Comprehensive Examination on the Theory of Mathematical Statistics Department of Statistics, University of Florida
 January 7, 2002

Instructions:

1. You have three hours to answer questions in this examination.
2. There are 6 problems of which you must answer 5 .
3. While the questions are equally weighted, some problems are more difficult than others.
4. Write only on one side of the paper, and start each question on a new page.

You may use the following facts/formulas without proof:
Iterated Expectation Formula: $\mathrm{E}(X)=\mathrm{E}[\mathrm{E}(X \mid Y)]$.
Iterated Variance Formula: $\operatorname{Var}(X)=\mathrm{E}[\operatorname{Var}(X \mid Y)]+\operatorname{Var}[\mathrm{E}(X \mid Y)]$.
Delta Method: Let Y_{n} be a sequence of random variables such that $\sqrt{n}\left(Y_{n}-\theta\right) \xrightarrow{d} \mathbf{N}\left(0, \sigma^{2}\right)$. For a given function g and a specific value of θ, suppose that $g^{\prime}(\theta)$ exists and is not 0 . Then

$$
\sqrt{n}\left[g\left(Y_{n}\right)-g(\theta)\right] \xrightarrow{d} \mathrm{~N}\left(0, \sigma^{2}\left[g^{\prime}(\theta)\right]^{2}\right) .
$$

1. Let X and Y be jointly continuous random variables with joint density function given by

$$
f(x, y)= \begin{cases}y e^{-y(x+1)} & x>0, y>0 \\ 0 & \text { otherwise }\end{cases}
$$

(a) Are X and Y independent? Why?
(b) Find the marginal density functions of X and Y.
(c) Find $P(X>1 \mid Y>\pi)$.
(d) Find $P(X>1 \mid Y=\pi)$.
(e) Find the expectations of X and Y ?
2. In this question, we will derive the mean and variance of a hypergeometric random variable. Imagine an urn with M white balls and $N-M$ black balls. Suppose K balls are draw from the urn at random without replacement. Let Y denote the number of white balls in the sample. Clearly, $Y \sim \operatorname{HG}(N, M, K)$. For $i=1,2, \ldots, K$, define

$$
X_{i}= \begin{cases}1 & \text { if } i \text { th ball drawn is white } \\ 0 & \text { if } i \text { th ball drawn is black }\end{cases}
$$

Throughout this problem, you may use the following two facts:

- The random variables $X_{1}, X_{2}, \ldots, X_{n}$ are identically distributed.
- The joint distribution of $\left(X_{i}, X_{j}\right)$ is the same for all $i \neq j$.
(a) Show that Y can be written as a simple function of the X_{i} 's.
(b) Find the probability mass function (PMF) of X_{1} and use it to calculate $\mathrm{E}(Y)$.
(c) Prove that X_{1} and X_{2} are not independent.
(d) Find the joint PMF of $\left(X_{1}, X_{2}\right)$ and use it to calculate $\operatorname{Cov}\left(X_{1}, X_{2}\right)$.
(e) Let W_{1}, \ldots, W_{n} be a set of random variables each with a finite second moment. Show that

$$
\operatorname{Var}\left(\sum_{i=1}^{n} W_{i}\right)=\sum_{i=1}^{n} \operatorname{Var}\left(W_{i}\right)+2 \sum_{1 \leq i<j \leq n} \operatorname{Cov}\left(W_{i}, W_{j}\right)
$$

(f) Find $\operatorname{Var}(Y)$.
3. Suppose X_{1}, \ldots, X_{n} are iid $\operatorname{Bernoulli}(p)$ and that $n \geq 4$.
(a) Find the MLE of p and call it \hat{p}.
(b) Show that the variance of \hat{p} attains the Cramér-Rao Lower Bound.
(c) Show that $\prod_{i=1}^{4} X_{i}$ is an unbiased estimator of p^{4}.
(d) Find the UMVUE of p^{4}.
4. (a) Suppose that X_{1}, \ldots, X_{n} are independent random variables with $X_{i} \sim \operatorname{Gamma}\left(\alpha_{i}, \beta\right)$; that is, X_{i} has probability density function given by

$$
f_{X_{i}}(x)= \begin{cases}\frac{1}{\Gamma\left(\alpha_{i}\right) \beta^{\alpha_{i}}} x^{\alpha_{i}-1} \exp \{-x / \beta\} & x>0 \\ 0 & \text { otherwise }\end{cases}
$$

where $\alpha_{i}, \beta>0$. Derive the distribution of $\sum_{i=1}^{n} X_{i}$.
(b) Define $U_{i}=X_{i} /\left(X_{1}+X_{2}+\cdots+X_{n}\right)$ for $i=1, \ldots, n$. Show that

$$
U_{i} \sim \operatorname{Beta}\left(\alpha_{i}, \sum_{j \neq i} \alpha_{j}\right)
$$

(Hint: Think of U_{i} as $X_{i} /\left(X_{i}+W\right)$ where $W=\sum_{j \neq i} X_{j}$ is independent of X_{i}.)
(c) Let X_{1}, \ldots, X_{n} be iid $\operatorname{Gamma}(\alpha, \beta)$. Suppose that, conditional $X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}$ are independent and such that $Y_{i} \mid X_{i} \sim \operatorname{Gamma}\left(\alpha, \beta X_{i}\right)$. Show that

$$
\mathrm{E}\left(\frac{\bar{Y}}{\bar{X}}\right)=\alpha \beta \quad \text { and } \quad \operatorname{Var}\left(\frac{\bar{Y}}{\bar{X}}\right)=\alpha \beta^{2} \mathrm{E}\left[\frac{\sum X_{i}^{2}}{\left(\sum X_{i}\right)^{2}}\right] .
$$

(Hint: Use the iterated expectation and variance formulas.)
(d) Now use (b) to evaluate

$$
\mathrm{E}\left[\frac{\sum X_{i}^{2}}{\left(\sum X_{i}\right)^{2}}\right]
$$

leading to a formula for $\operatorname{Var}(\bar{Y} / \bar{X})$.
5. Let X_{1}, \ldots, X_{n} be iid $\operatorname{Uniform}\left(\theta-\frac{1}{2}, \theta+\frac{1}{2}\right)$, where θ is an unknown parameter.
(a) Write down the likelihood function for θ and use it to show that $\left(X_{(1)}, X_{(n)}\right)$ is sufficient for θ. (Of course, $X_{(1)}$ and $X_{(n)}$ are the smallest and largest order statistics, respectively)
(b) Show that the likelihood function can be written as

$$
L\left(\theta ; x_{1}, \ldots, x_{n}\right)= \begin{cases}1 & \text { if } \theta \in\left(x_{(n)}-\frac{1}{2}, x_{(1)}+\frac{1}{2}\right) \\ 0 & \text { otherwise }\end{cases}
$$

(c) Show that $\hat{\theta}=\left(X_{(1)}+X_{(n)}\right) / 2$ is an unbiased maximum likelihood estimator of θ.
(d) Derive the density of $\hat{\theta}$ when $n=2$.
(e) Find formulas for $P(\hat{\theta}>\theta+t)$ and $P(\hat{\theta}<\theta-t)$ for $0<t<1 / 2$ and use them to derive an exact 90% confidence interval for θ. (Hint: You don't need any integrals here.)
(f) Suppose that $X_{1}=5.7$ and $X_{2}=4.9$. What are the minimum and maximum possible values of θ ?
(g) Calculate an exact 90% two-sided confidence interval for θ based on the sample data in part (e). Comment on your interval in light of your answer to part (e) and comment on your answer.
6. Suppose $Z \mid \theta \sim \operatorname{Geometric}(\theta)$; that is,

$$
P(Z=z \mid \theta)=\theta(1-\theta)^{z}
$$

for $z \in \mathbb{Z}_{+}=\{0,1,2, \ldots\}$ and $\theta \in(0,1)$.
(a) Show that $\mathrm{E}(Z \mid \theta)=\frac{1-\theta}{\theta}$ and that $\operatorname{Var}(Z \mid \theta)=\frac{1-\theta}{\theta^{2}}$.
(b) Suppose that $\theta \sim \operatorname{Beta}(\alpha, 1)$ with $\alpha>2$. Use the iterated expectation and variance formulas to find $\mathrm{E} Z$ and $\operatorname{Var}(Z)$. Also, show that marginally, for $z \in \mathbb{Z}_{+}$

$$
\begin{equation*}
P_{\alpha}(Z=z)=\frac{\alpha^{2} \Gamma(\alpha) z!}{\Gamma(z+\alpha+2)} . \tag{1}
\end{equation*}
$$

(c) Let $Z_{1}, Z_{2}, \ldots, Z_{n}$ be an iid sequence from the mass function in (1) with $\alpha>2$. Let $\tilde{\alpha}_{n}$ denote the method of moments estimator of α. Find $\tilde{\alpha}_{n}$ and show that

$$
\sqrt{n}\left(\tilde{\alpha}_{n}-\alpha\right) \xrightarrow{d} \mathrm{~N}\left(0, \sigma^{2}(\alpha)\right)
$$

where

$$
\sigma^{2}(\alpha)=\frac{\alpha^{2}(\alpha-1)^{2}}{\alpha-2}
$$

(Hint: Use the delta method.)
(d) Suppose that $n=1$. Construct a UMP size 0.75 test of $H_{0}: \alpha \leq 3$ versus $H_{A}: \alpha>3$. You may use the fact that for fixed $0<a<b$, the function

$$
g(t)=\frac{\Gamma(t+a)}{\Gamma(t+b)}
$$

is decreasing in t.

