Penalized Splines, Mixed Models, and Recent Large-Sample Results

Outline

Semiparametri Regression Introduction Mixed linear models Univariate splines Back to examples Summary

Asymptotic Theory

Framework and summary 0-degree splines Linear Splines Work in progress Summary

Penalized Splines, Mixed Models, and Recent Large-Sample Results

David Ruppert

Operations Research & Information Engineering, Cornell University

January 9, 2009

Two parts Penalized Splines, Mixed Models, and Recent Large-Sample Results Outline • Old: overview of the book Semiparametric Regression by Ruppert, Wand, and Carroll (2003)

• New: asymptotics of penalized splines

Intellectual impairment and blood lead

Penalized Splines, Mixed Models, and Recent Large-Sample Results

David Ruppert

Outline

Semiparametri Regression

Introduction

Mixed linear models Univariate splines Back to examples Summary

Asymptotic Theory

Framework and summary 0-degree splines Linear Splines Work in progress Summary

Example I (courtesy of Rich Canfield, Nutrition, Cornell)

- blood lead and intelligence measured on children
- Question: how do low doses of lead affect IQ?
 - important since doses are decreasing with lead now out of gasoline

- several IQ measurements per child
 - so longitudinal
- nine "confounders"
 - e. g., maternal IQ
 - need to adjust for them
- effect of lead appears nonlinear
 - important conclusion

Dose-response curve

Penalized Splines, Mixed Models, and Recent Large-Sample Results

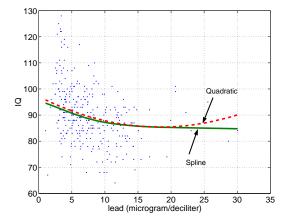
Outline

Semiparametr Regression Introduction

Mixed linear mode Univariate splines Back to examples Summary

Asymptotic Theory

Framework and summary 0-degree splines Linear Splines Work in progress Summary



Thanks to Rich Canfield for data and estimates

Spinal bone mineral density example

Penalized Splines, Mixed Models, and Recent Large-Sample Results

David Ruppert

Outline

Semiparametric Regression Introduction Mixed linear models

Univariate splines Back to examples Summary

Asymptotic Theory

Framework and summary 0-degree splines Linear Splines Work in progress Summary

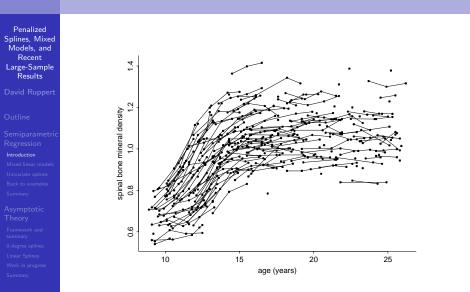
Example II (in Ruppert, Wand, Carroll (2003), *Semiparametric Regression*

• age and spinal bone mineral density measured on girls and young women

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- several measurements on each subject
- increasing but nonlinear curves

Spinal bone mineral density data



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

What is needed to accommodate these examples

Penalized Splines, Mixed Models, and Recent Large-Sample Results

Introduction

We need a model with

- potentially many variables
- possibility of nonlinear effects
- random subject-specific effects

The model should be one that can be fit with readily available software such as SAS, Splus, or R.

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < ⊙

Underlying philosophy

Penalized Splines, Mixed Models, and Recent Large-Sample Results

David Ruppert

Outline

Semiparameti Regression Introduction

Mixed linear model Univariate splines Back to examples Summary

Asymptotic Theory

Framework and summary 0-degree splines Linear Splines Work in progress Summary

1 minimalist statistics

- keep it as simple as possible
- 2 build on classical parametric statistics
- Image: modular methodology
 - so we can add components to accommodate special features in data sets

Outline of the approach

Penalized Splines, Mixed Models, and Recent Large-Sample Results

David Ruppert

Outline

Semiparametri Regression

Introduction

Mixed linear models Univariate splines Back to examples Summary

Asymptotic Theory

Framework and summary 0-degree splines Linear Splines Work in progress Summary

• Start with linear mixed model

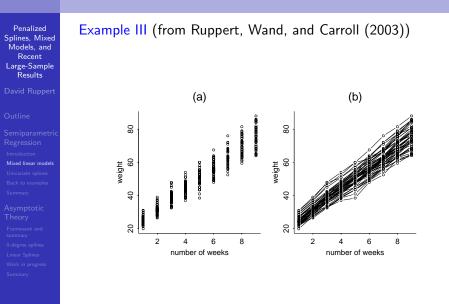
- allows random subject-specific effects
- fine for variables that enter linearly
- Expand the basis for those variables that have nonlinear effects
 - we will use a spline basis
 - treat the spline coefficients as random effects to induce empirical Bayes shrinkage = smoothing

End result

- linear mixed model from a software perspective, but
- nonlinear from a modeling perspective

・ロト・日本・日本・日本・日本・日本

Example: pig weights (random effects)



▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト 一臣 - のへ(で)

Random intercept model

Penalized Splines, Mixed Models, and Recent Large-Sample Results

- ...

Semiparametri Regression Introduction Mixed linear models Univariate splines Back to examples

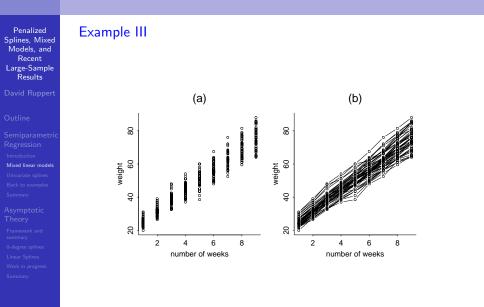
Asymptotic Theorv

Framework and summary 0-degree splines Linear Splines Work in progress Summary

$$Y_{ij} = (eta_0 + b_{0i}) + eta_1$$
week $_j$

- Y_{ij} = weight of *i*th pig at the *j*th week
- β_0 is the average intercept for pigs
- b_{0i} is an offset for *i*th pig
- So $(\beta_0 + b_{0i})$ is the intercept for the *i*th pig

Are random intercepts enough?



▲□▶ ▲□▶ ▲臣▶ ★臣▶ = 臣 = のへで

Random lines model

Penalized Splines, Mixed Models, and Recent Large-Sample Results

Outline

Semiparametri Regression Introduction Mixed linear models Univariate splines Back to examples Summary

Asymptotic Theorv

Framework and summary 0-degree splines Linear Splines Work in progress Summary

$$Y_{ij} = (eta_0 + b_{0i}) + (eta_1 + b_{1i})$$
 week $_j$

- β_1 is the average slope
- b_{ii} is an adjustment to slope of the *i*th pig
- So $(\beta_1 + b_{1i})$ is the slope for the *i*th pig
- b_{0i} and b_{1i} seem positively correlated
 - makes sense: faster growing pigs should be larger at the start of data collection

General form of linear mixed model

Penalized Splines, Mixed Models, and Recent Large-Sample Results

David Ruppert

Outline

Semiparametri Regression Introduction Mixed linear models Univariate splines Back to examples Summary

Asymptotic Theory

Framework and summary 0-degree splines Linear Splines Work in progress Summary Model is:

$$Y_i = \mathbf{X}_i^{\mathsf{T}} \boldsymbol{\beta} + \mathbf{Z}_i^{\mathsf{T}} \mathbf{b} + \epsilon_i$$

• $\mathbf{X}_i = (X_{i1}, \dots, X_{ip})$ and $\mathbf{Z}_i = (Z_{i1}, \dots, Z_{iq})$ are vectors of predictor variables

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- $\boldsymbol{\beta} = (\beta_1, \dots, \beta_p)$ is a vector of fixed effects
- $\mathbf{b} = (b_1, \dots, b_q)$ is a vector of random effects
 - $\mathbf{b} \sim MVN\{0, \Sigma(\theta)\}$
 - θ is a vector of variance components

Estimation in linear mixed models

Penalized Splines, Mixed Models, and Recent Large-Sample Results

David Ruppert

Outline

Semiparametri Regression Introduction Mixed linear models Univariate splines Back to examples

Summary

Asymptotic Theory

Framework and summary 0-degree splines Linear Splines Work in progress Summary

• $\boldsymbol{\beta}$ and $\boldsymbol{\theta}$ are the parameter vectors

- estimated by
 - ML (maximum likelihood), or
 - REML (maximum likelihood with degrees of freedom correction)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- ${\ensuremath{\,\circ\,}}$ ${\ensuremath{\,b\,}}$ is a vector of random variables
 - predicted by a BLUP (Best linear unbiased predictor)
 - BLUP is shrunk towards zero (mean of b)
 - amount of shrinkage depends on $\widehat{\boldsymbol{ heta}}$

Estimation in linear mixed models, cont.

Penalized Splines, Mixed Models, and Recent Large-Sample Results

David Ruppert

Outline

Semiparametri Regression Introduction Mixed linear models

Univariate splines Back to examples Summary

Asymptotic Theory

Framework and summary 0-degree splines Linear Splines Work in progress Summary • Random intercepts example:

$$Y_{ij} = (\beta_0 + b_{0i}) + \beta_1 \texttt{week}_j$$

- high variability among the intercepts \Rightarrow less shrinkage of b_{0i} towards 0
 - extreme case: intercepts are fixed effects
- low variability among the intercepts \Rightarrow more shrinkage
 - extreme case: common intercept (another fixed effects model)

Comparison between fixed and random effects modeling

Penalized Splines, Mixed Models, and Recent Large-Sample Results

David Ruppert

Outline

Semiparametri Regression Introduction Mixed linear models Univariate splines Back to examples Summary

Asymptotic Theory

Framework and summary 0-degree splines Linear Splines Work in progress Summary

- fixed effects models allow only the two extremes:
 - no shrinkage
 - common intercept
- mixed effects modeling allows all possibilities between these extremes

Splines

Penalized Splines, Mixed Models, and Recent Large-Sample Results

David Ruppert

Outline

Semiparametric Regression Introduction Mixed linear models Univariate splines Back to examples Summary

Asymptotic Theory

Framework and summary 0-degree splines Linear Splines Work in progress Summary

- polynomials are excellent for local approximation of functions
- in practice, polynomials are relatively poor at global approximation
- a spline is made by joining polynomials together
 - takes advantage of polynomials strengths without inheriting their weaknesses

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• splines have "maximal smoothness"

Piecewise linear spline model

Splines, Mixed Models, and Recent Large-Sample Results

Penalized

Outline

Semiparametri Regression Introduction Mixed linear models Univariate splines Back to examples Summary

Asymptoti Theory

Framework and summary 0-degree splines Linear Splines Work in progress Summary "Positive part" notation:

$$\begin{array}{rcl} x_{+} &=& x, \mbox{ if } x > 0 & (1) \\ &=& 0, \mbox{ if } x \leq 0 & (2) \end{array}$$

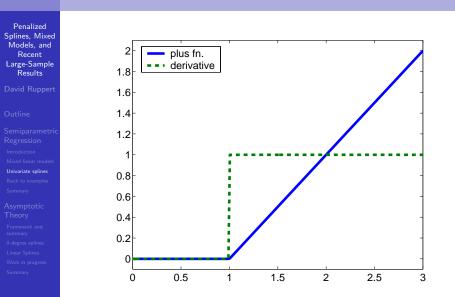
▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Linear spline:

$$m(x) = \{\beta_0 + \beta_1 x\} + \{b_1(x - \kappa_1)_+ + \dots + b_K(x - \kappa_K)_+\}$$

κ₁,...,κ_K are "knots"
b₁,..., b_K are the spline coefficients

Linear "plus" function with $\kappa=1$



▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへ⊙

Linear spline

Penalized Splines, Mixed Models, and Recent Large-Sample Results

Outline

Semiparametri Regression Introduction Mixed linear models Univariate splines Back to examples Summary

Asymptotio Theory

Framework and summary 0-degree splines Linear Splines Work in progress Summary

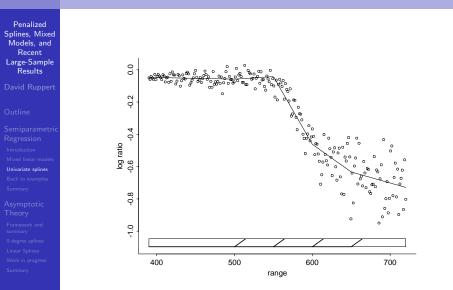
$$m(x) = \beta_0 + \beta_1 x + b_1 (x - \kappa_1)_+ + \dots + b_K (x - \kappa_K)_+$$

ヘロト 人間 トイヨト イヨト

æ

• slope jumps by
$$b_k$$
 at κ_k , $k = 1, \ldots, K$

Fitting LIDAR data with plus functions



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Generalization: higher degree splines

Penalized Splines, Mixed Models, and Recent Large-Sample Results David Ruppert

Outline

Semiparametri Regression Introduction Mixed linear models Univariate splines Back to examples Summary

Asymptotic Theory

Framework and summary 0-degree splines Linear Splines Work in progress Summary

$$m(x) = \beta_0 + \beta_1 x + \dots + \beta_p x^p$$
$$+ b_1 (x - \kappa_1)_+^p + \dots + b_K (x - \kappa_K)_+^p$$

- pth derivative jumps by $p! b_k$ at κ_k
- first p-1 derivatives are continuous

LIDAR data: ordinary Least Squares

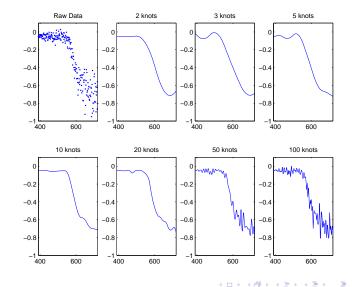
Penalized Splines, Mixed Models, and Recent Large-Sample Results David Ruppert

Outline

Semiparametric Regression Introduction Mixed linear models Univariate splines Back to examples Summary

Asymptotio Theory

Framework and summary 0-degree splines Linear Splines Work in progress Summary



200

Penalized least-squares

Penalized Splines, Mixed Models, and Recent Large-Sample Results David Ruppert

Outline

Semiparametr Regression Introduction Mixed linear models Univariate splines Back to examples Summary

Asymptotio Theory

Framework and summary 0-degree splines Linear Splines Work in progress Summary

• Use matrix notation:

$$m(X_i) = \beta_0 + \beta_1 X_i + \dots + \beta_p X_i^p$$
$$+ b_1 (X_i - \kappa_1)_+^p + \dots + b_K (X_i - \kappa_K)_+^p$$
$$= \mathbf{X}_i^\mathsf{T} \boldsymbol{\beta}_X + \mathbf{B}^\mathsf{T} (X_i) \mathbf{b}$$

Minimize

$$\sum_{i=1}^{n} \left\{ Y_i - (\mathbf{X}_i^{\mathsf{T}} \boldsymbol{\beta}_X + \mathbf{B}^{\mathsf{T}} (X_i) \mathbf{b}) \right\}^2 + \lambda \, \mathbf{b}^{\mathsf{T}} \mathbf{D} \mathbf{b}.$$

▲□▶ ▲圖▶ ▲国▶ ▲国▶ 三国 - のへで

Penalized least-squares, cont.

Penalized Splines, Mixed Models, and Recent Large-Sample Results David Ruppert

Outline

Semiparametri Regression Introduction Mixed linear models Univariate splines Back to examples

Asymptotic Theory

Framework and summary 0-degree splines Linear Splines Work in progress Summary • From previous slide: minimize

$$\sum_{i=1}^{n} \left\{ Y_i - (\mathbf{X}_i^{\mathsf{T}} \boldsymbol{\beta}_X + \mathbf{B}^{\mathsf{T}} (X_i) \mathbf{b}) \right\}^2 + \lambda \, \mathbf{b}^{\mathsf{T}} \mathbf{D} \mathbf{b}.$$

• $\lambda \mathbf{b}^{\mathsf{T}} \mathbf{D} \mathbf{b}$ is a penalty that prevents overfitting

- D is a positive semidefinite matrix
 - so the penalty is non-negative
 - Example:

$$\mathbf{D} = \mathbf{I}$$

- λ controls that amount of penalization
- the choice of λ is crucial

Penalized Least Squares

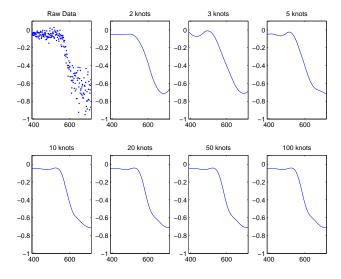
Penalized Splines, Mixed Models, and Recent Large-Sample Results David Ruppert

Outline

Semiparametric Regression Introduction Mixed linear models Univariate splines Back to examples Summary

Asymptotio Theory

Framework and summary 0-degree splines Linear Splines Work in progress Summary



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 ののの

Selecting λ

Penalized Splines, Mixed Models, and Recent Large-Sample Results

To choose λ use:

One of several model selection criteria:

- cross-validation (CV)
- generalized cross-validation (GCV)
- AIC
- C_P

ML or REML in mixed model framework

• convenient because one can add other random effects

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

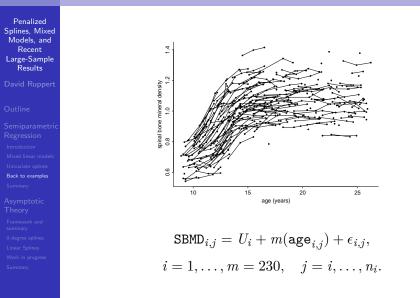
• also can use standard mixed model software

Semipara metri Regression Introduction Mixed linear models Univariate splines Back to examples Summary

Asymptotic Theory

Framework and summary 0-degree splines Linear Splines Work in progress Summary

Return to spinal bone mineral density study

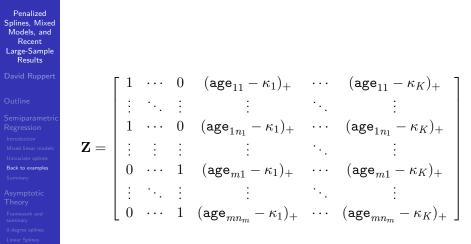


▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … の久(で)

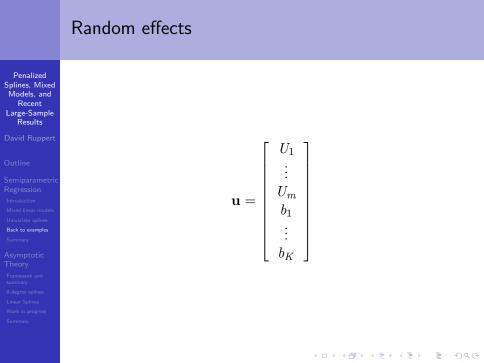
	Fixed effects					
Penalized Splines, Mixed Models, and Recent Large-Sample Results David Ruppert Outline Semiparametric Regression Mixed linear models Univariate splines Back to examples Summary Asymptotic Theory Pranework and summary O-degree splines Linear Splines Univer splines Linear Splines Univer splines Linear Splines Univer splines Linear Splines		$\mathbf{X} =$	$\left[\begin{array}{c} 1 \\ \vdots \\ 1 \\ \vdots \\ 1 \\ \vdots \\ 1 \end{array} \right]$	age_{11} \vdots age_{1n_1} \vdots age_{m1} \vdots age_{mn_m}		

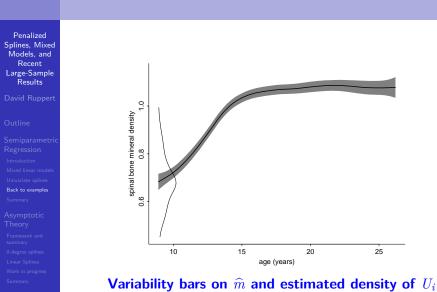
・ロト・日本・日本・日本・日本・日本

Random effects



- Work in progres
- Summary





Random effects

Modeling the blood lead and IQ data

Penalized Splines, Mixed Models, and Recent Large-Sample Results David Ruppert

Outline

Semiparametric Regression Introduction Mixed linear models Univariate splines Back to examples Summary

Asymptotic Theorv

Framework and summary 0-degree splines Linear Splines Work in progress Summary For the *j*th measurements on the *i*th subject:

$$IQ_{ij} = b_i + m(lead_{ij}) + \beta_1 X_{ij}^1 + \dots + \beta_L X_{ij}^L + \epsilon_{ij}$$

- $m(\cdot)$ is a spline
 - include the population average intercept
- b_i is a random subject-specific intercept
 - $E(b_i) = 0$
 - model assumes parallel curves
- X_{ij}^{ℓ} is the value of the ℓ th confounder, $\ell = 1, \ldots, L$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Summary (overview of semiparametric regression)

Penalized Splines, Mixed Models, and Recent Large-Sample Results

Outline

Semiparametric Regression Introduction Mixed linear models Univariate splines Back to examples Summary

Asymptotic Theory

Framework and summary 0-degree splines Linear Splines Work in progress Summary

• Semiparametric philosophy

- use nonparametric models where needed
- but only where needed
- LMMs and GLMMs are fantastic tools, but (apparently) totally parametric
- By basis expansion, LMMs and GLMMs become semiparametric
- Low-rank splines eliminate computational bottlenecks
- Smoothing parameters can be estimated as ratios of variance components

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Asymptotic theory: framework

Penalized Splines, Mixed Models, and Recent Large-Sample Results

Outline

Semiparametric Regression Introduction Mixed linear models Univariate splines Back to examples Summary

Asymptotic Theory

Framework and summary 0-degree splines Linear Splines Work in progress Summary Li and Ruppert (2008, Biometrika)

• *p*-degree spline model:

$$f(x) = \sum_{k=1}^{K+p} b_k B_k(x), \ x \in (0,1)$$

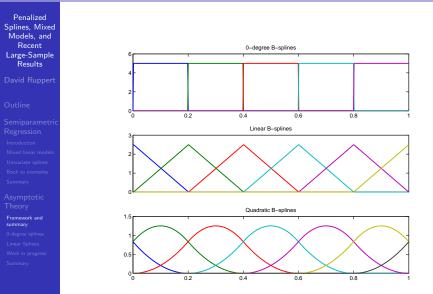
• *p*th degree B-spline basis:

$$\{B_k: k=1,\ldots,K+p\}$$

knots:

$$\kappa_0 = 0 < \kappa_1 < \ldots < \kappa_K = 1$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - のへで



Outline of asymptotic theory

Penalized Splines, Mixed Models, and Recent Large-Sample Results

David Ruppert

Outline

Semiparametri Regression Introduction Mixed linear models Univariate splines Back to examples Summary

Asymptotic Theory

Framework and summary 0-degree splines Linear Splines Work in progress Summary

First: summary

- **②** Go through the case p = 0, m = 1, equally-spaced x_i carefully
- **③** Then do p = 0 and m = 2
- Oiscuss higher order cases and unequally-spaced data

Summary of main results

Penalized Splines, Mixed Models, and Recent Large-Sample Results

David Ruppert

Outline

Semiparameti Regression Introduction Mixed linear model Univariate splines Back to examples

Summary

Asymptotic Theory

Framework and summary 0-degree splines Linear Splines Work in progress

- Penalized spline estimators are approximately binned Nadaraya-Watson kernel estimators
 - Penalized splines are not design-adaptive in the sense of Fan (1992)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- The order of the N-W kernel depends solely on *m* (order of penalty)
 - this was surprising to us
 - order of kernel is 2m in the interior
 - $\bullet\,$ order is m at boundaries

Summary of main results, continued

Penalized Splines, Mixed Models, and Recent Large-Sample Results

David Ruppert

Outline

Semiparametric Regression Introduction Mixed linear models Univariate splines Back to examples Summary

Asymptotic Theory

Framework and summary 0-degree splines Linear Splines Work in progress Summary

- The spline degree p does not affect the asymptotic distribution, but
 - p determines the type of binning and the minimum rate at which $K \to \infty$

- $p = 0 \Rightarrow$ usual binning
- $p = 1 \Rightarrow$ linear binning
- a higher value of p means that less knots are needed (because there is less binning bias)

Penalized least-squares

Penalized Splines, Mixed Models, and Recent Large-Sample Results

David Ruppert

Outline

Semiparametri Regression Introduction Mixed linear models Univariate splines Back to examples Summary

Asymptoti Theory

Framework and summary 0-degree splines Linear Splines Work in progress Summary • Penalized least-squares minimizes

$$\sum_{i=1}^{n} \left\{ y_i - \sum_{k=1}^{K+p} \widehat{b}_k B_i(x_i) \right\}^2 + \lambda \sum_{k=m+1}^{K+p} \{ \Delta^m(\widehat{b}_k) \}^2,$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

•
$$\Delta b_k = b_k - b_{k-1}$$
 and $\Delta^m = \Delta(\Delta^{m-1})$

• $m = 1 \Rightarrow$ constant functions are unpenalized

• $m = 2 \Rightarrow$ linear functions are unpenalized

$$p = 0, m = 1$$

Outline

Semiparametri Regression Introduction Mixed linear models Univariate splines Back to examples Summary

Asymptoti Theory

Framework and summary

0-degree splines Linear Splines Work in progress Summary

Assume:

•
$$x_1 = 1/n, x_2 = 2/n, \dots, x_n = 1$$

•
$$\kappa_0 = 0, \kappa_1 = 1/K, \kappa_2 = 2/K, \dots, \kappa_K = 1$$

• $B_k(x) = I\{\kappa_{k-1} < x \le \kappa_k\}, \ 1 \le k \le K \ (k \text{th bin indicator})$

- assume that n/K := M is an integer
- then $X^{\mathsf{T}}X = MI_K$ where I_K

$$p=0, m=1$$
, continued

David Ruppert

Outline

Semiparametric Regression Introduction Mixed linear models Univariate splines Back to examples Summary

Asymptotic Theory

Framework and summary

0-degree splines

Linear Splines Work in progress

Assume further:

• m = 1

Then

$$D^{\mathsf{T}}D = \begin{pmatrix} 1 & -1 & 0 & \cdots & 0 & 0 \\ -1 & 2 & -1 & \cdots & 0 & 0 \\ 0 & -1 & 2 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 2 & -1 \\ 0 & 0 & 0 & \cdots & -1 & 1 \end{pmatrix},$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへで

$$p = 0, m = 1$$
, PLS estimator

Outline

Semiparametri Regression Introduction Mixed linear models Univariate splines Back to examples Summary

Asymptotic Theory

Framework and summary

0-degree splines

Linear Splines Work in progress The Penalized LS estimator solves:

 $\Lambda \widehat{\mathbf{b}} = \mathbf{z} = \overline{\mathbf{y}} / (1 + 2\lambda) \quad (\overline{\mathbf{y}} = \text{ bin averages})$

where

$$\Lambda = \begin{pmatrix} \theta & \eta & 0 & 0 & \cdots & 0 & 0 \\ \eta & 1 & \eta & 0 & \cdots & 0 & 0 \\ 0 & \eta & 1 & \eta & \cdots & 0 & 0 \\ 0 & 0 & \eta & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 1 & \eta \\ 0 & 0 & 0 & 0 & \cdots & \eta & \theta \end{pmatrix}, \quad \eta = -\frac{\lambda}{1+2\lambda}$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

$$p=0, \,\,m=1$$
, PLS estimator, page 2

Outline

Semiparametric Regression Introduction Mixed linear models Univariate splines Back to examples Summary

Asymptotic Theory

Framework and summary

0-degree splines

Work in progress Summary

Let $ho \in (0,1)$ be a root of

$$\eta + \rho + \eta \rho^2 = 0.$$

Then

$$\rho = \frac{1 - \sqrt{1 - 4\eta^2}}{-2\eta} = \frac{1 + 2\lambda - \sqrt{1 + 4\lambda}}{2\lambda}$$

Define

$$T_i = (\rho^{i-1}, \rho^{i-2}, \dots, \rho, 1, \rho, \rho^2, \dots, \rho^{K-i})^{\mathsf{T}}$$

 T_i is orthogonal to all columns of Λ except the first, last, and *i*th (so T_i is the *i*th row of Λ , except for a geometrically convergent error)

Finite-sample kernel

Penalized Splines, Mixed Models, and Recent Large-Sample Results

Outline

Semiparametr Regression Introduction Mixed linear model Univariate splines Back to examples Summary

Asymptotio Theory

Framework and summary

0-degree splines

Linear Splines Work in progress Summary

Finite-sample kernel defined by:

$$\widehat{f}(x) = \sum_{j=1}^{K} H(x, \overline{x}_j) \overline{y}_i$$

$$\frac{T_i^{\mathsf{T}}}{1+2\lambda} = \frac{(\rho^{i-1}, \rho^{i-2}, \dots, \rho, 1, \rho, \rho^2, \dots, \rho^{K-i})}{1+2\lambda}$$

(日) (四) (日) (日) (日)

is the finite-sample kernel (ignoring asymptotically negligible boundary effects).

Three kernels corresponding to first-order penalty

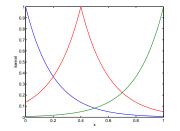
Outline

Semiparametr Regression Introduction Mixed linear models Univariate splines Back to examples Summary

Asymptoti Theory

Framework an summary

0-degree splines Linear Splines Work in progress Summary



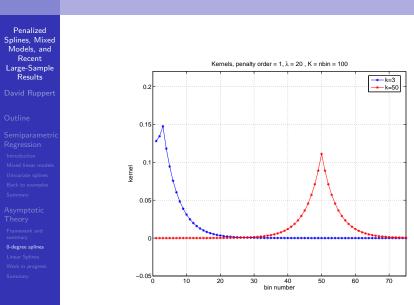
 x is an "estimation point" (here fixed at 0.4)

- finite-sample kernel is linear combination of three kernels
 - double exponential kernel centered at x
 - boundary kernels are $\exp(-x)$ and $\exp(x)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

 weights for the boundary kernels are asymptotically negligible in interior

Finite-sample kernels, first-order penalty



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Connection with smoothing splines

Penalized Splines, Mixed Models, and Recent Large-Sample Results

David Ruppert

Outline

Semiparametric Regression Introduction Mixed linear models Univariate splines Back to examples Summary

Asymptotic Theory

Framework and summary

0-degree splines

Work in progress

We get the same equivalent kernels (Silverman, 1985) as for smoothing splines with a penalty on the first derivative

Finding \hat{b}_i – interior case

Penalized Splines, Mixed Models, and Recent Large-Sample Results

David Ruppert

Outline

Semiparametr Regression Introduction Mixed linear model Univariate splines Back to examples

Asymptotic Theory

Framework and summary

0-degree splines Linear Splines Work in progress

- Suppose i/K → x ∈ (0, 1) (non-boundary case)
 After some algebra:
 - $\widehat{b}_i \sim \frac{\sum_{j=1}^K \rho^{|i-j|} \overline{y}_j}{\sum_{j=1}^K \rho^{|i-j|}}.$

Note that

$$\widehat{f}(x) = \widehat{b}_i$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

for x in the *i*th bin

Equivalence to N-W kernel estimator

Penalized Splines, Mixed Models, and Recent Large-Sample Results

David Ruppert

Outline

Semiparametri Regression Introduction Mixed linear models Univariate splines Back to examples Summary

Asymptotic Theory

Framework and summary

0-degree splines

Linear Splines Work in progress Summary • After some more algebra

$$\rho^{|i-j|} \sim \exp\left\{-\frac{|\overline{x}_i - \overline{x}_j|}{hn^{-1/5}}\right\}$$

- Thus, \hat{f}_n is asymptotically equivalent to the Nadaraya-Watson estimator with
 - double exponential kernel $H(x) = (1/2) \exp(-|x|)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• bandwidth $hn^{-1/5}$

Nadaraya-Watson kernel estimators

Penalized Splines, Mixed Models, and Recent Large-Sample Results David Ruppert

Outline

Semiparametri Regression Introduction Mixed linear models Univariate splines Back to examples Summary

Asymptotic Theory

Framework and summary

0-degree splines

Work in progress Summary

Model:

$$y_i = f(x_i) + \epsilon_i$$

Nadaraya-Watson estimator:

$$\widehat{f}(x) = \frac{\sum_{i=1}^{n} H\{(x_i - x)/h_n\} y_i}{\sum_{i=1}^{n} H\{(x_i - x)/h_n\}}$$

(日) (四) (日) (日) (日)

• $H(\cdot)$ is called the kernel function

• h_n is the bandwidth

Binned Nadaraya-Watson kernel estimators

Penalized Splines, Mixed Models, and Recent Large-Sample Results

David Ruppert

Outline

Semiparametri Regression Introduction Mixed linear models Univariate splines Back to examples Summary

Asymptotic Theory

Framework and summary

0-degree splines Linear Splines Work in progress Binned Nadaraya-Watson estimator:

- range of the x_i divided into K subintervals (bins)
- \overline{x}_j is average of x_i in *i*th bin
- \overline{y}_i is average of y_i such that x_i is in the *i*th bin

$$\widehat{f}(x) = \frac{\sum_{j=1}^{K} H\{(\overline{x}_j - x)/h_n\}\overline{y}_j}{\sum_{j=1}^{K} H\{(\overline{x}_i - x)/h_n\}}$$

P-spline equivalent to a Nadaraya-Watson kernel estimator

Penalized Splines, Mixed Models, and Recent Large-Sample Results

David Ruppert

Outline

Semiparametric Regression Introduction Mixed linear models Univariate splines Back to examples Summary

Asymptotic Theory

Framework and summary

0-degree splines

Work in progress

- Thus, \hat{f}_n is asymptotically equivalent to a binned Nadaraya-Watson estimator with
 - double exponential kernel $H(x) = (1/2) \exp(-|x|)$
 - bandwidth $hn^{-1/5}$
- binning bias is negligible if $K=Cn^{\gamma}$ for $\gamma>2/5$ and C>0

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• "negligible" means $o(n^{-2/5})$

Selecting λ to achieve desired bandwidth

Penalized Splines, Mixed Models, and Recent Large-Sample Results

David Ruppert

Outline

Semiparametric Regression Introduction Mixed linear models Univariate splines Back to examples Summary

Asymptotic Theory

Framework and summary

0-degree splines

Linear Splines Work in progress ullet To get bandwidth $hn^{-1/5}$ we need λ chosen as

 $\lambda \sim \{(Cn^{\gamma})(hn^{-1/5})\}^2 = (\# \text{ knots } \times \text{ bandwidth})^2$

Asymptotic Distribution

Penalized Splines, Mixed Models, and Recent Large-Sample Results

Outline

Semiparametri Regression Introduction Mixed linear models Univariate splines Back to examples Summary

Asymptotic Theory

Framework and summary

0-degree splines

Linear Splines Work in progress Summary

For
$$x \in (0,1)$$
, as $n \to \infty$ we have

$$n^{2/5}{\hat{f}_n(x) - f(x)} \Rightarrow N{\mathcal{B}(x), \mathcal{V}(x)}$$

・ロト ・四ト ・ヨト ・ヨト

Ξ.

where

•
$$\mathcal{B}(x) = h^2 f^{(2)}(x)$$

•
$$\mathcal{V}(x) = 4^{-1}h^{-1}\sigma^2(x)$$

Some folklore

Penalized Splines, Mixed Models, and Recent Large-Sample Results

David Ruppert

Outline

Semiparametric Regression Introduction Mixed linear models Univariate splines Back to examples Summary Asymptotic Theory

Framework and summary

O-degree splines Linear Splines Work in progress Summary • Folklore: The number of knots is not important, provided that it is large enough.

• Confirmation:

 $K \sim Cn^{\gamma}$ with C > 0 and $\gamma > 2/5$. (3)

- Folklore: The value of the penalty parameter is crucial.
 - Confirmation:

 $\lambda \sim C^2 h^2 n^{2\gamma - 2/5} = (\# \text{ knots } \times \text{ bandwidth})^2$ (4)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

for some h > 0.

- Folklore: Modeling bias is small.
 - Confirmation: Modeling bias does not appear in asymptotic bias provided (3) and (4) hold.

Order of a kernel and bias

Penalized Splines, Mixed Models, and Recent Large-Sample Results

Outline

Semiparametu Regression Introduction Mixed linear model Univariate splines Back to examples Summary

Asymptoti Theory

Framework and summary

0-degree splines Linear Splines Work in progress Summary **Moments**: *k*th moment is $\int x^k H(x) dx$

Order of kernel: A kernel is of kth order if the first non-zero moment is the kth

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• Non-negative kernel: order is at most 2

Bias: bias = $O\{(\text{bandwidth})^k\}$

Variance:

variance =
$$O\left(\frac{1}{n \times \mathsf{bandwidth}}\right)$$

and

optimal RMSE = $O(n^{-k/(2k+1)})$

2nd order-penalty gives 4th order kernel (in interior)

Penalized Splines, Mixed Models, and Recent Large-Sample Results

Outline

Semiparametr Regression Introduction Mixed linear models Univariate splines Back to examples Summary

Asymptotic Theory

Framework and summary

0-degree splines

Work in progress Summary Now let m = 2 (2nd order difference penalty) • Assume:

Then for any $x \in (0, 1)$, when $n \to \infty$, we have

 $n^{4/9}\{\widehat{f}_n(x) - f(x)\} \Rightarrow N\{\mathcal{B}_1(x), \mathcal{V}_1(x)\},\$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

where

- $\mathcal{B}_1(x) = (1/24)h^4 f^{(4)}(x) \int x^4 T(x) dx$ • $\mathcal{V}_1(x) = h^{-1} \{ \int T^2(x) dx \} \sigma^2(x)$
 - T(x) is a fourth order kernel

Mathematical approach

Penalized Splines, Mixed Models, and Recent Large-Sample Results David Ruppert

Outline

Semiparametric Regression Introduction Mixed linear models Univariate splines Back to examples Summary

Asymptotic Theory

Framework and summary

O-degree splines Linear Splines Work in progress Summary

w(
$$\xi$$
) = λ (1-4 ξ +6 ξ^2 -4 ξ^3 + ξ^4)+ ξ^2 = λ (1- ξ)⁴+ ξ^2 , λ > 0

• No real roots and no roots of modulus one

Main to show includes include the second state of the second state in the second state of the second state

- Roots are: r, conj(r), r^{-1} , $conj(r)^{-1}$ (all distinct)
- Use the conjugate pair with modulus less than one

Asymptotic Kernel

Penalized Splines, Mixed Models, and Recent Large-Sample Results

Outline

Semiparametri Regression Introduction Mixed linear models Univariate splines Back to examples Summary

Asymptotic Theory

Framework and summary

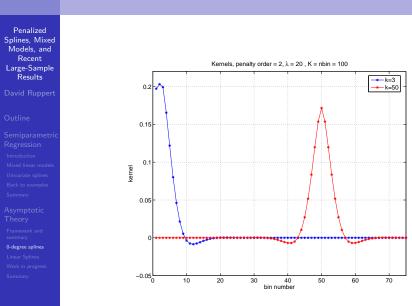
0-degree splines Linear Splines Work in progress • The asymptotic kernel is a linear combination of

 $\exp(-|x|)\cos(x)$ and $\exp(-|x|)\sin(|x|)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 Same equivalent kernel (Silverman, 1985) as for smoothing splines with a penalty on the second derivative

Finite-sample kernels, second-order penalty



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Linear splines need less knots

Penalized Splines, Mixed Models, and Recent Large-Sample Results

Outline

Semiparametri Regression Introduction Mixed linear models Univariate splines Back to examples Summary

Asymptotic Theory

Framework and summary 0-degree splines Linear Splines

Work in progress Summary Assume m = 1 (1st-order difference penalty). • If p = 1 (linear), then require $K \sim Cn^{\gamma}$ with C > 0 and $\gamma > 1/5$

- When p was 0 (piecewise constant), we required $\gamma>2/5$
- Otherwise, results are the same as for 0-degree and linear splines

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

A similar result holds for m = 2.

Conjectures

Penalized Splines, Mixed Models, and Recent Large-Sample Results

David Ruppert

Outline

Semiparametri Regression Introduction Mixed linear models Univariate splines Back to examples Summary

Asymptotic Theory

Framework and summary 0-degree splines Linear Splines Work in progress Summary • Conjecture: For *x* in the interior:

P-spline \sim N-W estimator with an 2m-order kernel

- Recall: m is order of difference penalty
- ${\ensuremath{\, \bullet }}$ Kernel order independent of $p=\mbox{degree}$ of spline
- Shown to hold for m = 1, 2 and p = 0, 1
- p = 1 requires less knots than p = 0
 - What happens for p > 1?
 - Conjecture: Still less knots are needed
- Conjectures are nearly proved: Li, Apanosovich, Ruppert (2009)

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

Unequally spaced X

Penalized Splines, Mixed Models, and Recent Large-Sample Results

David Ruppert

Outline

Semiparametr Regression Introduction Mixed linear models Univariate splines Back to examples Summary

Asymptotic Theory

Framework and summary 0-degree splines Linear Splines Work in progress Summary

- Assume $G(x_t) = t/n$ for a smooth G with g = G'
- Fit a spline to (Y_t, u_t) with regression function $f \circ G^{-1}$
 - evaluate this estimate at G(x) to estimate f(x)
- Equally spaced knots for $(\,Y_t,\,u_t)$ implies knots at sample quantiles for $(\,Y_t,\,x_t)$
- asymptotic bias is

$$h^{2}(f \circ G^{-1})^{(2)} \{ G(x) \} = \frac{h^{2}}{g^{2}(x)} \left\{ f^{(2)}(x) - \frac{f'(x)g'(x)}{g(x)} \right\}$$

$$h^{2}\left\{f^{(2)}(x) + \frac{2f'(x)g'(x)}{g(x)}\right\}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

We use only one of two potential smoothing parameters

Penalized Splines, Mixed Models, and Recent Large-Sample Results

David Ruppert

Outline

Semiparametri Regression Introduction Mixed linear models Univariate splines Back to examples Summary

Asymptotic Theory

Framework and summary 0-degree splines Linear Splines Work in progress Summary Both K and λ are potential smoothing parameters

- In our asymptotic theory, only λ plays the role of a smoothing parameter
- Could develop a theory where only K plays this role
 - would be similar to regression spline ($\lambda = 0$) theory
- One could also choose K and λ so that both have a non-negligible effect

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Our theory mimics actual practice

Summary (asymptotics)

Penalized Splines, Mixed Models, and Recent Large-Sample Results

David Ruppert

Outline

Semiparametri Regression Introduction Mixed linear models Univariate splines Back to examples Summary

Asymptotic Theory

Framework and summary 0-degree splines Linear Splines Work in progress Summary

- \bullet P-spline estimators \approx binned N-W kernel estimators
- The number of knots unimportant if above a minimum
- Degree of spline
 - determines minimum convergence rate for number of knots
 - does not affect rate of convergence
- Order of penalty determines
 - order of equivalent kernel
 - convergence rate of estimator
- *m*th order penalty ⇔ smoothing spline with penalty on *m*th difference

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Penalized Splines, Mixed Models, and Recent Large-Sample Results David Ruppert Outline Semiparametric Regression Introduction Mixed linear models

Summary Asymptotic

Theory

Framework and summary 0-degree splines Linear Splines Work in progres

Summary

Thanks for your attention

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ