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Cold Rolling Mill

Part of the process for making special
alloys (originally steel):

Production of thin strips used, e.g., for
computer chips.
Typical target thickness about 1000
micros (1mm).
Goal is to within 10 microns.

Cold rolling reduces the thickness and
gets it “right” (sometimes after hot
rolling):

Metal sheet is passed through a gap
and subjected to the rolling force.
Machine settings adjusted continuously
(automatic control)
Online prediction can improve this
Initial period hardest to control (∼500
samples discarded)
Very large errors can harm metal sheet
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Rolling Mill Prediction Problem

Thickness meter

Rolling force

Thickness meter

Direction of rolling

Roll position

L

D

Goal: Predict output thickness of samples of material. Variables:

yt = deviation of output thickness from target value for sample t
ut = deviation of input thickness from nominal value
vt = size of gap between rolling cylinders (control variable)
wt = ratio of input to output speeds (control variable)
zt = rolling force (control variable)

Time constraints: Samples processed rapidly (∼ 20 milliseconds
each), so calculations must be fast

Time measurement delay: Data for estimating prediction model
available only with a delay of d = 24 samples.

Data: 19,058 samples: each 4cm long, 40ms in machine
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Regression Approach: Ettler Models

Which predictors to use?

Ettler et al (2007) considered 3 models:

M1 : x
(1)
t = (1, vt , zt),

M2 : x
(2)
t = (1,wt , utwt),

M3 : x
(3)
t = (1, ut , vt ,wt).

M1 and M2 physically motivated; M3 empirical

We propose Dynamic Model Averaging (DMA):

Dynamic extension of Bayesian model averaging (BMA) for
regression (Raftery et al, 1997, JASA)
Parameters of each model are recursively updated
Model indicator changes according to a Markov chain (model state
equation), and is recursively updated.
Parameter state equation and model state equation both specified by
forgetting.
Version 1: Use 3 Ettler models
Version 2: Consider all possible combinations of predictor variables
that are not physically excluded.
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One-Model Case

Standard Kalman filtering with forgetting and variance updating.

Observation equation: yt = xT
t θt + εt , where εt

iid∼ N(0,V )

State equation for regression parameters θt :

θt = θt−1 + δt , where δt
ind∼ N(0,Wt)

Estimation: Start with θt−1|Y t−1 ∼ N(θ̂t−1,Σt−1).

Prediction equation:

θt |Y t−1 ∼ N(θ̂t−1,Rt), where Rt = Σt−1 + Wt

Forgetting: Instead use Rt = λ−1Σt−1
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t+d θ̂t−1

Initialization: θ̂0 = 0, Σ0 = diagonal matrix with large elements.



One-Model Case

Standard Kalman filtering with forgetting and variance updating.

Observation equation: yt = xT
t θt + εt , where εt

iid∼ N(0,V )

State equation for regression parameters θt :

θt = θt−1 + δt , where δt
ind∼ N(0,Wt)

Estimation: Start with θt−1|Y t−1 ∼ N(θ̂t−1,Σt−1).

Prediction equation:

θt |Y t−1 ∼ N(θ̂t−1,Rt), where Rt = Σt−1 + Wt

Forgetting: Instead use Rt = λ−1Σt−1

(λ = forgetting factor ≈ 1− a bit)

Updating equation: θt |Y t ∼ N(θ̂t ,Σt) (θ̂t , Σt from Kalman filter).

Prediction of system output: ŷt+d = xT
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Recursive Estimation of Innovations Variance, V

Based on the one-step predictor of yt :

yt |Y t−1 ∼ N(xT
t θ̂t−1,V + xT

t Rtxt).

Thus

V ∗t =
1

t

t∑
r=1

[
(yt − xt θ̂t−1)2 − xT

t Rtxt

]
is a consistent estimator of V .

This leads to the recursive estimator

V̂t =

{
At if At > 0;

V̂t−1 otherwise,

where At =

(
t − 1

t

)
V̂t−1 +

1

t
(e2

t − xT
t Rtxt).

Adaptive version (not implemented):

At = λV̂t−1 + (1− λ)(e2
t − xT

t Rtxt)

Previously in literature?
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Dynamic Model Averaging (DMA)

Models M1, . . . ,MK .

Model indicator: Lt = k if model Mk is operating for sample t.

Observation equation:

yt |Lt = k ∼ N(x
(k)T
t θ

(k)
t ,V (k))

Parameter state equation:

θ
(k)
t |Mk ∼ N(θ

(k)
t−1,W

(k)
t )

Model state equation: Lt changes slowly according to a Markov
chain determined by the transition matrix Q = (qk`), where

qk` = P[Lt = `|Lt−1 = k]
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Estimation and Prediction in DMA

Estimation: Let πt−1|t−1,` = P[Lt−1 = `|Y t−1]. Model prediction
equation:

πt|t−1,k ≡ P[Lt = k|Y t−1] =
K∑
`=1

πt−1|t−1,`qk`

Forgetting: Instead, use

πt|t−1,k =
παt−1|t−1,k∑K
`=1 π

α
t−1|t−1,`

,

where α is the model forgetting factor (≈ 1− a bit)
Model updating equation:

πt|t,k = ωtk/
K∑
`=1

ωt`, where ωt` = πt|t−1,` p(yt |Y t−1, Lt = `)

System output prediction:

ŷDMA
t+d =

K∑
k=1

πt|t−1,k ŷ
(k)
t+d =

K∑
k=1

πt|t−1,k x
(k)T
t+d θ̂

(k)
t−1
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ŷDMA
t+d =

K∑
k=1

πt|t−1,k ŷ
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Comments on DMA

Combining Kalman filtering and an unobserved Markov chain is an
old idea: the Conditional Linear Dynamic Model (Ackerson & Fu
1970, IEEE TAC; Harrison & Stevens 1971; West & Harrison 1989;
Chen & Liu 2000, JRSS B)

Also used in speech recognition and genomics (Hidden Markov
Model), economics (Markov switching model), tracking objects in
aerospace engineering (Interacting Multiple Models algorithm)

But the DMA model is not quite a special case of the CDLM

because the state θ
(k)
t is different for each model.

Updating each model at each step is only an approximation to the
exact posterior distribution (which has the usual exponential
explosion in the number of terms)

Reasonable because the predictive distribution of yt+d depends only
on the conditional distribution of θ

(k)
t given that Lt = k.

Also because it leads to a forgetting version of Bayes factors and
Bayesian model averaging, generalizing Dawid (1984, JRSS A).
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DMA and BMA

In static BMA, the correct model Mk and its parameter vector θ(k)

are fixed but unknown.
BMA predictive distribution:
p(yT+d |Y T ) =

∑K
k=1 p(yT+d |Y T ,Mk)p(Mk |Y T )

Posterior model probabilities: p(Mk |Y T ) ∝ p(Y T |Mk)p(Mk)
Integrated likelihood:
p(Y T |Mk) =

∫
p(Y T |θ(k),Mk)p(θ(k)|Mk)dθ(k)

Prequential version (Dawid 1984):

p(Y T |Mk) =
∏T

t=1 p(yt |Y t−1,Mk)
Bayes factor for Mk against M`: Bk` = p(Y T |Mk)/p(Y T |M`)

It can also be written as log Bk` =
∑T

t=1 log Bk`,t , where
Bk`,t = p(yt |Y t−1,Mk)/p(yt |Y t−1,M`) is the sample-specific Bayes
factor for sample t.

In DMA: log
(
πT|T,k

πT|T,`

)
=
∑T

t=1 α
T−t log Bk`,t .

Thus in DMA, the log posterior model odds at time T is an
exponentially age-discounted sum of sample-specific log Bayes
factors
When α = λ = 1 there is no forgetting and we recover static BMA,
in a recursive implementation
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Rolling Mill: Posterior Probabilities of 3 Ettler Models

# Variables
ut vt wt zt (utwt)

1 - X - X -
2 - - X - X
3 X X X - -

(a) Post model probs: Samples 26–200 (b) All samples, 26–19058
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Results for 3 Ettler Models

Method Samples 26–200 Samples 201–19058

MSE MaxAE #AE>10 MSE MaxAE #AE>10

Observed 2179.8 68.8 175 30.6 43.1 1183

Model 1 243.6 38.3 86 26.2 31.1 989
Model 2 345.5 41.7 118 26.8 41.4 914
Model 3 77.5 27.3 46 20.7 31.1 523

DMA – 3 models 76.1 26.3 45 20.7 31.1 520

M3 was much better than M1 or M2: Found fast by DMA

DMA with 3 models was slighly better than M3 in the initial
unstable period, and the same in the later stable period

No price paid for model uncertainty even when one model best by far
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Posterior Model Probabilities for All 17 Models

# Variables
ut vt wt zt (utwt)

1 - X - X -
2 - - X - X
3 X X X - -

4 - - - - -
5 - - - X -
6 - - X - -
7 - - X X -
8 - X - - -

9 - X X - -
10 - X X X -
11 X - - - -
12 X - - X -
13 X - X - -

14 X - X X -
15 X X - - -
16 X X - X -
17 X X X X -
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Results for All 17 Models

Method Samples 26–200 Samples 201–19058
MSE MaxAE #AE>10 MSE MaxAE #AE>10

Observed 2179.8 68.8 175 30.6 43.1 1183

Model 3 77.5 27.3 46 20.7 31.1 523
DMA – 3 models 76.1 26.3 45 20.7 31.1 520
DMA – 17 models 68.9 22.0 42 20.6 31.1 519

Only 4 models (M3, M15, M16, M17) had weight past sample 30

In the unstable period, the simpler M15 had high weight
In the stable period, the more complex M16 and M17 had more weight
DMA adapts to more complex models as more data become
available.
DMA gave a parsimonious solution even with a larger model space.

DMA with all 17 models was clearly better in the unstable period
(11% gain in MSE over M3) and slightly better in the stable period.

Only ∼50 samples discarded compared with 500 =⇒ waste reduced
by ∼90%
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Timing

About 2 milliseconds/model/sample on my 2005 Mac laptop in the
interpreted statistical language R.

Several orders of magnitude faster than a windowing algorithm.

Gains by a factor of at least 40 possible with

better software (compiled)
better hardware
=⇒ 0.05 ms/model/sample.

If computation has to be done in 20 ms/sample, this would allow
processing of 400 models

=⇒ DMA feasible in real time for cold rolling mill.

Recursive implementation may be useful for static BMA too

Computational requirements preclude computationally intensive
methods (e.g. MCMC, online estimation of forgetting factors, . . .)
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Summary

Motivating problem:

online prediction of a cold rolling mill under model uncertainty
severe computational constraints in real-time setting

Dynamic model averaging (DMA):

Model indicator and model parameters evolve in time (hidden
Markov model)
Recursive implementation is computationally efficient
Equivalent to an exponentially age-discounted version of static BMA

Gave better results than a single model for online prediction of a
cold rolling mill, and could reduce waste by ∼90%

Using all possible combinations of variables gave better results than
a smaller set of physically motivated models
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