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Introduction

Primary objective of a randomized clinical trial: Compare

treatments with respect to some outcome of interest, for example

• Continuous response : compare on the basis of treatment means

• Binary response : compare on the basis of odds ratio

• Time to event : compare on the basis of treatment-specific hazard

ratio

In addition to outcome and treatment assignment: Baseline

auxiliary covariates

• Demographic , physiologic characteristics

• Prior treatment and medical history

• Baseline measure(s) of the outcome
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Reasons for Covariate Adjustment

Ordinarily: Inferences on treatment comparisons based only on data on

outcome and treatment assignment

“Covariate adjustment:” with auxiliary baseline covariates has been

advocated

• to account for chance imbalances in baseline covariates

• to gain efficiency

• Extensive literature : Senn (1989), Hauck et al. (1998), Koch et al.

(1998), Tangen and Koch (1999), Pocock et al. (2002), . . .

• Extensive concerns : Potential bias due to post hoc (subjective )

selection of covariates to use, and. . .

• . . . temptation to engage in a “fishing expedition ” for the most

dramatic effect

• ⇒ Trialists and regulatory authorities reluctant to endorse
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Covariate Adjustment

Standard approach to adjustment: Direct regression modeling

• Model outcome as a function of treatment assignment and

covariates

• ⇒ Inextricable link between parameters involved in treatment

comparisons and the “adjustment ”

Our objective: A general methodology for using auxiliary covariates

that leads to more efficient estimators

• Based on the theory of semiparametrics (e.g., Tsiatis, 2006)

• Separates parameters involved in treatment comparisons from the

“adjustment ”. . .

• . . . and hence leads to a principled approach to implementation that

can obviate the usual concerns
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Notation

• Data: (Yi, Zi, Xi), i = 1, . . . , n, (iid) where for patient i

• Yi response variable (discrete, continuous, longitudinal, censored)

• Zi denotes treatment assignment (For simplicity we will consider

only two treatments, but methods generalize easily to more than

two treatments)

• Zi (1=treatment, 0=control), P (Zi = 1) = π

• Xi denotes other baseline covariates measured prior to

randomization

• X⊥⊥Z
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Unconditional Inference

Example 1: continuous response Y

E(Y |Z) = α+ βZ

• Here the parameter of interest is β = E(Y |Z = 1) −E(Y |Z = 0) =

difference in treatment means

Example 2: binary response (Y = 0, 1)

logit{E(Y |Z} = logit{P (Y = 1|Z)} = α+ βZ

• Here the parameter of interest is β =Log-odds ratio for treatments

1 and 0
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Unconditional Inference

Example 3: Time to event (censored data)

• Here the data are represented as (Ui,∆i, Zi, Xi), i = 1, . . . , n

– Ui is time to failure or censoring =min(Ti, Ci)

– ∆i is failure indicator =I(Ti ≤ Ci)

– As before Zi is treatment indicator and Xi denotes baseline

covariates

• Proportional hazards model

λ(t|Z) = λ0(t) exp(βZ),

where λ(t|Z) denotes the conditional hazard rate of failing at time t

given treatment Z

• The parameter of interest is β=Log-hazard ratio for treatments 1

and 0
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Conditional versus unconditional inference

Focus of inference: Comparisons based on β are unconditional

• Treatment effect averaged across the population

• E.g., β = E(Y |Z = 1) − E(Y |Z = 0) in Example 1

Alternative: Comparison conditional on subset of the population with

X = x; e.g., in Example 1

βx = E(Y |X = x, Z = 1) − E(Y |X = x, Z = 0)

• ANCOVA model E(Y |X,Z) = α0 + αT
1 X + φZ

• φ = βx = β if ANCOVA model correct

• OLS estimator for φ is consistent for β regardless

• ANCOVA is used for covariate adjustment

(direct regression modeling )

• Conditional vs. unconditional not a big deal
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Conditional versus unconditional inference

Conditional vs. unconditional is a big deal: E.g., binary outcome

• Unconditional model

logit{E(Y |Z} = α+ βZ

• Conditional (on X ) model

logit{E(Y |X,Z)} = α0 + αT
1 X + φZ

Similarly: time to event outcome

• Unconditional model

λ(t|Z) = λ0(t) exp(βZ)

• Conditional (on X ) model

λ(t|X,Z) = λ0(t) exp(αTX + φZ)

• φ 6= β ⇒ different focus
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Conditional versus unconditional inference

Debate: Which is more clinically relevant ?

• Most trials: unconditional primary analysis

• ⇒ We focus on unconditional inference
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Semiparametric model

In general: β is the parameter relevant to making (unconditional )

treatment comparisons in an assumed model for the conditional

distribution of Y given Z

• Possibly additional parameter α

• Conditional density pY |Z(y|z; θ, η), θ = (β, α)

• η is an additional nuisance parameter needed to describe fully the

class of densities being assumed

• η null in fully parametric models

• η infinite-dimensional in nonparametric or semiparametric models
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Semiparametric model

• Fully parametric model (e.g., logistic model for binary response)

logit{E(Y |Z)} = α+ βZ

• Nonparametric model (e.g., for continuous response Y )

E(Y |Z) = α+ βZ

• Semiparametric model (e.g., proportional hazards model for time to

event outcome)

λ(t|Z) = λ0(t) exp(βZ)
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2. Semiparametric model

Semiparametric model for all of (Y,X,Z): Class of joint densities

pY,X,Z(y, x, z; θ, η, ψ, π) = pY,X|Z(y, x | z; θ, η, ψ)pZ(z;π),

θ = (β, α), such that

• π is known , so pZ(z;π) is completely specified

• Z⊥⊥X by randomization

•
∫
pY,X|Z(y, x | z; θ, η, ψ) dx = pY |Z(y|z; θ, η)

•
∫
pY,X|Z(y, x | z; θ, η, ψ) dy = pX(x)

Goal: Consistent and asymptotically normal estimators for β based on

(Yi, Xi, Zi), i = 1, . . . , n, iid making no assumptions beyond this

semiparametric model

• Inclusion of X ⇒ “covariate adjustment ”
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Semiparametric theory

Approach: Derive estimators by characterizing the class of all estimating

functions for θ (and hence β) leading to estimators for θ that are

consistent and asymptotically normal under the semiparametric model

• Estimating function : Function of a single observation and

parameters that can be used to construct estimating equations

leading to estimators for the parameters

• ⇒ We seek unbiased estimating functions for θ depending on

(Y, Z,X) (lead to consistent and asymptotically normal estimators );

Eθ{m(Y, Z,X; θ)} = 0.

• Corresponding estimator is solution to

n∑

i=1

m(Yi, Zi, Xi; θ) = 0.
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Estimating functions without auxiliary covariates

Start by considering unbiased estimating functions depending on

(Y, Z) only:

m(Y, Z; θ) ⇒ Solve

n∑

i=1

m(Yi, Zi; θ) = 0

• Example 1 : E(Y |Z) = α+ βZ

m(Y, Z; θ) = (1, Z)T (Y − α− βZ)

yields OLS estimator for β ⇒ β̂OLS = difference in sample means

• Example 2 : logit{E(Y |Z)} = α+ βZ

m(Y, Z, ; θ) = (1, Z)T {Y − expit(α+ βZ)}

yields logistic regression MLE, also log-odds ratio of sample

proportions
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Estimating functions without auxiliary covariates

For the Proportional hazards model of Example 3, the parameter β is

estimated by maximizing the partial likelihood or solving the estimating

equation
n∑

i=1

∫
{Zi − Z̄(u, β)}dNi(u) = 0,

where Ni(u) = I(Ui ≤ u,∆i = 1) and

Z̄(u, β)} =

∑
Zi exp(βZi)I(Ui ≥ u)∑
exp(βZi)I(Ui ≥ u)
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Estimating functions using auxiliary covariates

Main result: For a given semiparametric model members of the class of

all unbiased estimating functions for θ using all of (Y, Z,X) may be

written

m∗(Y, Z,X; θ) = m(Y, Z; θ) − {Z − π}a(X)

• m(Y, Z; θ) is a fixed unbiased estimating function for θ without

auxiliary covariates

• a(X) is an arbitrary function of X

• a(X) ≡ 0 ⇒ “unadjusted estimator ” θ̂ = (β̂, α̂)

• “Augmentation term ” effects the “adjustment ”
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Estimating functions using auxiliary covariates

m∗(Y, Z,X; θ) = m(Y, Z; θ) − (Z − π)a(X)

• By Z⊥⊥X, augmentation term has mean zero ⇒ unbiased

Adjusted estimator for θ: Solve

n∑

i=1

m∗(Yi, Zi, Xi; θ) = 0

• Judicious choice of a(X) ⇒ improved efficiency over the

“unadjusted ” estimator θ̂
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Estimating functions using auxiliary covariates

Optimal estimating function in the class: Elements of the estimator

have smallest asymptotic variance

• Take a(X) = E{m(Y, Z; θ) |X,Z = 1} − E{m(Y, Z; θ) |X,Z = 0}

• Optimal estimating equation

n∑

i=1

(
m(Yi, Zi; θ) −

(Zi − π)
[
E{m(Y, Z; θ) |Xi, Z = 1} − E{m(Y, Z; θ) |Xi, Z = 0}

])
= 0

• E{m(Y, Z; θ) |X,Z = g}, g = 0, 1 are unknown functions of X ⇒

model them. . .
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Implementation

Approach: Adaptive algorithm

(1) Solve
∑n

i=1
m(Yi, Zi; θ) = 0 ⇒ θ̂

(2) For each group g = 0, 1 separately , using the “data ” m(Yi, Zi; θ̂)

for Zi = g, develop a regression model

E{m(Y, g; θ̂) |X,Z = g} = qg(X, ζg),

qg(X, ζg) = {1, cTg (X)}T ζg,

and obtain ζ̂g by OLS separately

(3) For each i = 1 . . . , n, form predicted values qg(Xi, ζ̂g) for each

g = 0, 1 and solve in θ with π̂ = n−1
∑n

i=1
Zi

n∑

i=1

[
m(Yi, Zi; θ) − (Zi − π̂){q1(Xi, ζ̂1) − q0(Xi, ζ̂0)}

]
= 0 ⇒ “adjusted ” θ̃
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Implementation

Properties: From semiparametric theory

• With the regression models qg as above, θ̃ is guaranteed relatively

more efficient than θ̂, even if qg incorrect

• θ̃ is consistent and asymptotically normal regardless of qg

• If the qg models are exactly correct ⇒ θ̃ is asymptotically equivalent

to the optimal estimator if we knew E{m(Y, Z; θ) |X,Z = g}
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Implementation

By-product:

• The “adjustment ” for X is determined separately by treatment

group. . .

• . . . and regression modeling is carried out independently of β̃

• ⇒ Can develop models without concerns over subjectivity

“Principled” strategy:

• Regression modeling for each g = 0, 1 based on data for i ∈ g only

may be carried out by separate analysts for each g. . .

• . . . different from those who calculate θ̃ (and hence β̃)
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Implementation

Standard errors: For θ̃ and hence β̃

• θ̃ is an M-estimator

• ⇒ Sandwich method for asymptotic variance for β̃
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Implementation

Special case: Example 1 (continuous response Y )

• All estimators for β are asymptotically equivalent to

Y 1 − Y 0 −
n∑

i=1

(Zi − π̂)
{
n−1

1
a1(Xi) + n−1

0
a0(Xi)

}
,

where Y g denotes treatment-specific sample average for treatment

g = (0, 1)

• In this class : ANCOVA, ANCOVA with treatment-covariate

interaction , Koch et al. (1998)’s “nonparametric ” estimator,. . .

• Optimal estimator takes

ag(X) = E(Y |X,Z = g), g = 0, 1

See Tsiatis et al. (2008)
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Simulations

1. Binary response: 5000 Monte Carlo data sets, n = 200

logit{E(Y |Z)} = α+ βZ

• P (Z = 1) = P (Z = 0) = 0.5

• X = (X1, . . . , X4)
T , (X1, X2, X3)

T ∼ N (0, G), P (X4 = 1) = 0.3

• Generate Y as Bernoulli with

logit{P (Y = 1|Z = g,X)} = α0g + αT
g X, g = 0, 1

αg chosen to yield mild , moderate , or strong association between Y

and X for each g (R2 = 0.12, 0.25, 0.34)

• Unadjusted estimate via logistic regression MLE

• Adjusted estimates via “direct approach ” with different choices for

E(Y |X,Z = g) = q∗g(X, ζg)
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Simulations

“Augmentations:”

• Aug 1: q∗g(X, ζg) = {1, cTg (X)}T ζg, cg(X) = (X1, X2, X3, X4)
T , fit

by OLS

• Aug 2: q∗g(X, ζg) = {1, cTg (X)}T ζg, cg(X) = “true covariates

only ,” fit by OLS

• Aug 3, 4: Like Aug 1, 2 but logit{q∗g(X, ζg)} = {1, cTg (X)}T ζg,

fit by MLE

University of Florida Winter Workshop 27



Simulations

Method True MC Bias MC SD Ave. SE Cov. Prob Rel. Eff.

Mild Correlation

Unadjusted -0.218 0.008 0.171 0.170 0.949 1.00

Aug. 1 -0.218 0.006 0.165 0.163 0.947 1.07

Moderate Correlation

Unadjusted -0.150 0.015 0.167 0.168 0.952 1.00

Aug. 1 -0.150 0.013 0.158 0.158 0.945 1.11

Strong Correlation

Unadjusted 0.078 -0.001 0.166 0.165 0.950 1.00

Aug. 1 0.078 -0.001 0.154 0.153 0.947 1.16

Aug 2, 3, 4 virtually identical
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Simulations

Censored survival data: Proportional hazards model

λ(t|Z) = λ0(t) exp(βZ)

In order to generate data where

• the distribution of T given Z follows a proportional hazards model

• T and X are correlated

• X and Z are independent

1. We generate bivariate data (V,X) from a bivariate normal density

with mean zero, variance 1 , and correlation ρ

2. Independently generate treatment indicator Z as a Bernoulli(π)

3. Let T = − exp(−βZ) log{1 − Φ(V )}, where Φ(·) is the cumulative

distribution function (CDF) of a standard normal

4. Censoring was generated as an independent exponential distribution

C ∼ Exp(c).
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Simulations

• Treatment was assigned with π = .5

• the correlation of V and X was ρ = .7 which resulted in roughly a

correlation of 0.6 between T and X

• We took β = 0 (null hypothesis) and β = .25

• The value c for the exponential distribution of the censoring variable

that would result in roughly 25% of the data being censored

• Sample sizes of 250 and 600 were considered
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Simulations

“Estimators considered:”

• β̂PH : Unadjusted estimator using MPLE from unconditional model

λ(t|Z) = λ0(t) exp(βZ)

• β̂AUG : Augmentation term used qg(X, ζg) = {1, X,X2}T ζg, fit by

OLS

• β̂REG : We also considered the estimator φ̂ obtained by considering

the Cox regression model

λ(t|X,Z) = λ0(t) exp(α1X + α2X
2 + φZ)

Note: This is not the true conditional model
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Simulations β = 0

n β̂PH β̂AUG β̂REG

250 0.002 −0.004 −0.003
Bias

600 0.001 −0.002 −0.001

250 0.148 0.117 (1.60) 0.150 (NA)
SE

600 0.095 0.075 (1.59) 0.095 (NA)

250 0.146 0.120 (1.48) 0.170 (0.74)
MCSE

600 0.095 0.076 (1.56) 0.107 (0.79)
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Simulations β = .25

n β̂PH β̂AUG β̂REG

250 0.004 −0.002 0.092
Bias

600 −0.008 −0.008 0.091

250 0.149 0.118 (1.60) 0.152 (NA)
SE

600 0.095 0.076 (1.58) 0.097 (NA)

250 0.147 0.121 (1.47) 0.171 (0.74)
MCSE

600 0.096 0.077 (1.55) 0.107 (0.80)
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Example

• Considered ACTG 175

• A randomized study of 2139 patients with HIV disease to four

antiretroviral regimes

• treatment 0 (Zidovudine, 532 patients) treatment 1 (Zidovudine and

didanosine, 522 patients), treatment 2 (Zidovudine and zalcitabine,

524 patients ) and treatment 3 (Didanosine, 561 patients)

• The primary endpoint was a combined endpoint corresponding to

the first time that a patient had a ≥ 50 percent decline in their CD4

cell count, an event indicating progression to the acquired

immunodeficiency syndrome (AIDS), or death.

• Roughly 76% of the data were censored, almost all administrative

censoring.
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Example

• A comparison was made between treatment 0 (control) versus

treatments 1,2, and 3 respectively

• We also considered several prognostic baseline auxiliary covariates

including CD4, CD8, age (years), weight (kg), history of IV drug use

(0=no, 1=yes), Karnofsky score (on a scale of 0-100), Zidovudine in

the 30 days prior to 175 (0=no, 1=yes), number of days pre-175

antiretroviral therapy and symptomatic indicator (0=asymp,

1=symp)
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Example

Figure 1: Log negative log survival function of time to death for each

treatment
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Example

Table 1: Estimates of β̂PH and β̂AUG on the ACTG 175 data (RE is the

relative efficiencies with respect to β̂PH.)

Estimates Standard Errors RE

β̂PH -0.703 0.124 1.00Treatment 0 and 1
β̂AUG -0.723 0.110 1.25

β̂PH -0.640 0.121 1.00Treatment 0 and 2
β̂AUG -0.555 0.104 1.36

β̂PH -0.528 0.116 1.00Treatment 0 and 3
β̂AUG -0.627 0.105 1.21
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Discussion

• General approach to using baseline auxiliary covariates to improve

efficiency of estimators and theory can also be applied to tests

• General measures of treatment effect

• Arises naturally via semiparametric theory

• Even when regression adjustment leads to improved estimators of

unconditional treatment effect (i.e., linear models) there is a tension

between gains in efficiency and compromised analysis

• Incorporation of covariate information separated from evaluation of

treatment effects

• Impact of model selection

• Can be extended to k-arm trials and missing data
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