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First...

Primer on Variational Approximation
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‘Undergraduate’ Variational Approximation



‘Undergraduate’ Variational Approximation

Consider the
Bayesian Poisson regression model

[yi|β] ind.∼ Poisson(exp(β0 + β1x1i + . . . + βkxki))

Prior on regression coefficients: (β0, . . . , βk) ∼ N(0, F ).



‘Undergraduate’ Variational Approximation

Consider the
Bayesian Poisson regression model

[yi|β] ind.∼ Poisson(exp(β0 + β1x1i + . . . + βkxki))

Prior on regression coefficients: (β0, . . . , βk) ∼ N(0, F ).

Matrix notation:

p(y|β) = exp{yT Xβ−1T exp(Xβ)−1T log(y!)}, β ∼ N(0, F )
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log p(y) = log
Z

Rp
p(y|β)p(β) dβ



The log marginal likelihood is (ignoring constants):

log p(y) = log
Z

Rp
p(y|β)p(β) dβ

= log
Z

Rp
exp{y

T
Xeβ − 1T exp(Xeβ) − 1

2
eβT

F
−1eβ} deβ



The log marginal likelihood is (ignoring constants):

log p(y) = log
Z

Rp
p(y|β)p(β) dβ

= log
Z

Rp
exp{y

T
Xeβ − 1T exp(Xeβ) − 1

2
eβT

F
−1eβ} deβ

= log
Z

Rp
exp{y

T
Xeβ − 1T exp(Xeβ) − 1

2
eβT

F
−1eβ}

×
(2π)−p/2|Σ|−1/2 exp{−1

2(
eβ − µ)TΣ−1(eβ − µ)}

(2π)−p/2|Σ|−1/2 exp{−1
2(

eβ − µ)TΣ−1(eβ − µ)}
deβ



The log marginal likelihood is (ignoring constants):

log p(y) = log
Z

Rp
p(y|β)p(β) dβ

= log
Z

Rp
exp{y

T
Xeβ − 1T exp(Xeβ) − 1

2
eβT

F
−1eβ} deβ

= log
Z

Rp
exp{y

T
Xeβ − 1T exp(Xeβ) − 1

2
eβT

F
−1eβ}

×
(2π)−p/2|Σ|−1/2 exp{−1

2(
eβ − µ)TΣ−1(eβ − µ)}

(2π)−p/2|Σ|−1/2 exp{−1
2(

eβ − µ)TΣ−1(eβ − µ)}
deβ

= log Eeβ∼N(µ,Σ)

24 exp{yT Xeβ − 1T exp(Xeβ) − 1
2

eβT
F −1eβ}

(2π)−p/2|Σ|−1/2 exp{−1
2(

eβ − µ)TΣ−1(eβ − µ)}

35



The log marginal likelihood is (ignoring constants):

log p(y) = log
Z

Rp
p(y|β)p(β) dβ

= log
Z

Rp
exp{y

T
Xeβ − 1T exp(Xeβ) − 1

2
eβT

F
−1eβ} deβ

= log
Z

Rp
exp{y

T
Xeβ − 1T exp(Xeβ) − 1

2
eβT

F
−1eβ}

×
(2π)−p/2|Σ|−1/2 exp{−1

2(
eβ − µ)TΣ−1(eβ − µ)}

(2π)−p/2|Σ|−1/2 exp{−1
2(

eβ − µ)TΣ−1(eβ − µ)}
deβ

= log Eeβ∼N(µ,Σ)

24 exp{yT Xeβ − 1T exp(Xeβ) − 1
2

eβT
F −1eβ}

(2π)−p/2|Σ|−1/2 exp{−1
2(

eβ − µ)TΣ−1(eβ − µ)}

35
≥ Eeβ∼N(µ,Σ)

0@log

24 exp{yT Xeβ − 1T exp(Xeβ) − 1
2

eβT
F −1eβ}

(2π)−p/2|Σ|−1/2 exp{−1
2(

eβ − µ)TΣ−1(eβ − µ)}

351A



The log marginal likelihood is (ignoring constants):

log p(y) = log
Z

Rp
p(y|β)p(β) dβ

= log
Z

Rp
exp{y

T
Xeβ − 1T exp(Xeβ) − 1

2
eβT

F
−1eβ} deβ

= log
Z

Rp
exp{y

T
Xeβ − 1T exp(Xeβ) − 1

2
eβT

F
−1eβ}

×
(2π)−p/2|Σ|−1/2 exp{−1

2(
eβ − µ)TΣ−1(eβ − µ)}

(2π)−p/2|Σ|−1/2 exp{−1
2(

eβ − µ)TΣ−1(eβ − µ)}
deβ

= log Eeβ∼N(µ,Σ)

24 exp{yT Xeβ − 1T exp(Xeβ) − 1
2

eβT
F −1eβ}

(2π)−p/2|Σ|−1/2 exp{−1
2(

eβ − µ)TΣ−1(eβ − µ)}

35
≥ Eeβ∼N(µ,Σ)

0@log

24 exp{yT Xeβ − 1T exp(Xeβ) − 1
2

eβT
F −1eβ}

(2π)−p/2|Σ|−1/2 exp{−1
2(

eβ − µ)TΣ−1(eβ − µ)}

351A
= y

T
Xµ − 1T exp{Xµ + 1

2diagonal(XΣX
T )} − 1

2µ
TΣ−1

µ

−1
2{tr(F −1Σ) + log |Σ|}



The log marginal likelihood is (ignoring constants):

log p(y) = log
Z

Rp
p(y|β)p(β) dβ

= log
Z

Rp
exp{y

T
Xeβ − 1T exp(Xeβ) − 1

2
eβT

F
−1eβ} deβ

= log
Z

Rp
exp{y

T
Xeβ − 1T exp(Xeβ) − 1

2
eβT

F
−1eβ}

×
(2π)−p/2|Σ|−1/2 exp{−1

2(
eβ − µ)TΣ−1(eβ − µ)}

(2π)−p/2|Σ|−1/2 exp{−1
2(

eβ − µ)TΣ−1(eβ − µ)}
deβ

= log Eeβ∼N(µ,Σ)

24 exp{yT Xeβ − 1T exp(Xeβ) − 1
2

eβT
F −1eβ}

(2π)−p/2|Σ|−1/2 exp{−1
2(

eβ − µ)TΣ−1(eβ − µ)}

35
≥ Eeβ∼N(µ,Σ)

0@log

24 exp{yT Xeβ − 1T exp(Xeβ) − 1
2

eβT
F −1eβ}

(2π)−p/2|Σ|−1/2 exp{−1
2(

eβ − µ)TΣ−1(eβ − µ)}

351A
= y

T
Xµ − 1T exp{Xµ + 1

2diagonal(XΣX
T )} − 1

2µ
TΣ−1

µ

−1
2{tr(F −1Σ) + log |Σ|}

= log p(y, µ, Σ) for all µ(p × 1) and symmetric positive definite Σ(p × p).



The log marginal likelihood is (ignoring constants):

log p(y) = log
Z

Rp
p(y|β)p(β) dβ

= log
Z

Rp
exp{y

T
Xeβ − 1T exp(Xeβ) − 1

2
eβT

F
−1eβ} deβ

= log
Z

Rp
exp{y

T
Xeβ − 1T exp(Xeβ) − 1

2
eβT

F
−1eβ}

×
(2π)−p/2|Σ|−1/2 exp{−1

2(
eβ − µ)TΣ−1(eβ − µ)}

(2π)−p/2|Σ|−1/2 exp{−1
2(

eβ − µ)TΣ−1(eβ − µ)}
deβ

= log Eeβ∼N(µ,Σ)

24 exp{yT Xeβ − 1T exp(Xeβ) − 1
2

eβT
F −1eβ}

(2π)−p/2|Σ|−1/2 exp{−1
2(

eβ − µ)TΣ−1(eβ − µ)}

35
≥ Eeβ∼N(µ,Σ)

0@log

24 exp{yT Xeβ − 1T exp(Xeβ) − 1
2

eβT
F −1eβ}

(2π)−p/2|Σ|−1/2 exp{−1
2(

eβ − µ)TΣ−1(eβ − µ)}

351A
= y

T
Xµ − 1T exp{Xµ + 1

2diagonal(XΣX
T )} − 1

2µ
TΣ−1

µ

−1
2{tr(F −1Σ) + log |Σ|}

= log p(y, µ, Σ) for all µ(p × 1) and symmetric positive definite Σ(p × p).

7



Next...

A Bit About Semiparametric Regression
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Approximate 95% Conf. Int. for Contrasts
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Mixed Model Framework

Previous analysis was done completely using
linear mixed models

y = Xβ + Zu + ε

[
u

ε

]
∼ N

([
0
0

]
,

[
G 0
0 R

])

12



Tricking Mixed Models to do Smoothing

yi = β0 + β1xi +
K∑

k=1

uk(xi − κk)+ + εi
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Other Bases

We often replace (x− κk)+ by nicer zk(x):

f(x) = β0 + β1x +
K∑

k=1

ukzk(x)

with

uk i.i.d. N(0, σ2
u)

Particularly nice zk(x) are those arising from O’Sullivan Statist. Sci.
(1986) (see e.g. Wand & Ormerod, Aust. N.Z. J. Statist., 2008).
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Keep Updated!

Semiparametric Regression During 2003–2007.

D. RUPPERT, M.P. WAND & R.J. CARROLL

J. American Statist. Assoc. (under review)

Available now on Wand web-site!
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Question

Is it possible to do an

entire semiparametric regression analysis

without touching the keyboard?
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Answer

YES

via a graphical models approach

(and WinBUGS)
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for(iSpl IN 1 : numSpl) for(iSbj IN 1 : numSbj)

for(i IN 1 : numObs)

betaWbetaH

white[i]

hispanic[i]
mu[i]

betaB

Zspl[i,]

black[i]

tauSpl

uSpl[iSpl]

tauEps

tauSbj

uSbj[iSbj]

beta1beta0

idnum[i]

age[i]

y[i]y[i]

name: y[i] type: stochastic density: dnorm

mean mu[i] precision tauEps lower bound upper bound
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The Graphical Models

viewpoint of

Semiparametric Regression
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A recent trend in semiparametric regression is
increased use of

hierarchical Bayesian modelling
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Bayesian Hierarchical Model for Spinal Bone
Mineral Data

[yij|β, usbj, uspl, σ2
sbj, σ2

spl, σ2
ε]

ind.∼ N
(
βT xi + ui,sbj + f(ageij; σ

2
spl), σ2

ε

)
,

[
usbj|σ2

sbj

]
∼ N(0, σ2

sbjI), [uspl|σ2
spl] ∼ N(0, σ2

splI),

[β] ∼ N(0, σ2
βI),

[
1/σ2

sbj

]
∼ Gamma(Asbj, Bsbj),[

1/σ2
spl

]
∼ Gamma(Aspl, Bspl),

[
1/σ2

ε

]
∼ Gamma(Aε, Bε).
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Directed Acyclic Graph (DAG) Representation

y

ββ

σσεε
2

usbj

σσsbj
2

uspl

σσspl
2
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Inference Problem in Graphical Models Jargon

E = evidence nodes = {y}

H = hidden nodes = {β, usbj, uspl, σ2
sbj
, σ2

spl
, σ2

ε}
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y

ββ

σσεε
2

usbj

σσsbj
2

uspl

σσspl
2
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Probability Calculus Problem

p(H|E) =
p(H, E)

p(E)



Probability Calculus Problem

p(H|E) =
p(H, E)

p(E)

For current problem:

p(β, usbj, uspl, σ2
sbj, σ2

spl, σ2
ε|y) =

p(β, usbj, uspl, σ2
sbj, σ2

spl, σ2
ε, y)

p(y)
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The MCMC Solution

Most common method for solving probability calculus problems is

Monte Carlo Markov Chain (MCMC).



The MCMC Solution

Most common method for solving probability calculus problems is

Monte Carlo Markov Chain (MCMC).
Software packages WinBUGS

Lunn, D.J., Thomas, A., Best, N. & Spiegelhalter, D. (2000). WinBUGS –
a Bayesian modelling framework: concepts, structure, and extensibility.
Statistics and Computing, 10, 325–337.

and BRugs
Ligges, U., Thomas, A., Spiegelhalter, D., Best, N., Lunn, D., Rice, K. &
Sturtz, S. (2007). BRugs 0.4.

provide an effective means of fitting.
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WinBUGS Code

model
{

for(i in 1:numObs)
{

mu[i] <- beta0 + uSbj[idnum[i]] + betaB*black[i] + betaH*hispanic[i]
+ betaW*white[i] + betaAge*sage[i] + inprod(uSpl[],Zspl[i,])

sSBMD[i] ˜ dnorm(mu[i],tauErr)
}
for (iSbj in 1:numSbj)
{

uSbj[iSbj] ˜ dnorm(0,tauSbj)
}
for (iSpl in 1:numSpl)
{

uSpl[iSpl] ˜ dnorm(0,tauSpl)
}
beta0 ˜ dnorm(0,1.0E-8) ; betaB ˜ dnorm(0,1.0E-8)
betaH ˜ dnorm(0,1.0E-8) ; betaW ˜ dnorm(0,1.0E-8)
betaAge ˜ dnorm(0,1.0E-8) ; tauSbj ˜ dgamma(0.01,0.01)
tauSpl ˜ dgamma(0.01,0.01) ; tauErr ˜ dgamma(0.01,0.01)
sigSbj <- 1/sqrt(tauSbj) ; sigSpl <- 1/sqrt(tauSpl)
sigErr <- 1/sqrt(tauErr)

}

29



Alternatively, we can specify model in WinBUGS
using its

graphical model drawing facility
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for(iSpl IN 1 : numSpl) for(iSbj IN 1 : numSbj)

for(i IN 1 : numObs)

betaWbetaH

white[i]

hispanic[i]
mu[i]

betaB

Zspl[i,]

black[i]

tauSpl

uSpl[iSpl]

tauEps

tauSbj

uSbj[iSbj]

beta1beta0

idnum[i]

age[i]

y[i]y[i]

name: y[i] type: stochastic density: dnorm

mean mu[i] precision tauEps lower bound upper bound
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Series  x[[plot.ind]][, j]

0.45 0.5 0.55 0.6 0.65

posterior mean: 0.544

95% credible interval: 

(0.5,0.597)
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Series  x[[plot.ind]][, j]

0 0.05 0.1 0.15 0.2

posterior mean: 0.112

95% credible interval: 

(0.0668,0.147)
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Series  x[[plot.ind]][, j]

−0.05 0 0.05 0.1

posterior mean: 0.0171

95% credible interval: 

(−0.0193,0.0536)
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Series  x[[plot.ind]][, j]

−0.1 −0.05 0 0.05 0.1

posterior mean: 0.0299

95% credible interval: 

(−0.0108,0.0679)
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Series  x[[plot.ind]][, j]

0.09 0.1 0.11 0.12 0.13

posterior mean: 0.11

95% credible interval: 

(0.0999,0.121)
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Series  x[[plot.ind]][, j]

6 8 10 12 14 16

posterior mean: 10.2

95% credible interval: 
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Non-standard Semiparametric Regression

Graphical models approach to semiparametric
regression is

more advantageous

when situation is non-standard.

Examples:

• Missing data.

• Measurement error.

34



Nonparametric Regression with Missingness in
Predictor

yi = f(xi)+εi, εi i.i.d. N(0, σ2
ε), 1 ≤ i ≤ n

xi
ind.∼ N(µx, σ2

x), but some are missing

(completely at random).
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Hierarchical Bayes Model for Missingness
Example

[yi|xi, β, u, σ2
ε]

ind.∼ N
(
β0 + β1xi +

∑K
k=1 ukzk(xi), σ2

ε

)
,

[
u|σ2

u

]
∼ N(0, σ2

uI), [xi|µx, σ2
x] ind.∼ N(µx, σ2

x),

[β] ∼ N(0, σ2
βI), [µx] ∼ N(0, σ2

µx
),[

σ2
u

]
∼ IG(Au, Bu),

[
σ2

ε

]
∼ IG(Aε, Bε), [σ2

x] ∼ IG(Ax, Bx).
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Series  x[[plot.ind]][, j]

0.44 0.46 0.48 0.5 0.52

posterior mean: 0.477

95% credible interval: 

(0.457,0.497)
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Series  x[[plot.ind]][, j]

0.14 0.16 0.18 0.2

posterior mean: 0.16

95% credible interval: 

(0.147,0.176)
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Series  x[[plot.ind]][, j]

0.25 0.3 0.35 0.4

posterior mean: 0.333

95% credible interval: 

(0.306,0.366)
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Series  x[[plot.ind]][, j]

10 12 14 16 18 20

posterior mean: 13.8

95% credible interval: 

(11.8,16.1)
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Series  x[[plot.ind]][, j]

−1.2 −1.1 −1 −0.9 −0.8

posterior mean: −0.973

95% credible interval: 

(−1.08,−0.863)
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Series  x[[plot.ind]][, j]

−0.7 −0.6 −0.5 −0.4 −0.3

posterior mean: −0.483

95% credible interval: 

(−0.583,−0.386)
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posterior mean: 0.793

95% credible interval: 
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Series  x[[plot.ind]][, j]

−0.5 0 0.5 1 1.5

posterior mean: 0.537

95% credible interval: 

(0.118,0.709)
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Series  x[[plot.ind]][, j]

0.2 0.4 0.6 0.8 1

posterior mean: 0.406

95% credible interval: 

(0.288,0.816)
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posterior mean: 0.515

95% credible interval: 

(0.148,0.734)
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Series  x[[plot.ind]][, j]

−0.5 0 0.5 1

posterior mean: 0.492

95% credible interval: 

(0.204,0.762)
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Series  x[[plot.ind]][, j]

−0.5 0 0.5 1

posterior mean: 0.462

95% credible interval: 

(0.231,0.788)
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References for last segment...

SEMIPARAMETRIC REGRESSION
AND GRAPHICAL MODELS

Wand, M.P. (2009) Aust. N.Z. J. Statist. (invited)



References for last segment...

SEMIPARAMETRIC REGRESSION
AND GRAPHICAL MODELS

Wand, M.P. (2009) Aust. N.Z. J. Statist. (invited)

NON-STANDARD SEMIPARAMETRIC REGRESSION VIA
BRUGS

Marley, J.K. and Wand, M.P. (2009) unpublished manuscript

(both on Wand web-site)
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Summary of Talk so Far

• Semiparametric regression flexible and powerful
body of methodology.

• Hierarchical Bayesian models and directed acyclic
graphs (DAGs) effective general approach to fitting
and inference (esp. if situation is non-standard).

• Markov Chain Monte Carlo (MCMC) and software
packages WinBUGS and BRugs facilitate fitting and
inference.

• Main drawback of MCMC: SLOWNESS!!
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Possibly faster alternate approach, (mainly) from
Computer Science, is:

Variational Approximation.



Possibly faster alternate approach, (mainly) from
Computer Science, is:

Variational Approximation.

These have led (quite recently!) to:

Variational Inference Engines.
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Prototype Package for Variational Inference

VIBES: A VARIATIONAL INFERENCE ENGINE
FOR BAYESIAN NETWORKS

by Bishop, Spiegelhalter & Winn (2002)
NIPs Proceedings
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Beyond VIBES

The developers of VIBES (Cambridge, UK) have
just released (only 32 days ago!) a

new and improved variational inference engine

named

Infer.NET
(research.microsoft.com/infernet)
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These Computer Science guys now even
put their

conference talks on the web...

videolectures.net/abi07_winn_ipi
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Variational Approximation Research ‘Schools’

location key researchers

Berkeley, USA Jordan, Jaakkola (now MIT),...

Cambridge, UK MacKay, Bishop, Ghahramani,
Winn, Minka,...

Glasgow, UK Titterington, Wang,...



Variational Approximation Research ‘Schools’

location key researchers

Berkeley, USA Jordan, Jaakkola (now MIT),...

Cambridge, UK MacKay, Bishop, Ghahramani,
Winn, Minka,...

Glasgow, UK Titterington, Wang,...

Wollongong, Australia Ormerod, Wand
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Illustration of Berkeley for Simple Problem:
Bayesian Logistic Regression

logit{P (yi = 1)} = β0 + β1xi, 1 ≤ i ≤ n; β0, β1 ∼ N(0, 108I).



Illustration of Berkeley for Simple Problem:
Bayesian Logistic Regression

logit{P (yi = 1)} = β0 + β1xi, 1 ≤ i ≤ n; β0, β1 ∼ N(0, 108I).

Posterior for slope p(β1|y) depends on intractable integral:

Z ∞

−∞
exp{β01

T
y − 1T

b(β01 + β1x) − β
2
0/(2 × 108)} dβ0

where b(x) = log(1 + e
x)
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The Variational Approximation Trick

Write −b(x) variationally:

−b(x) = − log(1 + ex) = max
ξ
{A(ξ)x2 + B(ξ)x + C(ξ)}



The Variational Approximation Trick

Write −b(x) variationally:

−b(x) = − log(1 + ex) = max
ξ
{A(ξ)x2 + B(ξ)x + C(ξ)}

A(ξ) = − tanh(ξ/2)/(4ξ)

B(ξ) = −1/2

C(ξ) = ξ/2− log(1 + eξ) + ξ tanh(ξ/2)/4
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Family of Variational (Approximate) Solutions

[β1|y; ξ] ∼ N(µ(ξ), σ2(ξ))

µ(ξ) =
(2nλ(ξ) + 10−8)(xT y − x/2)

(2nλ(ξ) + 10−8){2(x2)T λ(ξ) + 10−8} − 4{λ(ξ)T x}

σ2(ξ) = [2(x2)T λ(ξ) + 10−8 − 4{λ(ξ)T x}2/{2nλ(ξ) + 10−8}]−1

where λ(ξ) = tanh(ξ/2)/(4ξ).
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Choice of Variational Parameters

Choice of
ξ = (ξ1, . . . , ξn)

can be made via an
EM argument.

Reference: Jaakkola & Jordan, Statistics and Computing, 2000.
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Full Algorithm

Let [β0, β1|y; ξ] ∼ N(µ(ξ), Σ(ξ)) be var. approx. to [β0, β1|y].

CYCLE:

1. Σ(ξ)−1← 10−8I + 2XT diag{λ(ξ)}X

2. µ(ξ)← Σ(ξ)XT (y − 1
21)

3. ξ ←
√

diagonal[X{Σ(ξ) + µ(ξ)µ(ξ)T}XT ]
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We have recently developed
alternative variational approximation methods

that give promising results.



We have recently developed
alternative variational approximation methods

that give promising results.

I will call these
Wollongong I

and
Wollongong II
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Berkeley versus Wollongong I

Berkeley Variational Approximation Answer
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Berkeley versus Wollongong II

Berkeley Variational Approximation Answer
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Details of Wollongong I

posterior of slope = p(β1|y) =
p(β1, y)

p(y)
∝ p(β1, y).
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posterior of slope = p(β1|y) =
p(β1, y)

p(y)
∝ p(β1, y).

p(β1, y) =
Z ∞

−∞
[β1, β0, y] dβ0



Details of Wollongong I

posterior of slope = p(β1|y) =
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Details of Wollongong I

posterior of slope = p(β1|y) =
p(β1, y)

p(y)
∝ p(β1, y).

p(β1, y) =
Z ∞

−∞
[β1, β0, y] dβ0

= e
−β2

1/(2×108)
Z ∞

−∞
exp{β01

T
y − 1T

b(β01 + β1x) − β
2
0/(2 × 108)} dβ0

≥ e
−β2

1/(2×108)
Z ∞

−∞
exp{β01

T
y − (β01 + β1x)T diag{A(ξ)}(β01 + β1x)

−B(ξ)T (β01 + β1 x) − 1T
C(ξ) − β

2
0/(2 × 108)} dβ0

= explicit function of β1 and ξ

= explicit(β1; ξ), (say)
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Details of Wollongong I (continued)

Set up a grid: β
[1]
1 , . . . , β

[G]
1 over domain of p(β1|y).



Details of Wollongong I (continued)

Set up a grid: β
[1]
1 , . . . , β
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1 over domain of p(β1|y).

For 1 ≤ g ≤ G choose ξ = ξ̂
[g]

to maximise explicit(β[g]
1 , ξ).



Details of Wollongong I (continued)

Set up a grid: β
[1]
1 , . . . , β

[G]
1 over domain of p(β1|y).

For 1 ≤ g ≤ G choose ξ = ξ̂
[g]

to maximise explicit(β[g]
1 , ξ).

This gives

explicit(β[1]
1 , ξ̂

[1]
), . . . , explicit(β[G]

1 , ξ̂
[G]

)

as an approximation to

p(β[1]
1 , y), . . . , p(β[G]

1 , y).



Details of Wollongong I (continued)

Set up a grid: β
[1]
1 , . . . , β

[G]
1 over domain of p(β1|y).

For 1 ≤ g ≤ G choose ξ = ξ̂
[g]

to maximise explicit(β[g]
1 , ξ).

This gives

explicit(β[1]
1 , ξ̂

[1]
), . . . , explicit(β[G]

1 , ξ̂
[G]

)

as an approximation to

p(β[1]
1 , y), . . . , p(β[G]

1 , y).

Final step: Normalise using (one-dimensional) quadrature to
approximate p(β1|y).
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Wollongong I in a Nutshell

Jaakkola & Jordan idea applied

grid-wise

rather than globally.
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Berkeley versus Wollongong I
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Details of Wollongong II

Consider the
Bayesian Poisson regression model

p(y|β) = exp{yT Xβ − 1T log(1 + eXβββ)− 1T log(y!)}

βp×1 ∼ N(0, F )

67



The log marginal likelihood is (ignoring constants):

log p(y) = log
Z

Rp
p(y|β)p(β) dβ
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= y

T
Xµ − 1T exp{Xµ + 1

2diagonal(XΣX
T )} − 1

2µ
TΣ−1

µ

−1
2{tr(F −1Σ) + log |Σ|}

= log p(y, µ, Σ) = variational lower bound on log p(y)
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Variational Approximation of Poisson Regression
Bayes Factor

We have just shown p(y) ≥ p(y; µ, Σ) for all µp×1 and Σp×p.

p(y; µ, Σ) is relatively easy to compute (1D numerical integration; nice
integrands).

We choose these variational parameters (µ, Σ) to maximise the right-
hand-side (i.e. make bound as tight as we can).
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Berkeley versus Wollongong I

Berkeley Variational Approximation Answer
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Berkeley versus Wollongong II
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Conclusions Thus Far

• Hierarchical Bayes models and DAGs are useful structure for
semiparametric regression.

• We can always fall back on Markov chain Monte Carlo
(MCMC) and BUGS.

• But MCMC slow, requires convergence assessment.

• Variational inference engines emerging as a (better?)
alternative.

• Wollongong variational inference ‘school’ showing early
promising results.

• But bugger all (‘diddly-squat’ in US) in the way of theory.
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Start of...

NEW THEORETICAL RESULTS FOR

Generalised Linear Mixed Models (GLMMs)

(Note - we now switch to being frequentists!)
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Some Simple GLMMs

Logistic Response

logit{P (yij = 1|Ui)} = β0 + β1 xi + Ui

Ui
ind.∼ N(0, σ2

U)

Poisson Response

yij = 1|Ui ∼ Poisson{exp(β0 + β1 xi + Ui)}

Ui
ind.∼ N(0, σ2

U)
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Relevance Check

GLMMs are
really, really important.

No time to explain.

Just take my word for it!
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Exponential Family Models

name canonical link b(η) c(y, φ) φ

Bernoulli η = logit(µ) log(1 + eη) 0 1

Poisson η = ln(µ) eη − ln(y!) 1

N(µ, σ2) η = µ η2/2 (y2/σ2 − ln(2πσ2))/2 σ2
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Exponential Family GLM

log p(y; β, φ) = {yT Xβ − 1T b(Xβ)}/φ + 1T c(y, φ)
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GLMM Extension

log{p(y|u)} = {yT (Xβ + Zu)− 1T b(Xβ + Zu)}/φ

+1T c(y, φ)

u ∼ N(0, G)

79



Maximum Likelihood Estimation

Likelihood is:

L(β, G, φ) = p(y; β, G)

=
∫

Rq
p(y, u) du

=
∫

Rq
p(y|u)p(u) du

= (2π)−q/2|G|−1/2
∫

Rq
exp[{yT (Xβ + Zu)− 1T b(Xβ + Zu)}/φ

+1T c(y, φ)− 1
2u

T G−1u}] du
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GLMMs Big Headache

The likelihood involves an

intractable integral

(often high-dimensional).
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Poisson Random Intercept Example

Likelihood is:

L(β, σ2) = (σ2)−m/2 × const.

×
∫

Rm
exp{yT (Xβ + Zu)− 1T exp(Xβ + Zu)− 1

2σ2u
T u} du



Poisson Random Intercept Example

Likelihood is:

L(β, σ2) = (σ2)−m/2 × const.

×
∫

Rm
exp{yT (Xβ + Zu)− 1T exp(Xβ + Zu)− 1

2σ2u
T u} du

Log-likelihood is (ignoring constants):

`(β, σ2) = −(m/2) log(σ2)

+ log
∫

Rm
exp{yT (Xβ + Zũ)− 1T exp(Xβ + Zũ)− 1

2σ2ũ
T ũ} dũ
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Variational Transform of Problem

`(β, σ
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Variational Approximate Maximum Likelihood

The variational approx. max. lik. est. is:

(β̂, σ̂2),

the (β, σ2) component of

argmax
βββ,σ2,µµµ,ΣΣΣ

`(β, σ2, µ, Σ).
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Variational Approximate Fisher Information

θ = (β, σ2) = parameters of interest

η = (µ, Σ) = variational parameters

Pretending that `(β, σ2, µ, Σ) = `(θ, η) is a log-likelihood then

the Fisher information is

I(θθθ,ηηη) = −E{H`(θ, η)} =

[
Iθθθθθθ Iθθθηηη

T

Iθθθηηη Iηηηηηη

]

Asymptotic covariance matrix is (Iθθθθθθ − Iθθθηηη
T Iηηηηηη

−1Iθθθηηη)−1.
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LATE BREAKING NEWS!

CONSISTENCY RESULTS
ESTABLISHED FOR
GROUPED DATA GLMMS!!!
Peter Hall spotted leaving the scene.
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Final (Three-Point!) Summary

• Variational approximations have great
potential in semiparametric regression.

• Early Ormerod/Wand (mainly Ormerod
PhD thesis) work showing good
practical perfomance.

• Some interesting statistical theory
emerging.
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Parting Words

It is too early to tell if

Variational Approximation

will become a major player the future of

semiparametric regression analysis.

90



But if it does then you can say that you heard
about it first at the:

11th UF Dept Statistics
Winter Workshop!
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Papers, Contact etc.

www.uow.edu.au/∼mwand
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