Comprehensive Examination on the Theory of Mathematical Statistics Department of Statistics, University of Florida

January 7, 2002

Instructions:

- 1. You have three hours to answer questions in this examination.
- 2. There are 6 problems of which you must answer 5.
- 3. While the questions are equally weighted, some problems are more difficult than others.
- 4. Write only on one side of the paper, and start each question on a new page.

You may use the following facts/formulas without proof:

Iterated Expectation Formula: E(X) = E[E(X|Y)].

Iterated Variance Formula: Var(X) = E[Var(X|Y)] + Var[E(X|Y)].

Delta Method: Let Y_n be a sequence of random variables such that $\sqrt{n}(Y_n - \theta) \stackrel{d}{\to} N(0, \sigma^2)$. For a given function g and a specific value of θ , suppose that $g'(\theta)$ exists and is not 0. Then

$$\sqrt{n} \left[g(Y_n) - g(\theta) \right] \stackrel{d}{\to} \mathbf{N} \Big(0, \sigma^2 \left[g'(\theta) \right]^2 \Big) .$$

1. Let X and Y be jointly continuous random variables with joint density function given by

$$f(x,y) = \begin{cases} y e^{-y(x+1)} & x > 0, y > 0 \\ 0 & \text{otherwise} \end{cases}$$

- (a) Are X and Y independent? Why?
- (b) Find the marginal density functions of X and Y.
- (c) Find $P(X > 1|Y > \pi)$.
- (d) Find $P(X > 1 | Y = \pi)$.
- (e) Find the expectations of X and Y?
- 2. In this question, we will derive the mean and variance of a hypergeometric random variable. Imagine an urn with M white balls and N-M black balls. Suppose K balls are draw from the urn at random without replacement. Let Y denote the number of white balls in the sample. Clearly, $Y \sim \mathrm{HG}(N,M,K)$. For $i=1,2,\ldots,K$, define

$$X_i = \begin{cases} 1 & \text{if } i \text{th ball drawn is white} \\ 0 & \text{if } i \text{th ball drawn is black} \end{cases}.$$

Throughout this problem, you may use the following two facts:

- The random variables X_1, X_2, \dots, X_n are identically distributed.
- The joint distribution of (X_i, X_j) is the same for all $i \neq j$.
- (a) Show that Y can be written as a simple function of the X_i 's.
- (b) Find the probability mass function (PMF) of X_1 and use it to calculate $\mathrm{E}(Y)$.
- (c) Prove that X_1 and X_2 are *not* independent.
- (d) Find the joint PMF of (X_1, X_2) and use it to calculate $Cov(X_1, X_2)$.
- (e) Let W_1, \ldots, W_n be a set of random variables each with a finite second moment. Show that

$$\operatorname{Var}\left(\sum_{i=1}^n W_i\right) = \sum_{i=1}^n \operatorname{Var}(W_i) + 2\sum_{1 \le i < j \le n} \operatorname{Cov}(W_i, W_j) \ .$$

- (f) Find Var(Y).
- **3.** Suppose X_1, \ldots, X_n are iid Bernoulli(p) and that $n \geq 4$.
 - (a) Find the MLE of p and call it \hat{p} .
 - (b) Show that the variance of \hat{p} attains the Cramér-Rao Lower Bound.
 - (c) Show that $\prod_{i=1}^{4} X_i$ is an unbiased estimator of p^4 .
 - (d) Find the UMVUE of p^4 .

4. (a) Suppose that X_1, \ldots, X_n are independent random variables with $X_i \sim \text{Gamma}(\alpha_i, \beta)$; that is, X_i has probability density function given by

$$f_{X_i}(x) = \begin{cases} \frac{1}{\Gamma(\alpha_i)\beta^{\alpha_i}} x^{\alpha_i - 1} \exp\{-x/\beta\} & x > 0\\ 0 & \text{otherwise} \end{cases}$$

where $\alpha_i, \beta > 0$. Derive the distribution of $\sum_{i=1}^n X_i$.

(b) Define $U_i = X_i/(X_1 + X_2 + \cdots + X_n)$ for $i = 1, \dots, n$. Show that

$$U_i \sim \operatorname{Beta}\left(\alpha_i, \sum_{j \neq i} \alpha_j\right) \ .$$

(Hint: Think of U_i as $X_i/(X_i+W)$ where $W=\sum_{j\neq i}X_j$ is independent of X_i .)

(c) Let X_1, \ldots, X_n be iid Gamma (α, β) . Suppose that, conditional $X_1, \ldots, X_n, Y_1, \ldots, Y_n$ are independent and such that $Y_i | X_i \sim \text{Gamma}(\alpha, \beta X_i)$. Show that

$$\mathbf{E}\left(\frac{\bar{Y}}{\bar{X}}\right) = \alpha\beta \quad \text{ and } \quad \mathrm{Var}\left(\frac{\bar{Y}}{\bar{X}}\right) = \alpha\beta^2\,\mathbf{E}\left[\frac{\sum X_i^2}{(\sum X_i)^2}\right]\,.$$

(Hint: Use the iterated expectation and variance formulas.)

(d) Now use (b) to evaluate

$$\mathrm{E}\left[\frac{\sum X_i^2}{(\sum X_i)^2}\right] ,$$

leading to a formula for $Var(\bar{Y}/\bar{X})$.

- **5.** Let X_1, \ldots, X_n be iid Uniform $(\theta \frac{1}{2}, \theta + \frac{1}{2})$, where θ is an unknown parameter.
 - (a) Write down the likelihood function for θ and use it to show that $(X_{(1)}, X_{(n)})$ is sufficient for θ . (Of course, $X_{(1)}$ and $X_{(n)}$ are the smallest and largest order statistics, respectively)
 - (b) Show that the likelihood function can be written as

$$L(\theta; x_1, \dots, x_n) = \begin{cases} 1 & \text{if } \theta \in \left(x_{(n)} - \frac{1}{2}, x_{(1)} + \frac{1}{2}\right) \\ 0 & \text{otherwise} \end{cases}$$

- (c) Show that $\hat{\theta} = (X_{(1)} + X_{(n)})/2$ is an unbiased maximum likelihood estimator of θ .
- (d) Derive the density of $\hat{\theta}$ when n=2.
- (e) Find formulas for $P(\hat{\theta} > \theta + t)$ and $P(\hat{\theta} < \theta t)$ for 0 < t < 1/2 and use them to derive an exact 90% confidence interval for θ . (Hint: You don't need any integrals here.)
- (f) Suppose that $X_1 = 5.7$ and $X_2 = 4.9$. What are the minimum and maximum possible values of θ ?
- (g) Calculate an exact 90% two-sided confidence interval for θ based on the sample data in part (e). Comment on your interval in light of your answer to part (e) and comment on your answer.

6. Suppose $Z|\theta \sim \text{Geometric}(\theta)$; that is,

$$P(Z = z | \theta) = \theta (1 - \theta)^z$$

for $z \in \mathbb{Z}_+ = \{0, 1, 2, \dots\}$ and $\theta \in (0, 1)$.

- (a) Show that $\mathrm{E}(Z|\theta)=\frac{1-\theta}{\theta}$ and that $\mathrm{Var}(Z|\theta)=\frac{1-\theta}{\theta^2}$.
- (b) Suppose that $\theta \sim \text{Beta}(\alpha, 1)$ with $\alpha > 2$. Use the iterated expectation and variance formulas to find EZ and Var(Z). Also, show that marginally, for $z \in \mathbb{Z}_+$

$$P_{\alpha}(Z=z) = \frac{\alpha^2 \Gamma(\alpha) z!}{\Gamma(z+\alpha+2)} . \tag{1}$$

(c) Let Z_1, Z_2, \ldots, Z_n be an iid sequence from the mass function in (1) with $\alpha > 2$. Let $\tilde{\alpha}_n$ denote the method of moments estimator of α . Find $\tilde{\alpha}_n$ and show that

$$\sqrt{n} \left(\tilde{\alpha}_n - \alpha \right) \stackrel{d}{\to} \mathbf{N} \left(0, \sigma^2(\alpha) \right)$$

where

$$\sigma^2(\alpha) = \frac{\alpha^2 (\alpha - 1)^2}{\alpha - 2} .$$

(Hint: Use the delta method.)

(d) Suppose that n=1. Construct a UMP size 0.75 test of $H_0: \alpha \leq 3$ versus $H_A: \alpha > 3$. You may use the fact that for fixed 0 < a < b, the function

$$g(t) = \frac{\Gamma(t+a)}{\Gamma(t+b)}$$

is decreasing in t.