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Differential Equations as Models

Differential equations are often the natural way to model

functional data.

• They make explicit the relationship between the

derivatives of a function and the function itself.

Derivatives are thus forced to behave smoothly, and are

not just a byproduct of curve estimation. eg:

ω2x(t) + D2x(t) = 0 for harmonic motion requires

that acceleration be just as smooth as the function.

• The behavior of a derivative is often of more interest

than the function. Recall equations like f = ma and

E = mc2. A derivative such as velocity or acceleration

can reflect energy exchange.

• Solutions to DIFE’s can exhibit behaviors nearly

impossible to model directly, such as in chaotic systems.

eg: The Rössler system:

Dx(t) = −y(t)− z(t)

Dy(t) = x(t) + ay(t)

Dz(t) = b + (x(t)− c)z(t)
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• There are many more ways to introduce stochastic

behavior into a DIFE model than into a nonparametric

regression model.

– stochastic forcing function

– stochastic coefficient functions

– stochastic initial or boundary values

– stochastic time

– plus the usual exogenous i.i.d. noise

• The solution to an mth order linear DIFE is an m

dimensional function space, and therefore can model

variation as well location for functional data.

• Natural scientists often suggest theory to engineering

and biological applications in terms of DIFE systems.

• Many fields such as pharmokinetics and process control

use DIFE’s already, and especially when input/output

systems are involved.

• Differential equation models are essential in industrial

process control where feedback links are constructed so

as to stabilize and optimize the system.
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Representing a Input/Output System

For a single input and a single output (SISO), we can have

Dx(t) = β(t)x(t) + α(t)u(t)

But this formulation ignores noise in the input (measurement

error, small very short term fluctuations, etc). So we add a

noise process ν(t).

Dx(t) = β(t)x(t) + α(t)u(t) + ν(t)

What about noise in the measurement of the output x(t)?

We’d better add some noise ε(t), too, to the noiseless

process x(t) to get the observed process y(t).

y(t) = x(t) + ε(t)

These two equations are called the state-space

representation of the data.
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A Single Input/Single Output Example

These are real data from an oil refinery in Corpus Christi.

The single input variable is “reflux flow”, and the single

output variable is “tray 47 level”.

There are 194 sampling points at which these two signals

are observed.

After some experimentation, guided by some model

selection tools, and with an eye to getting a good estimate of

at least the second derivative of the output, we used 30

B-spline basis functions of order 6 to fit the data.

Here are the data and the smooths:
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Figure 0.1:
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DIFE For a Multiple Input/Single Output System

We have a sample of N realizations of a response function

x(t) and L input functions u`(t). N can be 1.

We want a linear differential operator of order m of the form

Lx(t) =
m−1∑

j=0

βj(t)Djx(t) + Dmx(t) +

L∑

`=0

α`(t)u`(t)

where u0(t) = 1.

We want the residual forcing functions fi(t) = Lxi(t) to

be of minimum norm,

min
α`,βj

{
N∑

i=1

∫
[Lxi(t)]2 dt}.
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Principal Differential Analysis (PDA)

PDA is one the more useful tools in functional data analysis.

It estimates time-varying coefficients (here α(t) and β(t))

in systems of linear differential equations by minimizing the

size of the forcing functions.

We use basis function expansions for each of the coefficient

functions to be estimated. Using a common basis system,

such as B-splines, with basis functions φk(t) that may vary

in number and specification from one expansion to another,

we have

α`(t) =
K∑̀

k

a`kφ`k(t)

βj(t) =
Kj∑

k

bjkφjk(t)
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Combining Data Fitting with PDA

PDA estimates the differential operator L assuming that the

functions xi(t) and their derivatives are already available.

Can we go straight from the discrete and noisy data to

estimating L?

Let yj , j = 1 ..., n be noisy data and consider the least

squares fit with a roughness penalty defined by L:

PENSSEλ(x) =
n∑

j

[yj − x(tj)]2 + λ

∫
[Lx]2(t) dt.

Heckman and Ramsay (2000) considered optimizing

PENSSEjointly with respect to x(t) and parameters

defining L.

Here we go further in alternating between

• L-spline smoothing to estimate x(t) given L

• PDA to estimate the homogeneous part of L given x(t)
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An Example

For i = 1, . . . , N ; j = 1, . . . , n, let

yij = ci1 + ci2tj + ci3 sin(6πtj) + ci4 cos(6πtj) + εij

where the cik ’s and the εij ’s are i.i.d. N(0, 1); and

t = 0(0.01)1.

The functional variation satisfies the DIFE

Lx = (6π)2D2x + D4x = 0

β0(t) = β1(t) = β3(t) = 0 and β2(t) = 355.3.
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Figure 0.2:



12

'

&

$

%

Results

For a simulated data set with N = 20 curves, and using a

constant basis for β0(t), . . . , β4, we get

• for L = D4, best results are for λ = 10−10 and the

RMISE’s for derivatives 0, 1, and 2 are 0.32, 9.3, and

315.6, respectively.

• for L estimated, best results are for λ = 10−5 and the

RMISE’s for derivatives 0, 1, and 2 are 0.18, 2.8, and

49.3, respectively,

• giving precision ratios of 1.8, 3.3, and 6.4, respectively.

β2 is estimated to be 353.6, whereas the true value is 355.3.

β3 is estimated to be 0.1, whereas the true value is 0.0.
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Figure 0.3:
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Models for the Refinery Data

We will consider the first order differential equation

Dx(t) = β(t)x(t) + α(t)u(t) + α0 + ν(t)

The constant α0 compensates for changes in overall level of

either variable, and only uses one degree of freedom.

We use two types of estimates for the weighting functions

α(t) and βj(t):

• just a constant value, not varying with t. This is the

usual practice in control engineering.

• a B-spline expansion of each coefficient using 5 B-spline

basis functions of order 4. This allows the weight

functions to vary, but rather slowly.

We will also include α(t) = 0..
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Goodness of Fit

We use an R2 measure of fit

R2 =
∫

(Dmx)2 − ∫
(ν2)∫

(Dmx)2

where m is the order of the equation.

How do we know when we are over-fitting the data?

The degrees of freedom in what is fit are the number of

basis functions used to represent the response x(t). In this

case 30.

The degrees of freedom in the model are the total number of

basis functions used to represent the coefficients. For a first

order equation with 5 basis functions per coefficient and a

constant, this is 11.
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R2 Results

Dx(t) = β(t)x(t) + α(t)u(t) + α0 + ν(t)

α(t) β constant β varying

absent 0.34 0.66

constant 0.81 0.81

varying 0.81 0.84

It looks like

• adding the effect of the forcing function, reflux flow,

improves the model substantially

• but little is gained by allowing either of the coefficients to

vary.

The best model is

Dx(t) = −0.0204x(t)− 0.186u(t).
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Conclusions

• We can estimate a linear DIFE that represents discrete

noisy data. This involves optimizing L-spline smoothing

with respect to the operator L.

• When we estimate the DIFE, the accuracy of the

estimates of the functions and their derivatives improve.


