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1 Introduction

Longitudinal Studies:

• Longitudinal studies often gather joint information on

- Serial Outcome Measures

> Repeated Measurements, Growth Curve Data

- Time to Some Event

> Patient Survival, Time to Dropout

• Questions of Interest

- Is primary interest in comparing event-free survival times?

> How do we adjust for effects of serial outcome measures?

- Is primary interest in comparing serial trends over time?

> How do we account for non-ignorable dropout?
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Primary Applications

• Surrogate Markers of Outcomes

- Justify a serial marker as a surrogate for patient outcome

> Use of CD4 T-lymphocyte counts as a marker for patient

survival in clinical trials of patients with AIDS

- Tsiatis, DeGruttola and Wulfsohn (JASA, 1995)

- Faucett and Thomas (Statistics in Medicine, 1996)

• Handling of Nonignorable Missing (NIM) Data Due to Dropout

- Provide valid inference in presence of informative censoring

> NIH-Sponsored Trials

> Regulatory Submissions for New Drug Applications (NDA)

• Requires joint modeling of serial data and dropout
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Example

• TRIAL DESIGN FOR OXYMORPHONE DRUG

ESTABLISHED BY ENDO, FDA (News Release: July 20, 2004)

“Endo Pharmaceuticals has reached an agreement with the FDA

on the design of a new clinical trial to confirm the safety and

efficacy of its experimental pain drug, oxymorphone

extended-release (ER) tablets, the firm said.

Last October, the FDA issued an approvable letter for Endo’s

oxymorphone ER product, but requested the firm conduct

additional trials. At a meeting with Endo in May, the FDA said it

was concerned that the outcome of two of the three Phase III

efficacy trials, which met the predefined primary endpoints, may

have been favorably biased by the statistical handling of data from

patients who did not complete the trials, Endo said. The additional

12-week clinical trial is intended to address this issue...“
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2 Motivating Examples

MDRD Study (Schluchter et al, Stat in Med, 1992, 2001)

• Modification of Diet in Renal Disease (MDRD) Study B

- Randomized trial of 255 patients with chronic kidney disease

- Primary interest lies in comparing the effects of two different

interventions on the progression of renal disease as measured

by Glomerular Filtration Rate (GFR ml/min)

> Modification of diet

Diet L: Low protein intake,

Diet K: Very low protein intake

> Modification of blood pressure

Usual blood pressure

Low blood pressure
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MDRD Study: Patient profiles for Diet K, Low BP Group
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MDRD Problems/Issues:

• Serial measurements of GFR planned at 0, 2, 4, 8 months and

every 4 months thereafter

• Plots indicate a linear decline in GFR over time

• Patients with more severe renal impairment were enrolled

- Initial GFR of 13-24 ml/min

• Due to staggered entry, planned follow-up was from 1 1
2 to 4 years

• Patient drop out was 40% (101 of 255)

• Causes of dropout

- dialysis (81 of 255 patients, 32%)

- kidney transplant (11 of 255 patients, 4%)

- death/other medical (9 of 255 patients, 4%)
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MDRD Study: Evidence of Non-ignorable Dropout?
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ADEMEX Study (Paniagua et al., JASN, 2002)

• Adequacy of Peritoneal Dialysis in Mexico (ADEMEX)

- Randomized trial of 965 patients with end-stage renal disease

- Primary interest lies in comparing the effects of a single

intervention on patient survival

> Dose of Dialysis

Control: Standard dose of dialysis (N=484)

Treated: High dose dialysis (N=481)

- Secondary interest lies in comparing the decline in

Glomerular Filtration Rate (GFR) over time

> Does the dose of dialysis affect the decline in GFR?
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ADEMEX: SS and PA profiles assuming data are MCAR
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ADEMEX Problems/Issues

ADEMEX Patient status at end of trial

Control Treated p

Patient status N % N %

-Lost to followup 48 10% 42 9% NS

-Completed 191 39% 201 42%

-Died 112 23% 103 21%

-Drop to HD 48 10% 63 13%

-Drop to PD 47 10% 45 9%

-Return of Kidney 1 0.2% 1 0.2%

-Transplant 37 8% 26 5%

Total 484 100% 481 100%
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Head & Neck Cancer Study (Rademaker et al., Head and

Neck, 2003)

• NIH sponsored study of head and neck cancer patients

- Prospective one-year longitudinal study of 255 cancer patients

- Primary interest lies in characterizing the functional ability

to eat over a 12 month period following chemoradiation

treatment in patients with head and neck cancer

> Outcome measures (binary)

Percent of patients with % oral intake < 50%

Percent of patients who could not eat a normal diet

> Covariates

Age, Gender, Race, Site of cancer, Time to dropout
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Head & Neck Cancer Study - Problems/Issues

• Longitudinal study of binary outcome measures

• Approximate time to dropout

- midpoint between last visit and date of last contact

- discrete time survival based on planned visits

• Number of patients still in study

Evaluation Point N %

-Pretreatment (tx) 255 100%

- 1 months post-tx 186 73%

- 3 months post-tx 148 58%

- 6 months post-tx 126 49%

-12 months post-tx 90 35%
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3 Shared Parameter (SP) Models

• Let yi = (yoi ,y
m
i )′ = (yi1, . . . , yip)

′ be the “complete-data” vector

for the ith subject (i = 1, . . . , n) with yoi = (yi1, . . . , yipi
)′

representing the observed data and ymi unobserved or missing data.

• Alternatively, set the “complete-data” yi = yi(t) to be a

continuous time process with yoi = {yi(t) : t = 1, . . . , pi}

• Let Ti = time to some event

• Let bi be a shared random-effects vector

• The Shared Parameter Model for Jointly Modeling (yi, Ti)

π(yi, Ti) =

∫

b

π(yi, Ti|bi)π(bi)dbi

=

∫

b

π(yi|bi)π(Ti|bi)π(bi)dbi

Observe that yi|b and Ti|b are conditionally independent given bi.
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Historical Genesis

• Shared Parameter Models for Nonignorable Missing (NIM) Data:

> Follmann and Wu (Biometrics, 1995)

> Ten Have et al (Biometrics, 1998)

• Assuming the yij are conditionally independent given bi,

the Shared Parameter Model factors as

π(yoi , Ti) =

∫

ym

∫

b

π(yoi ,y
m
i , Ti|b)π(b)dbdy

m

=

∫

b

π(yoi |b)π(Ti|b)π(b)db

{∫

ym

π(ymi , b)

π(b)
dymi

}

=

∫

b

π(yoi |b)π(Ti|b)π(b)db

• This model belongs to the class of random-effects dependent

selection models as described by Little (JASA, 1995)
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Shared Parameter Models - Key Features

• The shared parameter model induces marginal correlation

between y and T through their joint dependence on b.

• Inference under a shared parameter model does not require

missing or unobserved data to be MCAR or MAR.

π(Ti|y
o
i , y

m
i ) =

∫
b
π(Ti,y

o
i , y

m
i |bi)π(bi)dbi∫

b
π(yoi , y

m
i |bi)π(bi)dbi

=

∫
b
π(Ti|bi)π(y

o
i , y

m
i |bi)π(bi)dbi∫

b
π(yoi , y

m
i |bi)π(bi)dbi

=

∫

b

π(Ti|b)π(b|y
o
i , y

m
i )db

so that, in general, the conditional distribution of Ti|yi depends on

ymi through posterior distribution of bi.
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Shared Parameter Model Specifications:

• A shared parameter model is obtained by specifying

> A conditional model for the longitudinal data: π(yi|bi)

- The bi serve as subject-specific random effects

> A conditional model for the event time data: π(Ti|bi)

- The bi serve as subject-specific covariates
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3.1 Conditional Models for Longitudinal Data

A Generalized Nonlinear Mixed-Effects (GNLME) Model:

• For broad applications entailing continuous or discrete data, the

conditional pdf of yi|bi is assumed to come from the quadratic

exponential family (Prentice and Zhao, 1991, Biometrics):

π(yi|bi) = ∆−1
i exp{y′iξi +w′

iζi + ci(yi)} (1)

where wi = V ech (yiy
′
i), ci(·) is a “shape” function, ∆i is a

normalization constant, ξi and ζi are canonical parameter vectors

expressed in terms of the conditional mean and variance, µi and

σi, via ξ′i = ξ′i(µi,σi), and ζ′i = ζ′i(µi,σi)

• Examples: Multivariate Normal, Gamma, Inverse Gaussian,

Poisson, Binomial, Correlated Binary Data
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Conditional Models for Longitudinal Data

• The GNLME model may be written in terms of the vector of

conditional means, µi, and vector of conditional variances, σi, as:

E(yi|bi) = µi(β, bi,xi, zi) = µi(β, bi); i=1,...,n

V ar(yi|bi) = Λi(β,α, bi,xi, zi) = Λi(β,α, bi)

where

- yi = [y1 . . . ypi
]′ is a pi × 1 vector of repeated measures

- xi and zi are vectors of covariates associated with the fixed-

and random-effects parameters, respectively

- β is a s× 1 vector of fixed-effects parameters

- σi = V ech[Λi(β,α, bi)] is the vector of conditional variances

- α is a u× 1 vector of conditional covariance parameters

- bi is a v × 1 vector of random-effects ∼ iidN(0,Ψ)
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3.2 Conditional Models for Event Time Data

Strategies for modeling T

• Let Ti be time to event (e.g., death, dropout, etc.)

- We observe T ∗
i = min(Ti, Ci) and δi where

Ci =observed censoring times (e.g., staggered entries)

δi =




1 if T ∗

i = Ti

0 if Ti = Ci.
.

• Nonparametric models for Ti include

- Kaplan-Meier survival (Hogan and Laird, 1997)

- Cox proportional hazards model (Tsiatis et al, 1995)

• Parametric (Accelerated Failure-Time) Models

- Log-normal (Schluchter, 1992; DeGruttola & Tu, 1994)

- Weibull, Piecewise exponential
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Conditional Models for Event Time Data

Accelerated Failure-Time (AFT) Models:

• For continuous-time survival data, the conditional pdf of Ti|bi is

assumed to be from the class of accelerated failure-time models:

Ti|bi = exp{f i(β, bi)
′η}T0i (2)

where

- f i(β, bi)
′η is a conditional linear function in η of some vector

function of covariates f i(β, bi) = f i(β, bi,xi, zi) that may

depend on β and bi, as well as covariates xi and zi.

- T0i = exp(η0)T
φ
εi

are iid event times from some baseline

distribution with η0 and φ representing location and scale

parameters for W0i = log(T0i) = η0 + φlog(Tεi
).

• Examples: Exponential, Weibull, Extreme Value, Log-Normal
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Conditional Models for Event Time Data

Accelerated Failure-Time (AFT) Models:

• Weibull model with shape parameter γ

- Parametric but fairly flexible

- The Weibull model is a proportional hazards model

> Baseline Hazard rate: λ0(t) = γexp(η0)t
γ−1

> Hazard rate: λ(t) = λ0(t)exp{f i(β, bi)
′η}

- Fairly robust to misspecification of the baseline hazard
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Conditional Models for Event Time Data

Accelerated Failure-Time (AFT) Models:

• Piecewise Exponential Model (Interval Poisson Model)

- Semi-parametric and flexible:

> Partition T into k disjoint intervals (t0, t1], . . . , (tk−1, tk]

> Baseline Hazard rate: λ0(t) =
∑k

h=1 λ0hI(t ∈ (th−1, th])

> Hazard rate: λ(t) = λ0(t)exp{f ih(β, bi, th−1)
′η}

- Easily handles time-dependent covariates

- Proportional and Non-proportional hazards
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Example - The MDRD Study

• Let Ti =time to dropout, and yij =GFR at time tij .

• For patients in the Diet K, Low BP Group, assume

GNLME Model: (Linear mixed-effects regression)

yij |bi = β1i + β2itij + εij

β1i = β1 + b1i

β2i = β2 + b2i

AFT Model:

Ti|bi = exp{fi(β, bi)
′η}T0i

fi(β, bi)
′η = η1β1i + η2β2i

T0i ∼Weibull(λ0(t), γ) with baseline hazard λ0(t) = γexp(η0)t
γ−1

• The hazard rate is λ(t) = λ0(t)exp{η1β1i + η2β2i}

•The joint model for (yij , Ti) is nonlinear in bi.
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Example - The ADEMEX Study

• Let Ti =time to dropout, and yij =GFR at time tij .

• For patients in Control or Treated Groups, assume

GNLME Model: (Nonlinear mixed-effects regression)

yij |bi = β1iexp{−β2itij}+ εij

β1i = β11 + β12Gi + b1i

β2i = β21 + β22Gi + b2i

AFT Model:

Ti|bi = exp{fi(β, bi)
′η}T0i

fi(β, bi)
′η = η1β1i + η2β2i

where Gi is a treatment group indicator (control=0, treated=1),

T0i ∼Weibull(λ0(t), γ) with baseline hazard λ0(t) = γexp(η0)t
γ−1

• The hazard rate is λ(t) = λ0(t)exp{η1β1i + η2β2i}
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Example - The Head & Neck Cancer Study

• Let Ti be a discrete survival time variable defined by Ti = j

(j = 1, 2, 3, 4) when dropout occurs in (tj−1, tj ]; tj = 1, 3, 6, 12

months. Let yij = 1 when % oral intake < 50% and 0 otherwise.

GNLME Model: (Logistic mixed-effects regression)

P (yij = 1|bi) = exp{βi}/(1 + exp{βi}) = E(yij |bi)

βi = (β0 + bi) + β1Sexi + β2Agei +

4∑

j=1

β3jI(tj)

Discrete Time Failure Model:

P (Ti = j|bi) = λij

j−1∏

k=1

(1− λik)

λik|bi = 1− exp(−exp{ηik + η1Sexi + η2Agei + η3bi})

where I(tj) are 0-1 indicators, λij is a discrete-time hazard rate,

and ηik defines baseline conditional survival probability in (tk−1, tk].
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4 Estimation

• Maximum likelihood (ML) estimation requires maximizing the

integrated log-likelihood

L(β,α,θ,η, φ;y, T ) =

n∑

i=1

log

∫

b

π(yi|bi)π(T
∗
i |bi)

δiS(T ∗
i |bi)

1−δiπ(bi)dbi

where θ = V ech(Ψ) and S(T ∗
i |bi) is the conditional survivor

function.

• Methods include

- Numerical integration (Gauss-Hermite quadrature)

- Conditional Generalized Estimating Equations (CGEE)

> First-order approximations (NLME, PQL)

> Second-order approximations (Laplace MLE or LMLE)
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Overview of Estimation Procedures

• Numerical integration techniques (NLMIXED)

Pinheiro & Bates (1995, J Comp. and Graphical Stat)

• Markov Chain Monte Carlo techniques (WinBUGS)

Guo and Carlin (2004, American Statistician) - see website.

• First-order approximations (S-Plus, R, %NLINMIX)

Lindstrom & Bates (1990, Biometrics) - NLME

Breslow & Clayton (1993, JASA) - PQL

Vonesh, Wang, Nie and Mujamdar (2002, JASA) - CGEE2

• Second-order Laplace approximation (NLMIXED, qpoints=1)

Vonesh (1996, Biometrika) - Laplace MLE (LMLE)

Raudenbush, Yang & Yosef (2000, J Comp and Graph Stat)
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5 Examples:

MDRD Study:

• Preliminary survival analysis comparing various life-time

distributions

- Kaplan-Meier survival

- Log-normal survival (Schluchter et al, 2001)

- Exponential survival (i.e., Weibull(1) )

- Weibull survival
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Figure 1: Survival curves for Diet K, Low BP Group
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Examples:

MDRD Study:

• The longitudinal model assuming ignorable dropout (MAR) is:

GFRij = β1i + β2itij + εij

β1i = β11G1i + β12G2i + β13G3i + β14G4i + b1i

β2i = β21G1i + β22G2i + β23G3i + β24G4i + b2i

where G1i, G2i, G3i and G4i are group indicator variables that

define which diet and blood pressure group the ith patient belongs.

• To assess whether dropout is ignorable, we fit models assuming

GFR and T are independent (MCAR) versus dependent (NIM)

- T ∼Weibull with hazard rate λ0(t)exp(
∑4

k=1 ηkGki) - MCAR

- T ∼Weibull with hazard rate λ0(t)exp(η1β1i + η2β2i) - NIM

- T ∼Piecewise Exponential with λ0(t)exp(η1β1i + η2β2i) - NIM
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Table 1: Standard MLE (MCAR) versus SP (NIM) Models

Standard MLE Weibull SP Piecewise Exp SP

Parameter π(y, T )=π(y)π(T ) (Shape=4.87) (6-months)

Ψ


19.9 .061

.061 .050





19.4 .158

.158 .067





19.4 .144

.144 .064




σ2 5.23 5.14 5.13

Slopes: β21 −0.251 −0.327 (30%) −0.315 (25%)

β22 −0.252 −0.296 (17%) −0.288 (14%)

β23 −0.292 −0.319 (9%) −0.313 (7%)

β24 −0.326 −0.388 (19%) −0.382 (17%)

L(y|b̂) −2428.16 −2422.90 −2416.58

−2L(y, T ) 7617.1 7387.6 7406.0
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Association Between Rate of Decline in GFR and Dropout

Piecewise Exponential (Interval Poisson) Shared Parameter Model
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Table 2: Laplace vs Numerical Quadrature for Weibull SP Model

Parameter QPOINTS=1 QPOINTS=10

Weibull Shape, γ 4.873 (0.677) 5.355 (0.806)

η∗0 −3.421 (0.152) −3.444 (0.147)

η∗1 −0.061 (0.009) −0.061 (0.009)

η∗2 −2.661 (0.202) −2.699 (0.201)

Ψ, σ2


19.4 .158

.158 .067


, 5.14


19.4 .158

.158 .068


, 5.15

Intercept: Diet K, Low BP 19.62 (0.571) 19.61 (0.570)

Slope: Diet K, Low BP −0.327 (0.035) −0.331 (0.035)

−2Log L(y, T ) 7387.6 7386.2

CPU (hr:min:sec) 1:27:12.79 12:39:42.25
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Examples:

MDRD Study:

• We compared different SP models for Diet K, Low BP Group

• Purpose: Evaluate the performance of different SP models with

respect to inference on both dropout and rate of change in GFR

- Normal SP model of Schluchter et al (2001)

> g(Ti) = Ti (Linear transformation⇒Normality)

> g(Ti) =log(Ti) (Logarithmic transformation⇒Normality)

- Weibull SP model (Laplace-based MLE)

- Piecewise Exponential SP model (Laplace-based MLE)

• Laplace approximation implemented via NLMIXED (qpoints=1).

- See also website in Guo and Carlin (2004, Amer Stat) for

WinBUGS (MCMC) and SAS (NLMIXED) code
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SAS Data Structure for Weibull Model:

Diet K, Low BP Group

(Dropout=1, Dropout Time=23.66 months)

ptid ind months GFR Drop T response

1 0 0.00 16.36 1 23.66 16.36

1 0 4.14 14.93 1 23.66 14.93

1 0 8.41 12.41 1 23.66 12.41

1 0 12.35 10.95 1 23.66 10.95

1 0 16.30 8.56 1 23.66 8.56

1 0 20.47 6.12 1 23.66 6.12

1 1 0.00 16.36 1 23.66 23.66
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SAS Code for Weibull Model:

proc nlmixed data=CGEE2 start qpoints=1;

parms b11=20 b21=0 eta0=-3 eta11=0 eta21=0

Gamma=2 s11=1 s12=0 s22=1 Sigma Sq=1;

b1i=b11 + u1; b2i=b21 + u2;

Mu = (b1i + b2i*Months); SD = sqrt(Sigma Sq);

Li = exp(eta0 + eta11*b1i + eta21*b2i);

Hi = Gamma*(Li**Gamma)*(T**(Gamma-1));

ll Y = (1-ind)*( - 0.5*((RESPONSE - Mu)**2)/Sigma Sq

- 0.5*log(Sigm Sq) );

ll T = ind*(RESPONSE*log(Hi) - (Li*T)**Gamma );

model response ∼ general(ll Y + ll T);

random u1 u2 ∼ normal([0,0],[s11,s12,s22]) sub=ptid;
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Table 3a. Results under different SP models for Diet K, Low BP

Lognormal† Weibull†† Piecewise Exp††

Parameter g(T ) = log(T ) Shape(γ)=2.965 (6-months)

Ψ


16.4 .064

.064 .049





16.3 .073

.073 .050





16.3 .072

.072 .049




σ2 5.45 5.45 5.45

β1(ml/min) 19.50 (0.51) 19.51 (0.53) 19.49 (0.53)

β2(ml/min/mo) -0.294 (0.044) -0.298 (0.034) -0.292 (0.034)

ρ(T, b0) or RR ρ = 0.16 RR(b0) = 0.91∗ RR(b0) = 0.90∗

ρ(T, b1) or RR ρ = 0.74 RR(b1) = 0.44∗ RR(b1) = 0.48∗

† Schluchter et. al. (2001, Stat in Med) - EM algorithm

†† Laplace approximation
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Examples:

MDRD Study:

• We compared the effect of different covariate specifications

• Purpose: Evaluate different dropout mechanisms under a

piecewise exponential model using different covariate functions.

Model Covariates: f i(β, bi)
′ λ(t) = λ0hexp{f i(β, bi)

′η}

1 (β1i, β2i) λ0hexp{η1β1i + η2β2i}

2 µih(th−1) = β1i + β2ith−1 λ0hexp{η1[β1i + β2ith−1]}

3 yih(ti(h−1))
† λ0hexp{η1yih}

4 (β1i, β2i, yih) λ0hexp{η1β1i + η2β2i + η3yih}

† yih(ti(h−1)) =last observed GFR prior to (th−1, th]. This model

tests for an ignorable threshold effect and yields standard MLE’s.
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Table 3d. Piecewise Exponential SP Model for Different Covariates

Parameter β1i, β2i µih(th−1) yih(ti(h−1)) β1i, β2i, yih

Ψ


16.3 .072

.072 .049




16.5 .026

.026 .042




16.6 .020

.020 .038




16.3 .073

.073 .049




σ2 5.45 (0.394) 5.45 (0.395) 5.50 (0.401) 5.45 (0.394)

β1 19.49 (0.53) 19.41 (0.53) 19.35 (0.54) 19.49 (0.53)

β2 -0.292 (0.034) -0.264 (0.032) -0.244 (0.030) -0.292 (0.034)

RR(β1i) 1.11 (0.074)† − − 1.11 (0.139)

RR(β2i) 2.08 (0.413)† − − 2.10 (0.494)†

RR(yt) − 1.21 (0.065)† 1.14 (0.050)† 0.99 (0.097)

lnL(y|b̂) -632.7 -632.1 -634.3 -632.7

lnL(T |b̂) -94.8 -112.9 -117.2 -94.7

AIC(y, T ) 1925.2 1933.4 1937.4 1927.2
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Table 4: GOF comparing Weibull to Piecewise Exp. SP model

Weibull Piecewise Exponential

Parameter β1i, β2i β1i, β2i yih(ti(h−1))

Ψ


16.3 .073

.073 .050




16.3 .072

.072 .049




16.6 .020

.020 .038




σ2 5.45 (0.394) 5.45 (0.394) 5.50 (0.401)

β1(ml/min) 19.51 (0.53) 19.49 (0.53) 19.35 (0.54)

β2(ml/min/month) -0.298 (0.034) -0.292 (0.034) -0.244 (0.030)

RR( β1i) 1.10 (0.074)† 1.11 (0.074)† −

RR( β2i) 2.29 (0.513)† 2.08 (0.413)† −

−2Log L(y, T ) 1900.6 1895.2 1909.4

AIC(y, T ) 1920.6 1925.2 1937.4
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Unadjusted and Adjusted Survival Curves - Diet K, Low BP Group

ŜT (t) =
1
n

∑n
i=1 ŜT |b(t|ω̂, b̂i)

59



Empirical vs Numerically Integrated PA Survival - Diet K, Low BP

ŜT (t) =
1
n

∑n
i=1 ŜT |b(t|ω̂, b̂i); S̃T (t) =

∫
b
ST |b(t|ω̂, b)π(b)db
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Estimated Weibull Survival Curves for Diet K, Low BP Group

Adjusted PA:
∫
b
ST |b(t|ω̂, b)π(b)db, Adjusted SS: ŜT |b(t|ω̂, b = 0).
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PA Survival and SS Survival Curves for Diet K, Low BP Group

PA Curve (Marginal), - - SS Curve (at bi = E(bi) = 0)
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Examples:

Head and Neck Cancer Study:

• We compared two different SP models versus traditional GEE

• Purpose: Jointly evaluate the performance of different shared

parameter models with respect to estimating both dropout and

percent of patients with < 50% oral intake over time

- GEE model based on exchangeable correlation (MCAR)

- Weibull model (proportional hazards)

> T =midpoint between last evaluation and last contact

> Adaptive Gaussian quadrature

- Discrete time survival model (proportional hazards)

> Binary regression with complementary log-log link

> Adaptive Gaussian quadrature

63



Table 2: Percent of patients with oral intake < 50%. Comparison

of observed (unadjusted) versus adjusted† percentages obtained via

logistic regression (GEE) and shared parameter model (SPM).

MCAR SP Models

Evaluation Point N Observed GEE Weibull Discrete

Pretreatment 253 7% 7% 4% 5%

1 month 186 39% 39% 40% 40%

3 months 148 26% 28% 30% 29%

6 months 127 21% 22% 21% 20%

12 months 91 10% 13% 13% 12%

Results exclude two patients with suspect site information

† Percentages adjusted for sex, age, race, site of disease
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7 Conclusions:

• We consider a class of generalized linear and nonlinear

mixed-effects models from a quadratic exponential family which

includes multivariate models for continuous and discrete data

• We propose using Piecewise Exponential (Interval Poisson) or

Weibull regression models for modeling the “survival” times

1. The Piecewise Exponential model is semi-parametric and allows

for proportional or non-proportional hazards as well as

time-dependent covariates

2. The Weibull model is a proportional hazards model that offers

great flexibility in modeling the baseline hazard function

• Alternatively, one can apply these techniques to discrete time

survival models for interval-censored survival data.
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Conclusions:

• One may use CGEE or Laplace MLE (LMLE) to estimate

parameters from a Joint Shared Parameter model. These

techniques are easily implemented using existing software

CGEE1: SAS macro NLINMIX

CGEE2: SAS macro CGEE2 (a modified version of NLINMIX)

LMLE: SAS procedure NLMIXED (QPOINTS=1)

• LMLE generally provides a better approximation and lower mean

bias compared to CGEE (PQL, CGEE2) methods

• For discrete, highly sparse data, numerical integration is

recommended (adaptive Gaussian quadrature)
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Conclusions:

• The paradox of jointly modeling event time data and serial data.

1. The modeling of survival data requires large numbers of

events to achieve reasonable estimates of those effects

associated with event times.

2. Subject-specific inference in the longitudinal setting requires

a moderately large number of observations per subject.

3. Jointly modeling these two outcome variables may be at

odds with one another

• Inference in the presence of NIM data is model-dependent.

Sensitivity analyses are needed to ensure the results are not overly

sensitive to the model specifications.
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CGEE (PQL, CGEE2) versus LMLE:

• CGEE/PQL may be viewed as an approximate Laplace-based ML

estimator in that, for fixed Ψ, the set of CGEE for τ = (β,α) are

related to the Laplacian-based estimating equations via:

ULMLE(τ , b̂) = UCGEE(τ , b̂)−
1

2

n∑

i=1

{
∂

∂τ
log
(∣∣−L′′

i (τ , b̂i(τ ))
∣∣
)}

= UCGEE(τ , b̂)−
1

2

n∑

i=1

{
∂

∂τ
log
(∣∣−l′′i (τ , b̂i(τ )) +Ψ−1

∣∣
)}

where

UCGEE(τ , b̂) =
∂
∂τ

∑n
i=1

{
li(τ , bi)−

1
2b

′
iΨ

−1bi

}∣∣∣
bi=b̂i(τ )

li(τ , bi) = li(β,α, bi;yi) = log[π(yi|bi)]

L′′
i (τ , b̂i(τ )) =

∂2

∂bi∂b
′

i

{
li(τ , bi)−

1
2b

′
iΨ

−1bi

}∣∣∣
bi=b̂i(τ )
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Table 1: Select estimates from a SP model for head & neck cancer

data using a discrete time survival model for time to dropout.

Outcome Parameter Laplace Approx. Adaptive Gaussian

yij β0(intercept) 11.802 (3.455)† 9.057 (2.334)†

β1 (sex) 1.528 (0.989) 1.159 (0.657)

β2(age) −0.127 (0.045)† −0.101 (0.031)†

ψ 24.236 (12.861) 9.195 (2.637)

Ti λ1 (sex) 0.088 (0.205) 0.086 (0.206)

λ2 (age) 0.004 (0.009) 0.004 (0.009)

λ3 (bi) −0.066 (0.030)† −0.106 (0.046)†

−2Log L(y, T ) 1189.6 1196.4

CPU (hr:min:sec) 0:9:19.00 0:20:54.31
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