma^{2}\right) \\
& =\log \boldsymbol{E}_{\widetilde{u} \sim N(\mu, \Sigma)}\left[\frac{\exp \left\{\boldsymbol{y}^{T}(\boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{Z} \widetilde{\boldsymbol{u}})-1^{T} \exp (\boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{Z} \widetilde{\boldsymbol{u}})\right\}-\frac{1}{2 \sigma^{2}} \widetilde{\boldsymbol{u}}^{T} \widetilde{\boldsymbol{u}}}{\left(2 \pi \sigma^{2}\right)^{-m / 2}|\Sigma|^{-1 / 2} \exp \left\{-\frac{1}{2}(\widetilde{\boldsymbol{u}}-\mu)^{T} \Sigma^{-1}(\widetilde{\boldsymbol{u}}-\mu)\right\}}\right. \\
& \geq \quad E_{\widetilde{u} \sim N(\mu, \Sigma)} \log \left\{\frac{\exp \left\{\boldsymbol{y}^{T}(X \boldsymbol{\beta}+\boldsymbol{Z} \widetilde{\boldsymbol{u}})-1^{T} e^{X \beta+Z \widetilde{u}}-\frac{1}{2 \sigma^{2}} \widetilde{u}^{T} \widetilde{u}\right\}}{\left(2 \pi \sigma^{2}\right)^{-m / 2}|\Sigma|^{-1 / 2} \exp \left\{-\frac{1}{2}(\widetilde{u}-\mu)^{T} \Sigma^{-1}(\widetilde{u}-\mu)\right\}}\right\} \\
& =\boldsymbol{y}^{T}(\boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{Z} \boldsymbol{\mu})-1^{T} \exp \left\{\boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{Z} \boldsymbol{\mu}+\frac{1}{2} \text { diagonal }\left(\boldsymbol{Z} \boldsymbol{\Sigma} \boldsymbol{Z}^{T}\right)\right\} \\
& -\frac{1}{2 \sigma^{2}}\left\{\mu^{T} \mu+\operatorname{tr}(\Sigma)\right\}+\frac{1}{2} \log |\Sigma|-\frac{m}{2} \log \left(\sigma^{2}\right) \\
& \equiv \underline{\ell\left(\beta, \sigma^{2}, \mu, \Sigma\right)} \\
& =\text { variational lower bound on } \ell\left(\boldsymbol{\beta}, \sigma^{2}\right) \text {. }
\end{aligned}
$$

Variational Approximate Maximum Likelihood

The variational approx. max. lik. est. is:
($\left.\widehat{\mathfrak{\beta}}, \hat{\underline{c}}^{2}\right)$,
the $\left(\beta, \sigma^{2}\right)$ component of
$\operatorname{argmax} \ell\left(\beta, \sigma^{2}, \mu, \Sigma\right)$.
$\boldsymbol{\beta}, \sigma^{2}, \boldsymbol{\mu}, \boldsymbol{\Sigma}$

Variational Approximate Fisher Information

$$
\begin{aligned}
& \theta=\left(\boldsymbol{\beta}, \sigma^{2}\right)=\text { parameters of interest } \\
& \eta=(\mu, \Sigma)=\text { variational parameters }
\end{aligned}
$$

Variational Approximate Fisher Information

$$
\begin{aligned}
& \theta=\left(\boldsymbol{\beta}, \sigma^{2}\right)=\text { parameters of interest } \\
& \eta=(\mu, \Sigma)=\text { variational parameters }
\end{aligned}
$$

Pretending that $\ell\left(\beta, \sigma^{2}, \mu, \Sigma\right)=\underline{\ell(\theta, \eta)}$ is a log-likelihood then the Fisher information is

$$
\underline{\boldsymbol{I}_{(\boldsymbol{\theta}, \boldsymbol{\eta})}}=-\boldsymbol{E}\{\underline{\mathrm{H} \ell(\theta, \eta)}\}=\left[\begin{array}{ll}
\underline{\boldsymbol{I}_{\boldsymbol{\theta} \boldsymbol{\theta}}} & \frac{\boldsymbol{I}_{\boldsymbol{\theta} \boldsymbol{\eta}}^{T}}{\underline{\boldsymbol{I}_{\boldsymbol{\theta} \boldsymbol{\eta}}}} \\
\underline{\boldsymbol{I}_{\boldsymbol{\eta}}}
\end{array}\right]
$$

Asymptotic covariance matrix is $\left(\underline{\boldsymbol{I}_{\boldsymbol{\theta} \boldsymbol{\theta}}}-\underline{\boldsymbol{I}_{\boldsymbol{\theta} \boldsymbol{\eta}}}{\underline{\boldsymbol{I}} \boldsymbol{I}_{\boldsymbol{\eta}}}^{-1} \underline{\boldsymbol{I}_{\boldsymbol{\theta} \boldsymbol{\eta}}}\right)^{-1}$.

LATE BREAKING NEWS!

LATE BREAKING NEWS!

CONSISTENCY RESULTS ESTABLISHED FOR GROUPED DATA GLMMS!!!

LATE BREAKING NEWS!

CONSISTENCY RESULTS ESTABLISHED FOR GROUPED DATA GLMMS!!!

Peter Hall spotted leaving the scene.

References

1. Ormerod, J.T. and Wand, M.P. (2008). Variational approximations for logistic mixed models. Proceedings of the Ninth Iranian Statistics Conference, Isfahan, Iran, pp. 450-467.
2. Wand, M.P. and Ormerod, J.T. (2009). Comment on paper by Rue, Martino \& Chopin. Journal of the Royal Statistical Society, Series B, in press.
3. Wand, M.P. (2009). Semiparametric regression and graphical models. Australian and New Zealand Journal of Statistics, in press.
4. Ormerod, J.T., Hall, P. and Wand, M.P. (2009). Gaussian variational approximation for generalized linear mixed models. In progress.
5. Ormerod, J.T. and Wand, M.P. (2009). Understanding variational approximations. In progress. (a la George Casella!)

Second and third of these are on Wand papers web-site.

Final (Three-Point!) Summary

- Variational approximations have great potential in semiparametric regression.
- Early Ormerod/Wand (mainly Ormerod PhD thesis) work showing good practical perfomance.
- Some interesting statistical theory emerging.

Parting Words

It is too early to tell if
Variational Approximation
will become a major player the future of semiparametric regression analysis.

But if it does then you can say that you heard about it first at the:

11th UF Dept Statistics Winter Workshop!

Papers, Contact etc.

www.uow.edu.au/~mwand

