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Imbalanced data

Setting:

Data are (X,Y ) pairs,

Predictors X ∈ Rd

Binary response variable Y ∈ {0, 1}
Sample has lots of Y = 0, very few Y = 1

Examples, Y = 1 for:

active drug

ad gets clicked

rare disease

war/coup/veto

citizen seeks elected office

non-spam in spam bucket
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(Why) does imbalance matter?

Irony:

500 1s and 500 0s =⇒ OK
500 1s and 500,000 0s =⇒ trouble

Issues:

1. It is hard to beat the rule that predicts Y = 0 always

2. Few Y = 1 cases constitute a low effective sample size

Approaches:

1. So take account of priors and/or loss asymmetry
(assuming implicit/explicit probability estimates)

2. Effective sample size really is # of Y = 1s
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How to deal with imbalanced data:

Coping strategies:

1. Downsample the 0s (adjust prior accordingly)

2. Upsample the 1s:

Repeat some (or upweight them)
Add synthetic 1s

3. One class prob.: find small ellipsoid holding the xi for yi = 1

Workshops on imbalanced data:

AAAI 2000

ICML 2003

They prefer “imbalanced” to “unbalanced”
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Is it even a problem?

Suppose data are

For y = 1: x1i, i = 1, . . . , n1 ≡ n
For y = 0: x0i, i = 1, . . . , n0 ≡ N N � n

Fit logistic regression

Pr(Y = 1 | X = x) =
eα+x′β

1 + eα+x′β

Let N →∞ with n fixed
Expect α̂→ −∞ like − log(N)
But β̂ can have a useful limit

and β̂ is of most interest

N/n→∞ not necessarily so bad (for logistic regression).
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Main result

Suppose

x̄ =
1
n

n∑
i=1

x1i ∈ Rd & x ∼ F0 when Y = 0

Let α(N) and β(N) be logistic regression estimates

Under mild conditions

Neα(N) → A ∈ R and β(N)→ β ∈ Rd

where β solves

x̄ =
∫
x ex

′β dF0(x)∫
ex′β dF0(x)
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Interpretation

We have

x̄ =
∫
x ex

′β dF0(x)∫
ex′β dF0(x)

β is the exponential tilt to take EF0(X) onto x̄

For F0 = N(µ0,Σ0)

β = Σ−1
0 (x̄− µ0)

Compare

β = Σ−1(µ1 − µ0) for

X ∼ N(µj ,Σ) given Y = j ∈ {0, 1}
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Surprise!

Suppose β solves

x̄ =
∫
x ex

′β dF0(x)∫
ex′β dF0(x)

Then only x̄ = 1
n

∑n
i=1 xi and F0 matter

Clearly n is the effective sample size

We could:
replace (x1i, 1) for i = 1, . . . , n
by just one point (X,Y ) = (x̄, 1)
and get the same β as N →∞

Upshot:

IILR downsamples the rare case to a single point
Whether logistic works well or badly on given problem
Other classifiers (e.g. CART) would be different
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Uses

The predictions are trivial

Pr(Y = 1 | X = x)→ 0 for all x ∈ Rd

But ratios are informative and simple

Pr(Ỹ = 1 | X = x̃)
Pr(Y = 1 | X = x)

→ e(ex−x)′β

For fraud or active learning, obtain Y corresponding to largest

ex
′β (best chance to see a 1)

v ex
′β (when case has value v)

v ex
′β/c (and investigative cost c)
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Logistic regression

Log likelihood (with xi ≡ x1i)

n∑
i=1

{
α+ x′iβ − log(1 + eα+x′iβ)

}
−

N∑
i=1

{
log(1 + eα+x′0iβ)

}

For large N

N∑
i=1

{
log(1 + eα+x′0iβ)

}
≈ N

∫
log(1 + eα+x′β) dF0(x)
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Centering data

With foresight, center data at x̄

Pr(Y = 1 | X = x) =
eα+(x−x̄)′β

1 + eα+(x−x̄)′β

Centered log likelihood `(α, β)

nα−
n∑
i=1

log
(

1 + eα+(xi−x̄)′β
)
−N

∫
log
(

1 + eα+(x−x̄)′β
)
dF0(x)

Because
∑n

i=1(α + (xi − x̄)′β) = nα
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Sketch of the proof

Set 1
N

∂
∂β
`(α, β) = 0

0 = − 1
N

n∑
i=1

(xi − x̄) eα+(xi−x̄)′β

1 + eα+(xi−x̄)′β
−
∫

(x− x̄) eα+(x−x̄)′β

1 + eα+(x−x̄)′β
dF0(x)

N →∞, so ignore the first sum:

0 =
∫

(x− x̄) eα+(x−x̄)′β

1 + eα+(x−x̄)′β
dF0(x)

If α→ −∞, denominator → 1, and so β solves:∫
(x− x̄) eα+(x−x̄)′β dF0(x) = 0 �
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Example: F0 = N(0, 1), x̄ = 1, n = 1, N →∞

Common values:
x0i ∼ N(0, 1)

Rare value
n = 1
x11 = 1

We should see β → Σ−1
0 (x̄− µ0) = 1−1(1− 0) = 1
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Example: F0 = N(0, 1), x̄ = 1, n = 1, N →∞

For Y = 0 and i = 1, . . . , N take

x0i = Φ−1
( i− 1/2

N

)
We should see β → Σ−1

0 (x̄− µ0) = 1−1(1− 0) = 1

Logistic regression results

N α Neα β

10 −3.19 0.4126 1.5746
100 −5.15 0.5787 1.0706

1,000 −7.42 0.6019 1.0108
10,000 −9.71 0.6058 1.0017

100,000 −12.01 0.6064 1.0003

∞ 1



Next: two counterexamples

We will need conditions for the exponential tilting to work.
One counterexample has a Cauchy distribution.
The other a uniform.



Example: now F0 = Cauchy

f0(x) =
1
π

1
1 + x2

x0i = F−1
0

( i− 1/2
N

)
, i = 1, . . . , N

x1i = 1, i = 1 only

Logistic regression results

N α Neα β Neβ

10 −2.36 0.94100 0.1222260 1.2222
100 −4.60 0.99524 0.0097523 0.9752

1,000 −6.90 0.99953 0.0009537 0.9536
10,000 −9.21 0.99995 0.0000952 0.9515

100,000 −11.51 0.99999 0.0000095 0.9513

β(N)→ 0 Cauchy has no mean to tilt onto x̄!



Example: now F0 = Cauchy

f0(x) =
1
π

1
1 + x2

x0i = F−1
0

( i− 1/2
N

)
, i = 1, . . . , N

x1i = 1, i = 1 only

Logistic regression results

N α Neα β Neβ

10 −2.36 0.94100 0.1222260 1.2222
100 −4.60 0.99524 0.0097523 0.9752

1,000 −6.90 0.99953 0.0009537 0.9536
10,000 −9.21 0.99995 0.0000952 0.9515

100,000 −11.51 0.99999 0.0000095 0.9513

β(N)→ 0 Cauchy has no mean to tilt onto x̄!



Example: now F0 = Cauchy

f0(x) =
1
π

1
1 + x2

x0i = F−1
0

( i− 1/2
N

)
, i = 1, . . . , N

x1i = 1, i = 1 only

Logistic regression results

N α Neα β Neβ

10 −2.36 0.94100 0.1222260 1.2222
100 −4.60 0.99524 0.0097523 0.9752

1,000 −6.90 0.99953 0.0009537 0.9536
10,000 −9.21 0.99995 0.0000952 0.9515

100,000 −11.51 0.99999 0.0000095 0.9513

β(N)→ 0 Cauchy has no mean to tilt onto x̄!



Example: now F0 = U [0, 1] and n1 = 2

Common values:
x0i ∼ U(0, 1)

Rare values:
n = 2
x11 = 0.5
x12 = 2.0

We can’t tilt U(0, 1) to have mean x̄ = 1.25



Example: now F0 = U [0, 1] and n1 = 2

Common values:
x0i ∼ U(0, 1)

Rare values:
n = 2
x11 = 0.5
x12 = 2.0

We can’t tilt U(0, 1) to have mean x̄ = 1.25



Example: now F0 = U [0, 1] and n1 = 2

Common values:
x0i ∼ U(0, 1)

Rare values:
n = 2
x11 = 0.5
x12 = 2.0

We can’t tilt U(0, 1) to have mean x̄ = 1.25



Example: now F0 = U [0, 1] and n1 = 2

x0i =
i− 1/2
N

, i = 1, . . . , N

x11 =
1
2
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N α Neα β eβ/N

10 −3.82 0.2184 2.85 1.74
100 −7.13 0.0804 4.19 0.66

1,000 −10.71 0.0223 5.82 0.34
10,000 −14.52 0.0050 7.62 0.20

100,000 −18.49 0.0009 9.54 0.14

β(N)→∞ also x̄ =
5
4
6∈ [0, 1] (can’t tilt mean so far)
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We need conditions:

Tail of F0 not too heavy∫
‖x‖ex′β dF0(x) <∞

to fix problem from Cauchy example
tail weight not an issue in finite samples

Overlap between F0 and x̄

to fix problem from U(0, 1) example
overlap is an issue in finite samples
but we need stronger overlap condition
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Overlap conditions

F has x∗ ∈ Rd surrounded if

For all unit vectors θ ∈ Rd

Pr
(
(x− x∗)′θ > ε | x ∼ F0

)
> δ

for some ε > 0 and δ > 0

For N →∞ we need:

F0 to have x̄ = 1
n1

∑n1
i=1 x1i surrounded

For finite samples, Silvapulle (1981, JRSS-B)

If model has intercept and x’s are full rank

We need some x0 surrounded by both F̂1 and F̂0
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Theorem
Let n ≥ 1 and x1, . . . , xn ∈ Rd be fixed. Suppose that

1. F0 surrounds x̄ =
∑n

i=1 xi/n

2.
∫
‖x‖ex′β dF0(x) <∞ ∀β ∈ Rd

Then the maximizer (α̂, β̂) of ` satisfies

lim
N→∞

∫
ex
′β̂ x dF0(x)∫
ex′β̂ dF0(x)

= x̄.

Steps

1. show α(N) and β(N) exist for each N

2. show Neα̂(N) is bounded

3. show ‖β̂‖ is bounded

4. then take partial derivatives as before
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Computation

Given an approximation to F0:

Solve 0 =
∫

(x− x̄)ex
′β dF0(x) d equations

Same as 0 = g(β) ≡
∫

(x− x̄)e(x−x̄)′β dF0(x)
I.E. Minimize f(β) =

∫
e(x−x̄)′β dF0(x)

Hessian is H(β) =
∫

(x− x̄)(x− x̄)′e(x−x̄)′β dF0(x) convex

Newton step

β ← β −H−1g

Cost per iteration: O(d3) vs O(Nd2) or O(nd2).



Mixture of Gaussians

F0 =
K∑
k=1

λkN(µk,Σk) λk > 0
∑
k

λk = 1

Tilt a Gaussian, get a Gaussian:

e(x−x̄)′β e−
1
2

(x−µ)′Σ−1(x−µ) = e(µ−x̄)′β e−
1
2

(x−µ−Σβ)′Σ−1(x−µ−Σβ)

Newton step is

β ← β −H−1g

g =
K∑
k=1

λke
(µk−x̄)′β

(
µ̃k − x̄

)
, µ̃k = µk + Σkβ

H =
K∑
k=1

λke
(µk−x̄)′β

(
Σk + (x̄− µ̃k)(x̄− µ̃k)′

)



Drug discovery example

Zhu, Su, Chipman

Technometrics, 2005
Y = 1 for active drug
Y = 0 for inactive drug
d = 6 features
29,821 chemicals
only 608 active ≈ 2%

x1 x3 strongest
Group means plotted



Drug discovery example ctd

Fits
Plain logistic

(608 ones), vs
1 one at x̄1

Upshot

Same ordering, ROC
precision-recall
etc.



Drug discovery example ctd

ROC curves
Plain logistic
1 one at x̄1



Drug discovery example ctd

Fits
Plain logistic, vs,
Pretend F0 is Gaussian
And use x̄1

Upshot

Slight difference
For easy 0s
Mixture model might
improve



The drug data was not a typical example

Drug data had

very bad separation
Poor ROC
x̄ very surrounded

Artificial version
x1i ← x1i + δ
δ = (s/10, . . . , s/10)
s = 0, . . . , 10
Original ROCs in blue
Lumped in red

Upshot

Still only uses x̄
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Thoughts for fraud detection

Non fraud data, Y = 0
Change slowly over time
Large sample size
So build a rich model for F0

Update rarely

Fraud data, Y = 1
May change rapidly in response to detection
May have different flavors
Clusters appear, disappear, move, change size
Rapidly refit model using per cluster x̄



Thoughts for fraud detection

Non fraud data, Y = 0
Change slowly over time
Large sample size
So build a rich model for F0

Update rarely

Fraud data, Y = 1
May change rapidly in response to detection
May have different flavors
Clusters appear, disappear, move, change size
Rapidly refit model using per cluster x̄



Acknowledgments

Paul Louisell for comments

NSF for funds

Host: University of Florida

Organizers: Agresti, Young, Daniels, Casella

Travel help: Robyn Crawford


