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INTRODUCTION

Analysis of variance (ANOVA) - one of the most widely
used tools in applied statistics. Useful for handling low
dimensional data, limitations in analyzing functional
responses.

Functional analysis of variance (FANOVA) methods provide
alternatives to classical ANOVA methods while still allowing
a simple interpretation.

General: Ramsay & Silverman (1997, 2002) and Stone et
al. (1997).

Fitting and Estimation of Components: Wahba et al.,
1995; Stone et al., 1997; Huang, 1998; Lin, 2000; Gu, 2002.
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MODEL

Diffusion version of FANOVA. One observes a series of
sample paths of a stochastic process driven by

dYi(t) = mi(t) dt + ε dWi(t), i = 1, . . . , r; t ∈ [0, 1]d,

where ε > 0 is the diffusion coefficient, r and d are finite
integers, mi are (unknown) d-dimensional response functions
and Wi are independent d-dimensional standard Wiener
processes.

Results of Brown & Low (1996): Under general conditions,
the corresponding discrete model is asymptotically equivalent
to the diffusion model with ε = σ/

√
n.



5

MODEL

[Antoniadis, 1984]: Each of the r response functions in model
admits the following unique decomposition

mi(t) = m0 + µ(t) + ai + γi(t) i = 1, . . . , r; t ∈ [0, 1]d,

where m0 is a constant function (the grand mean), µ(t) is
either zero or a non-constant function of t (the main effect of
t), ai is either zero or a non-constant function of i (the main
effect of i) and γi(t) is either zero or a non-zero function
which cannot be decomposed as a sum of a function of i and
a function of t (the interaction component).
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IDENTIFIABILITY CONSTRAINTS

∫

[0,1]d
µ(t) dt = 0,

r∑

i=1

ai = 0,

r∑

i=1

γi(t) = 0,

∫

[0,1]d
γi(t) dt = 0, ∀ i = 1, . . . , r; t ∈ [0, 1]d.
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Difficulties of Pointwise ANOVA

“Dissipation of power.”

Fan & Lin (1998) proposed a powerful overall test for
functional hypothesis testing → decomposition of the original
functional data into Fourier (or wavelet) series expansions +
adaptive Neyman and wavelet thresholding procedures of Fan
(1996) to the resulting empirical Fourier (wavelet) coefficients.

Idea: Sparsity of data in non-standard (wavelet) domains.

Similar in Eubank (2000) and Dette & Derbort (2001).

Guo (2002) suggested a MLR based test for functional
variance components in mixed-effects FANOVA models.
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Optimality of Tests?

Not discussed in FANOVA context.

We derive asymptotically (as ε → 0 or, equivalently, as
n →∞) optimal (minimax) non-adaptive and adaptive
testing procedures for testing the significance of the main
effect and the interactions in the FANOVA model against
composite nonparametric alternatives (separated away from
null in L2([0, 1]d)-norm)

Gaussian signal + noise models: Ingster (1982, 1993),
Ermakov (1990), Spokoiny (1996, 1998), Lepski & Spokoiny
(1999), Ingster & Suslina (2000) and Horowitz & Spokoiny
(2001)
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Hypotheses to be Tested 1

Testing the significance of the main effects and the
interactions

H0 : µ(t) ≡ 0, t ∈ [0, 1]d,

H0 : γi(t) ≡ 0, ∀ i = 1, . . . , r, t ∈ [0, 1]d.

Identifiability constraints →

Y ∗
i = m0 + ai + ε ξi, i = 1, . . . , r,

r∑

i=1

ai = 0,

where Y ∗
i =

∫
[0,1]d dYi(t) and ξi are independent N (0, 1)

random variables. This is the classical one-way fixed-effects
ANOVA model.



10

Hypotheses to be Tested 2

We assume that mi (and, hence, µ and γi as well) belong to a
Besov ball of radius C > 0 on [0, 1]d, Bs

p,q(C), where s > 0
and 1 ≤ p, q ≤ ∞.

Interested in: Rate at which the distance between the null
and alternative hypotheses decreases to zero, while still
permitting consistent testing. Alternatives are separated
away from the null by ρ in the L2([0, 1]d).

Alternatives are of the form

H1 : µ ∈ F(ρ),

H1 : γi ∈ F(ρ), at least for one i = 1, . . . , r,

where F(ρ) = {f ∈ Bs
p,q(C) : ||f ||2 ≥ ρ}.
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Minimax Optimality 1

Consider the general model

dZ(t) = f(t) dt + ε dW (t), t ∈ [0, 1]d,

where W is a d-dimensional standard Wiener process.

We wish to test

H0 : f ≡ 0 versus H1 : f ∈ F(ρ),

where F(ρ) = {f ∈ Bs
p,q(C) : ||f ||2 ≥ ρ}.

For prescribed α and β, the rate of decay to zero of the
“indifference threshold” ρ = ρ(ε), as ε → 0, can be viewed as
a measure of goodness of a test. It is natural to seek
the test with the optimal (fastest) rate.
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Minimax Optimality 2

[Ingster, 1993; Spokoiny, 1996; Ingster & Suslina, 2000].

Definition ρ(ε) is the minimax rate of testing if ρ(ε) → 0
as ε → 0 and the following two conditions hold

(i) for any ρ′(ε) satisfying ρ′(ε)/ρ(ε) = oε(1), one has

inf
φε

[
α(φε) + β(φε, ρ

′(ε))
]

= 1− oε(1),

where oε(1) → 0 as ε → 0.

(ii) for any α > 0 and β > 0 there exists a constant c > 0
and a test φ∗ε such that

α(φ∗ε ) ≤ α + oε(1), β(φ∗ε , cρ(ε)) ≤ β + oε(1).

φ∗ε is called an asymptotically optimal (minimax) test.
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Minimax Optimality 3

Ingster (1993) and Lepski & Spokoiny (1999) showed that
for sp > d the asymptotically optimal (minimax) rate is

ρ(ε) = ε4s′′/(4s′′+d),

where s′′ = min(s, s− d
2p + d

4).

The proposed asymptotically optimal (minimax) tests were
consistent but non-adaptive [involve the smoothness
parameters s and p of the corresponding Besov ball].

Spokoiny (1996) and Horowitz & Spokoiny (2001): Problem
of adaptive minimax testing where s and p are unknown. No
adaptive test can achieve the exact optimal rate
uniformly over all s and p (in some given range).
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Minimax Optimality 4

Price for Adaptivity: If one allows increase of ρ(ε) by an
additional log-log factor tε = (ln ln ε−2)1/4, i.e, considers
ρ(εtε) instead of ρ(ε), then [Horowitz & Spokoiny (2001)] the
optimal rate of adaptive testing is

ρ(εtε) = (εtε)4s′′/(4s′′+d),

The “price” factor tε is unavoidable and cannot be reduced.
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Wavelet Bases

We assume d = 1 and work with periodic o.n. wavelet bases
in L2([0, 1]) generated by shifts of a compactly supported
scaling function φ, i.e.

φp(t) =
∑

`∈Z
φ(t−`), ψp

jk(t) =
∑

`∈Z
ψjk(t−`), j ≥ 0, k = 0, . . . , 2j−1

where
ψjk(t) = 2j/2ψ(2jt−k). {φp; ψp

jk, j ≥ 0, k = 0, 1, . . . , 2j−1}
generates an o.n. basis in L2([0, 1]).

If the MRA is of regularity r > 0, the corresponding wavelet
basis is unconditional for Besov spaces Bs

p,q([0, 1]) for
0 < s < r, 1 ≤ p, q ≤ ∞. Such bases characterize Besov balls
in terms of wavelet coefficients.
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Testing in FANOVA 1

Averaging over r paths + identifiability conditions:

dY (t) = (m0 + µ(t)) dt + ε dW (t), t ∈ [0, 1]

d(Yi − Y )(t) = (ai + γi(t)) dt + ε d(Wi −W )(t), i = 1, . . . , r.

{Wi −W ; i = 1, . . . , r} are Wiener processes with the same
covariance kernel C(s, t) = r−1

r min (s, t) [but no
independent].

dZ(t) = f(t) dt + η dW (t), t ∈ [0, 1],

Z(t) = Y (t), f(t) = m0 + µ(t), η = ε/
√

r

Z(t) = (Yi − Y )(t), f(t) = ai + γi(t), η = ε
√

(r − 1)/r
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Testing in FANOVA 2

To apply Spokoiny (1996) results, assume that Bs
p,q(C)

satisfies 1 ≤ p, q ≤ ∞, sp > 1 and s− 1
2p + 1

4 > 0. [Donoho et
al., 1995; Donoho & Johnstone, 1998)].

H0 : f ≡ constant
(

=
∫ 1

0
f(t)dt

)

versus

H1 :
(

f −
∫ 1

0
f(t)dt

)
∈ F(ρ),

where F(ρ) = {f ∈ Bs
p,q(C) : ||f ||2 ≥ ρ}, 1 ≤ p, q ≤ ∞,

sp > 1 and s− 1
2p + 1

4 > 0.
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Testing in FANOVA 3

Choose a wavelet ψ of regularity r > s. One has

Yjk = θjk + η ξjk, j ≥ −1; k = 0, 1, . . . , 2j − 1,

where Yjk =
∫ 1
0 ψjk(t)dZ(t), θjk =

∫ 1
0 ψjk(t)f(t)dt and ξjk are

independent N (0, 1) random variables.

Testing

H0 : f ≡ constant

is equivalent to testing

H0 : θjk = 0 ∀ j ≥ 0; k = 0, 1, . . . , 2j − 1.
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NON-ADAPTIVE TEST 1

RESULT Let the MRA be of regularity r > s, and let the
parameters s, p, q and the radius C of the Besov ball Bs

p,q(C)
be known, where 1 ≤ p, q ≤ ∞, sp > 1, s− 1

2p + 1
4 > 0 and

C > 0. Then, for a fixed significance level α ∈ (0, 1), the test
φ∗, for testing

H0 : f ≡ constant vs H1 :
(

f −
∫ 1

0
f(t)dt

)
∈ F(ρ),

where F(ρ) = {f ∈ Bs
p,q(C) : ||f ||2 ≥ ρ}, is α-level

asymptotically optimal (minimax) test, as η → 0. That is, for
any β ∈ (0, 1), it attains the optimal rate of testing

ρ(η) = η4s′′/(4s′′+1),

where s′′ = min{s, s− 1
2p + 1

4}.
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NON-ADAPTIVE TEST 2

φ∗ is based on the sum of squares of the thresholded
empirical wavelet coefficients Yjk with properly chosen
level-dependent thresholds. The null hypothesis is rejected
when this sum of squares exceeds some critical value.

jη the largest integer: jη ≤ log2 η−2.

j(s) resolution level given by

j(s) =
2

4s′′ + 1
log2

(
Cη−2

)
.

Levels split as:

J− = {0, . . . , j(s)− 1}, J+ = {j(s), . . . , jη − 1}.
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NON-ADAPTIVE TEST 3

For each j ∈ J−, define

Sj =
2j−1∑

k=0

(Y 2
jk − η2)

For each j ∈ J+ and for given threshold λ > 0, define

Sj(λ) =
2j−1∑

k=0

[(Y 2
jk1(|Yjk| > ηλ)− η2b(λ)],

where b(λ) = IE
[
ξ21(|ξ| > λ)

]
and ξ ∼ N (0, 1).
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NONADAPTIVE TEST 4

Define

T (j(s)) =
j(s)−1∑

j=0

Sj ,

and

Q(j(s)) =
jη−1∑

j=j(s)

Sj(λj),

where λj = 4
√

(j − j(s) + 8) ln 2.

Under H0,
v2
0(j(s)) = 2η42j(s) and w2

0(j(s)) = η4
∑jη−1

j=j(s) 2jd(λj), are
the variances of T (j(s)) and Q(j(s)), respectively, where
d(λj) = IE

[
ξ41(|ξ| > λj)

]
.
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NON-ADAPTIVE TEST 5

Comment: In matlab simulations we replaced the expression
from Fan (1996):

IE(ξ2k1(|ξ| > λj)) =
√

2/πλ2k−1
j 2−8(j−j(s)+8)

+ O
(
λ2k−3

j 2−8(j−j(s)+8)
)

, k = 1, 2, . . . .

by

d(λj) = 3−
√

2/πΛ5
j/5 + Λ7

j/(7
√

2π) + o(Λ8
j ),

where Λj = min(λj , 1/λj). Similar approximation can be
derived for b(λj) = IE(ξ21(|ξ| > λj).
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NON-ADAPTIVE TEST 6

Finally, for a given significance level α ∈ (0, 1), let φ∗ be
the test defined by

φ∗ =





1 {T (j(s)) > v0(j(s))z1−α} , if p ≥ 2

1
{

T (j(s)) + Q(j(s)) >
√

v2
0(j(s)) + w2

0(j(s))z1−α

}
,

if 1 ≤ p < 2,
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ADAPTIVE TEST 1

The parameters s, p, q and the radius C of the
corresponding Besov ball Bs

p,q(C) are unknown. Assume that
0 < s ≤ smax, 1 ≤ p, q ≤ ∞, sp > 1, s− 1

2p + 1
4 > 0 and

0 < C ≤ Cmax.

Let tη = (ln ln η−2)1/4 and jmin = 2
4smax+1 log2 η−2.

Regularity of MRA: r > smax.

The idea: Consider the range of j(s) = jmin, . . . , jη − 1 and
reject H0 if it is rejected at least for one selected level j(s).
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ADAPTIVE TEST 2

Since card({jmin, . . . , jη − 1}) = O(ln η−2), Bonferroni type
testing leads to the asymptotically adaptive test

φ∗η = 1

[
max

jmin≤j(s)≤jη−1

{
T (j(s)) + Q(j(s))√
v2
0(j(s)) + w2

0(j(s))

}
>

√
2 ln ln η−2

]
.
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ADAPTIVE TEST 3

Spokoiny (1996) showed that the test φ∗η is an adaptive
optimal test, i.e.

α(φ∗η) = oη(1)

and
sup
T

β(φ∗η, cρ(ηtη)) = oη(1),

where ρ(ηtη) = (ηtη)4s′′/(4s′′+1), oη(1) → 0 as η → 0, and c is
a constant.

If it is known that p ≥ 2 then the adaptive test can be
simplified to

φ∗η = 1

[
max

jmin≤j(s)≤jη−1

{
T (j(s))√
v2
0(j(s))

}
>

√
2 ln ln η−2

]
.
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A COMMENT

The test φ∗η is similar in spirit to that in Fan (1996) and Fan
& Lin (2000), though they apply a global threshold.
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APPLICATIONS

SIMULATION STUDY 1

Synthetic data from the battery of standard test functions
of Donoho & Johnstone (1995): blocks, bumps, doppler

and heavisine. Additional test function mishmash, defined
as

mishmash = −( blocks + bumps + doppler + heavisine),

added because of the identifiability constraints.
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Figure 1: The mean function µ(t) = 5 sin(2πt) and the cen-
tered treatment effect functions γi(t), i = 1, . . . , 5 (i.e., cen-
tered blocks, bumps, doppler, heavisine, and mishmash),
sampled at n = 1024 data points.
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SIMULATION STUDY 3

m0 = 1, µ(t) = 5 sin(2πt)

Five simulated observations (one for each test function
shown; length (n = 1024), two SNRs (SNR = 3 and 7).
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Figure 2: Five simulated observations (one for each test func-
tion shown in Figure 1) sampled at n = 1024 data points are
shown superimposed (first plot) and separately (remaining five
plots) for (a) SNR = 3 and (b) SNR = 7.
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SIMULATION STUDY 4

To test the hypothesis H0 : µ(t) = 0, nonadaptive test,
p ≥ 2. Symmlet 8-tap

j(s) = 3

SNR=3: T (3) = 15.28 critical value 1.5949

SNR=7: T (3) = 97.52 critical value 1.6316.

H0 : γi(t) = 0 (i = 1, . . . , 5), non-adaptive test, 1 ≤ p < 2.

Daubechies 6-tap

j(s) = 3 jη = 7.

SNR=3, T (3) + Q(3) = 275.3326 critical value 154.6294

SNR=7, T (3) + Q(3) = 5941.099 critical value 156.4943
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SIMULATION STUDY 5

Extensive power analysis for the above tests against the
composite alternatives

H1 : µ ∈ F(ρ) and H1 :
1
5

5∑

i=1

γi ∈ F(ρ). (1)
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Figure 3: Empirical power functions for testing (a) H0 : µ(t) =
0 versus H1 : ||µ||2 = ρ and (b) H0 : γi(t) = 0 (i = 1, . . . , 5)
versus H1 : ||∑i γi/5||2 = ρ. In both panels, the sample size
was n = 512 and the number of trials at a fixed discretized
SNR was 500.
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ORTHOSIS DATA ANALYSIS 1

Interesting data on human movement.

Data: Amarantini David and Martin Luc, Laboratoire
Sport et Performance Motrice, Grenoble University

Underlying movement under various levels of an externally
applied force to the knee.

Seven young male volunteers wore a spring-loaded orthosis
of adjustable stiffness under 4 experimental conditions:

Control condition (without orthosis),

Orthosis condition,

Two conditions (Spring1, Spring2) stepping in place was
perturbed by fitting a spring-loaded orthosis onto the right
knee.
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ORTHOSIS DATA ANALYSIS 2

The data set consists in 280 separate runs and involves the
seven subjects over four described experimental conditions,
replicated ten times for each subject.



38

0 0.5 1

-10

0

10

20

30

40

0 0.5 1

-60

-40

-20

0

20

0 0.5 1

-10

0

10

20

30

40

0 0.5 1

-10

0

10

20

0 0.5 1

-20

0

20

40

60

0 0.5 1
-20

-10

0

10

20

30

0 0.5 1

-10

0

10

20

30

40

0 0.5 1

-20

-10

0

10

20

30

0 0.5 1

-50

-40

-30

-20

-10

0

10

0 0.5 1

-20

-10

0

10

20

30

0 0.5 1

-20

-10

0

10

20

0 0.5 1
-40

-20

0

20

40

60

80

0 0.5 1

-10

0

10

20

30

40

0 0.5 1

-10

0

10

20

30

40

0 0.5 1

-20

-10

0

10

20

30

40

50

0 0.5 1

-20

-10

0

10

20

0 0.5 1

0

20

40

60

0 0.5 1

-20

-10

0

10

20

30

0 0.5 1

-20

0

20

40

60

80

100

0 0.5 1

-10

0

10

20

30

40

0 0.5 1

0

20

40

60

80

0 0.5 1
-20

-10

0

10

20

30

40

0 0.5 1
-20

-10

0

10

20

30

40

0 0.5 1

-10

0

10

20

30

40

50

60

0 0.5 1

-10

0

10

20

30

0 0.5 1

-20

0

20

40

60

0 0.5 1

-10

0

10

20

30

40

50

0 0.5 1

-10

0

10

20

30

40

50

60

Figure 4: Orthosis data set: panels in rows correspond to
Treatments while the panels in columns correspond to Subjects.
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ORTHOSIS DATA ANALYSIS 3: MODEL

Model

dYijk(t) = mij(t) dt + ε dWijk(t),

i = 1, . . . , I; j = 1, . . . , J ; k = 1, . . . ,K; t ∈ [0, 1],

with

mij(t) = m0 + µ(t) + αi + γi(t) + βj + δj(t),

i = 1, . . . , I; j = 1, . . . , J ; t ∈ [0, 1],

where i is the condition index, j is the subject index, k is the
replication index, and t is the time.

Subjects in the above model are naturally considered as
block effects; subjects obviously differ but the researchers
are not interested in their differences.
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ORTHOSIS DATA ANALYSIS 4: MODEL

dȲi··(t) = mi(t) dt + η dWi··(t), i = 1, . . . , I; t ∈ [0, 1],

with

mi(t) = m0 + µ(t) + αi + γi(t), i = 1, . . . , I; t ∈ [0, 1],

where η = ε/
√

JK.

j(s) = 4 and jη = 6.

Coiflet 18-tap filter
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ORTHOSIS DATA ANALYSIS 5

Tests H0 : µ(t) = 0 and H0 : γi = 0 were both significant.

The researchers interested contrasts:

Control and Orthosis functional treatment effects are equal
(H0 : γ1(t) = γ2(t)). Not significant, p-value 0.157

Spring 1 and Spring 2 functional treatment effects are equal
(H0 : γ3(t) = γ4(t)). Not significant, p-value 0.198.

Contrast (γ1(t) + γ2(t))− (γ3(t) + γ4(t)). Significant,
p-value is 0.0103.
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Figure 5: Empirical estimators of the treatment effects of
interest. Constant and functional components αi and γi(t)
(i = 1, . . . , 4) are not separated.
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CONCLUSIONS

dY (s, t) =
(m0 + a(s) + µ(t) + γ(s, t)) dt ds + ε dW (s, t), (s, t) ∈ [0, 1]2

d ≥ 2, [Thresholding? Block Thresholding, FDR?]

Black Box Procedure: Variances of T , S by bootstrap
[wavestrap, Percival et al. 1999].

Data, Matlab Files: brani@isye.gatech.edu.


