Infinitely Imbalanced Logistic Regression

Art B. Owen

Stanford University owen@stat.stanford.edu

12th annual winter workshop January 2010 University of Florida

Setting:

 $\bullet~\mbox{Data}$ are (X,Y) pairs,

Setting:

 $\bullet~\mbox{Data}$ are (X,Y) pairs,

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Predictors $X \in \mathbb{R}^d$

Setting:

- $\bullet~\mbox{Data}$ are (X,Y) pairs,
- \bullet Predictors $X \in \mathbb{R}^d$
- Binary response variable $Y \in \{0,1\}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Setting:

- $\bullet~\mbox{Data}$ are (X,Y) pairs,
- \bullet Predictors $X \in \mathbb{R}^d$
- Binary response variable $Y \in \{0,1\}$

• Sample has lots of Y = 0,

Setting:

- $\bullet~\mbox{Data}$ are (X,Y) pairs,
- \bullet Predictors $X \in \mathbb{R}^d$
- Binary response variable $Y \in \{0,1\}$
- Sample has lots of Y = 0, very few Y = 1

Setting:

- Data are (X,Y) pairs,
- Predictors $X \in \mathbb{R}^d$
- Binary response variable $Y \in \{0, 1\}$
- Sample has lots of Y = 0, very few Y = 1

Examples, Y = 1 for:

- active drug
- ad gets clicked
- rare disease
- war/coup/veto
- citizen seeks elected office
- non-spam in spam bucket

(Why) does imbalance matter?

Irony:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

(Why) does imbalance matter?

Irony:

Issues:

- 1. It is hard to beat the rule that predicts Y = 0 always
- 2. Few Y = 1 cases constitute a low effective sample size

(Why) does imbalance matter?

Irony:

500 1s and 500 0s \implies OK 500 1s and 500,000 0s \implies trouble

Issues:

- 1. It is hard to beat the rule that predicts Y = 0 always
- 2. Few Y = 1 cases constitute a low effective sample size

Approaches:

- 1. So take account of priors and/or loss asymmetry (assuming implicit/explicit probability estimates)
- 2. Effective sample size really is # of Y = 1s

How to deal with imbalanced data:

Coping strategies:

- 1. Downsample the 0s (adjust prior accordingly)
- 2. Upsample the 1s:
 - Repeat some (or upweight them)
 - Add synthetic 1s

3. One class prob.: find small ellipsoid holding the x_i for $y_i = 1$

How to deal with imbalanced data:

Coping strategies:

- 1. Downsample the 0s (adjust prior accordingly)
- 2. Upsample the 1s:
 - Repeat some (or upweight them)
 - Add synthetic 1s
- 3. One class prob.: find small ellipsoid holding the x_i for $y_i = 1$

Workshops on imbalanced data:

- AAAI 2000
- ICML 2003

They prefer "imbalanced" to "unbalanced"

Suppose data are

For
$$y = 1$$
: x_{1i} , $i = 1, \dots, n_1 \equiv n$
For $y = 0$: x_{0i} , $i = 1, \dots, n_0 \equiv N$ $N \gg n$

Suppose data are

For
$$y = 1$$
: x_{1i} , $i = 1, \dots, n_1 \equiv n$
For $y = 0$: x_{0i} , $i = 1, \dots, n_0 \equiv N$ $N \gg n$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Fit logistic regression

$$\Pr(Y = 1 \mid X = x) = \frac{e^{\alpha + x'\beta}}{1 + e^{\alpha + x'\beta}}$$

Suppose data are

For
$$y = 1$$
: x_{1i} , $i = 1, \dots, n_1 \equiv n$
For $y = 0$: x_{0i} , $i = 1, \dots, n_0 \equiv N$ $N \gg n$

Fit logistic regression

$$\Pr(Y = 1 \mid X = x) = \frac{e^{\alpha + x'\beta}}{1 + e^{\alpha + x'\beta}}$$

Let $N \to \infty$ with n fixed

Expect $\hat{\alpha} \to -\infty$ like $-\log(N)$ But $\hat{\beta}$ can have a useful limit and $\hat{\beta}$ is of most interest

Suppose data are

For
$$y = 1$$
: x_{1i} , $i = 1, \dots, n_1 \equiv n$
For $y = 0$: x_{0i} , $i = 1, \dots, n_0 \equiv N$ $N \gg n$

Fit logistic regression

$$\Pr(Y = 1 \mid X = x) = \frac{e^{\alpha + x'\beta}}{1 + e^{\alpha + x'\beta}}$$

Let $N \to \infty$ with n fixed

Expect $\hat{\alpha} \to -\infty$ like $-\log(N)$ But $\hat{\beta}$ can have a useful limit and $\hat{\beta}$ is of most interest

 $N/n \rightarrow \infty$ not necessarily so bad (for logistic regression).

Main result

Suppose

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_{1i} \in \mathbb{R}^d \quad \& \quad x \sim F_0 \quad \text{when} \quad Y = 0$$

Let $\alpha(N)$ and $\beta(N)$ be logistic regression estimates

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへで

Main result

Suppose

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_{1i} \in \mathbb{R}^d \quad \& \quad x \sim F_0 \quad \text{when} \quad Y = 0$$

Let $\alpha(N)$ and $\beta(N)$ be logistic regression estimates

Under mild conditions

 $Ne^{\alpha(N)} \to A \in \mathbb{R}$ and $\beta(N) \to \beta \in \mathbb{R}^d$

Main result

Suppose

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_{1i} \in \mathbb{R}^d \quad \& \quad x \sim F_0 \quad \text{when} \quad Y = 0$$

Let $\alpha(N)$ and $\beta(N)$ be logistic regression estimates

Under mild conditions

$$Ne^{\alpha(N)} \to A \in \mathbb{R} \quad \text{and} \quad \beta(N) \to \beta \in \mathbb{R}^d$$

where β solves

$$\bar{x} = \frac{\int x \, e^{x'\beta} \, dF_0(x)}{\int e^{x'\beta} \, dF_0(x)}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Interpretation

We have

$$\bar{x} = \frac{\int x \, e^{x'\beta} \, dF_0(x)}{\int e^{x'\beta} \, dF_0(x)}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 β is the *exponential tilt* to take $E_{F_0}(X)$ onto \bar{x}

Interpretation

We have

$$\bar{x} = \frac{\int x \, e^{x'\beta} \, dF_0(x)}{\int e^{x'\beta} \, dF_0(x)}$$

 β is the *exponential tilt* to take $E_{F_0}(X)$ onto \bar{x}

For $F_0 = N(\mu_0, \Sigma_0)$

$$\beta = \Sigma_0^{-1}(\bar{x} - \mu_0)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Interpretation

We have

$$\bar{x} = \frac{\int x \, e^{x'\beta} \, dF_0(x)}{\int e^{x'\beta} \, dF_0(x)}$$

 β is the *exponential tilt* to take $E_{F_0}(X)$ onto \bar{x}

For $F_0 = N(\mu_0, \Sigma_0)$

$$\beta = \Sigma_0^{-1}(\bar{x} - \mu_0)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Compare

$$eta = \Sigma^{-1}(\mu_1 - \mu_0)$$
 for $X \sim N(\mu_j, \Sigma)$ given $Y = j \in \{0, 1\}$

Surprise!

Suppose β solves

$$\bar{x} = \frac{\int x \, e^{x'\beta} \, dF_0(x)}{\int e^{x'\beta} \, dF_0(x)}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Then only $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$ and F_0 matter Clearly n is the effective sample size

Surprise!

Suppose β solves

$$\bar{x} = \frac{\int x \, e^{x'\beta} \, dF_0(x)}{\int e^{x'\beta} \, dF_0(x)}$$

Then only $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$ and F_0 matter Clearly n is the effective sample size

We could:

replace $(x_{1i}, 1)$ for i = 1, ..., nby just one point $(X, Y) = (\bar{x}, 1)$ and get the same β as $N \to \infty$

Surprise!

Suppose β solves

$$\bar{x} = \frac{\int x \, e^{x'\beta} \, dF_0(x)}{\int e^{x'\beta} \, dF_0(x)}$$

Then only $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$ and F_0 matter Clearly n is the effective sample size

We could:

replace $(x_{1i}, 1)$ for i = 1, ..., nby just one point $(X, Y) = (\bar{x}, 1)$ and get the same β as $N \to \infty$

Upshot:

IILR downsamples the rare case to a single point Whether logistic works well or badly on given problem Other classifiers (e.g. CART) would be different

The predictions are trivial

$$\Pr(Y = 1 \mid X = x) \to 0 \quad \text{for all} \quad x \in \mathbb{R}^d$$

The predictions are trivial

$$\Pr(Y = 1 \mid X = x) \to 0 \quad \text{for all} \quad x \in \mathbb{R}^d$$

But ratios are informative and simple

$$\frac{\Pr(\widetilde{Y}=1\mid X=\widetilde{x})}{\Pr(Y=1\mid X=x)} \to e^{(\widetilde{x}-x)'\beta}$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ● ● ● ●

The predictions are trivial

$$\Pr(Y = 1 \mid X = x) \to 0 \quad \text{for all} \quad x \in \mathbb{R}^d$$

But ratios are informative and simple

$$\frac{\Pr(\tilde{Y}=1 \mid X=\tilde{x})}{\Pr(Y=1 \mid X=x)} \to e^{(\tilde{x}-x)'\beta}$$

For fraud or active learning, obtain Y corresponding to largest • $e^{x'\beta}$ (best chance to see a 1)

The predictions are trivial

$$\Pr(Y = 1 \mid X = x) \to 0 \quad \text{for all} \quad x \in \mathbb{R}^d$$

But ratios are informative and simple

$$\frac{\Pr(\widetilde{Y}=1 \mid X=\widetilde{x})}{\Pr(Y=1 \mid X=x)} \to e^{(\widetilde{x}-x)'\beta}$$

For fraud or active learning, obtain Y corresponding to largest

- e^{x'β}
 v e^{x'β} (best chance to see a 1)
 - (when case has value v)

The predictions are trivial

$$\Pr(Y = 1 \mid X = x) \to 0 \quad \text{for all} \quad x \in \mathbb{R}^d$$

But ratios are informative and simple

$$\frac{\Pr(\widetilde{Y}=1 \mid X=\widetilde{x})}{\Pr(Y=1 \mid X=x)} \to e^{(\widetilde{x}-x)'\beta}$$

For fraud or active learning, obtain Y corresponding to largest

- e^{x'β}
 v e^{x'β}
 v e^{x'β}/c (best chance to see a 1)
 - (when case has value v)
 - (and investigative cost c)

Logistic regression

Log likelihood (with $x_i \equiv x_{1i}$)

$$\sum_{i=1}^{n} \left\{ \alpha + x_i'\beta - \log(1 + e^{\alpha + x_i'\beta}) \right\} - \sum_{i=1}^{N} \left\{ \log(1 + e^{\alpha + x_{0i}'\beta}) \right\}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Logistic regression

Log likelihood (with $x_i \equiv x_{1i}$)

$$\sum_{i=1}^{n} \left\{ \alpha + x_i'\beta - \log(1 + e^{\alpha + x_i'\beta}) \right\} - \sum_{i=1}^{N} \left\{ \log(1 + e^{\alpha + x_{0i}'\beta}) \right\}$$

For large N

$$\sum_{i=1}^{N} \left\{ \log(1 + e^{\alpha + x'_{0i}\beta}) \right\} \approx N \int \log(1 + e^{\alpha + x'\beta}) dF_0(x)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Centering data

With foresight, center data at $\bar{\boldsymbol{x}}$

$$\Pr(Y = 1 \mid X = x) = \frac{e^{\alpha + (x - \bar{x})'\beta}}{1 + e^{\alpha + (x - \bar{x})'\beta}}$$

(ロ)、(型)、(E)、(E)、 E) の(の)

Centering data

With foresight, center data at \bar{x}

$$\Pr(Y = 1 \mid X = x) = \frac{e^{\alpha + (x - \bar{x})'\beta}}{1 + e^{\alpha + (x - \bar{x})'\beta}}$$

Centered log likelihood $\ell(\alpha, \beta)$

$$n\alpha - \sum_{i=1}^{n} \log \left(1 + e^{\alpha + (x_i - \bar{x})'\beta} \right) - N \int \log \left(1 + e^{\alpha + (x - \bar{x})'\beta} \right) dF_0(x)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Centering data

With foresight, center data at \bar{x}

$$\Pr(Y = 1 \mid X = x) = \frac{e^{\alpha + (x - \bar{x})'\beta}}{1 + e^{\alpha + (x - \bar{x})'\beta}}$$

Centered log likelihood $\ell(\alpha, \beta)$

$$n\alpha - \sum_{i=1}^{n} \log \left(1 + e^{\alpha + (x_i - \bar{x})'\beta} \right) - N \int \log \left(1 + e^{\alpha + (x - \bar{x})'\beta} \right) dF_0(x)$$

Because $\sum_{i=1}^{n} (\alpha + (x_i - \bar{x})'\beta) = n\alpha$

・ロト ・ 日本・ 小田・ 小田・ 小田・

Sketch of the proof

Set
$$\frac{1}{N} \frac{\partial}{\partial \beta} \ell(\alpha, \beta) = 0$$

$$0 = -\frac{1}{N} \sum_{i=1}^{n} \frac{(x_i - \bar{x}) e^{\alpha + (x_i - \bar{x})'\beta}}{1 + e^{\alpha + (x_i - \bar{x})'\beta}} - \int \frac{(x - \bar{x}) e^{\alpha + (x - \bar{x})'\beta}}{1 + e^{\alpha + (x - \bar{x})'\beta}} dF_0(x)$$
Sketch of the proof

Set
$$\frac{1}{N} \frac{\partial}{\partial \beta} \ell(\alpha, \beta) = 0$$

$$0 = -\frac{1}{N} \sum_{i=1}^{n} \frac{(x_i - \bar{x}) e^{\alpha + (x_i - \bar{x})'\beta}}{1 + e^{\alpha + (x_i - \bar{x})'\beta}} - \int \frac{(x - \bar{x}) e^{\alpha + (x - \bar{x})'\beta}}{1 + e^{\alpha + (x - \bar{x})'\beta}} \, dF_0(x)$$

 $N \rightarrow \infty$, so ignore the first sum:

$$0 = \int \frac{(x - \bar{x}) e^{\alpha + (x - \bar{x})'\beta}}{1 + e^{\alpha + (x - \bar{x})'\beta}} dF_0(x)$$

Sketch of the proof

Set
$$\frac{1}{N} \frac{\partial}{\partial \beta} \ell(\alpha, \beta) = 0$$

$$0 = -\frac{1}{N} \sum_{i=1}^{n} \frac{(x_i - \bar{x}) e^{\alpha + (x_i - \bar{x})'\beta}}{1 + e^{\alpha + (x_i - \bar{x})'\beta}} - \int \frac{(x - \bar{x}) e^{\alpha + (x - \bar{x})'\beta}}{1 + e^{\alpha + (x - \bar{x})'\beta}} \, dF_0(x)$$

 $N \to \infty$, so ignore the first sum:

$$0 = \int \frac{(x - \bar{x}) e^{\alpha + (x - \bar{x})'\beta}}{1 + e^{\alpha + (x - \bar{x})'\beta}} dF_0(x)$$

If $\alpha \to -\infty$, denominator $\to 1$, and so β solves:

$$\int (x - \bar{x}) e^{\alpha + (x - \bar{x})'\beta} dF_0(x) = 0 \quad \Box$$

Example: $F_0 = N(0, 1)$, $\bar{x} = 1$, n = 1, $N \to \infty$

Common values: $x_{0i} \sim N(0, 1)$

Rare value n = 1 $x_{11} = 1$

Example: $F_0 = N(0, 1)$, $\bar{x} = 1$, n = 1, $N \to \infty$

Gaussian x0 and x1 = 1

х

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Common values: $x_{0i} \sim N(0,1)$ Rare value n=1

 $x_{11} = 1$

Example: $F_0 = N(0,1)$, $\bar{x} = 1$, n = 1, $N \to \infty$

We should see $\beta \to \Sigma_0^{-1}(\bar{x} - \mu_0) = 1^{-1}(1 - 0) = 1$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Example: $F_0 = N(0, 1)$, $\bar{x} = 1$, n = 1, $N \to \infty$

For Y = 0 and $i = 1, \ldots, N$ take

$$x_{0i} = \Phi^{-1} \left(\frac{i - 1/2}{N} \right)$$

We should see $\beta \to \Sigma_0^{-1}(\bar{x} - \mu_0) = 1^{-1}(1 - 0) = 1$

Logistic regression results

Ν	α	Ne^{α}	eta
10	-3.19	0.4126	1.5746
100	-5.15	0.5787	1.0706
1,000	-7.42	0.6019	1.0108
10,000	-9.71	0.6058	1.0017
100,000	-12.01	0.6064	1.0003
∞			1

We will need conditions for the exponential tilting to work. One counterexample has a Cauchy distribution. The other a uniform.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Example: now $F_0 = Cauchy$

$$f_0(x) = \frac{1}{\pi} \frac{1}{1+x^2}$$

$$x_{0i} = F_0^{-1} \left(\frac{i-1/2}{N}\right), \quad i = 1, \dots, N$$

$$x_{1i} = 1, \quad i = 1 \quad \text{only}$$

Example: now $F_0 = Cauchy$

$$f_0(x) = \frac{1}{\pi} \frac{1}{1+x^2}$$

$$x_{0i} = F_0^{-1} \left(\frac{i-1/2}{N}\right), \quad i = 1, \dots, N$$

$$x_{1i} = 1, \quad i = 1 \quad \text{only}$$

Logistic regression results

Ν	α	Ne^{α}	eta	Ne^{β}
10	-2.36	0.94100	0.1222260	1.2222
100	-4.60	0.99524	0.0097523	0.9752
1,000	-6.90	0.99953	0.0009537	0.9536
10,000	-9.21	0.99995	0.0000952	0.9515
100,000	-11.51	0.99999	0.0000095	0.9513

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Example: now $F_0 = Cauchy$

$$f_0(x) = \frac{1}{\pi} \frac{1}{1+x^2}$$

$$x_{0i} = F_0^{-1} \left(\frac{i-1/2}{N}\right), \quad i = 1, \dots, N$$

$$x_{1i} = 1, \quad i = 1 \quad \text{only}$$

Logistic regression results

Ν	α	Ne^{α}	eta	Ne^{β}
10	-2.36	0.94100	0.1222260	1.2222
100	-4.60	0.99524	0.0097523	0.9752
1,000	-6.90	0.99953	0.0009537	0.9536
10,000	-9.21	0.99995	0.0000952	0.9515
100,000	-11.51	0.99999	0.0000095	0.9513

 $\beta(N) \to 0$ Cauchy has no mean to tilt onto $\bar{x}!$

Common values: $x_{0i} \sim U(0, 1)$

Rare values:

n = 2 $x_{11} = 0.5$ $x_{12} = 2.0$

・ロト・日本・日本・日本・日本・日本

Common values: 10 $x_{0i} \sim U(0,1)$ 0.8 0.6 Rare values: 0.4 n=2 $x_{11} = 0.5$ 0.2 $\overline{\mathbf{x}}$ $x_{12} = 2.0$ 0.0 0.0 0.5 1.0 1.5

Unif x0 and x1 = .5, 2

×

2.0

2.5

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Unif x0 and x1 = .5, 2

We can't tilt U(0,1) to have mean $\bar{x} = 1.25$

$$x_{0i} = rac{i-1/2}{N}, \quad i = 1, \dots, N$$

 $x_{11} = rac{1}{2}, \quad x_{12} = 2 \quad \text{only}$

$$x_{0i} = rac{i-1/2}{N}, \quad i = 1, \dots, N$$

 $x_{11} = rac{1}{2}, \quad x_{12} = 2$ only

Logistic regression results

Ν	α	Ne^{α}	eta	e^{β}/N
10	-3.82	0.2184	2.85	1.74
100	-7.13	0.0804	4.19	0.66
1,000	-10.71	0.0223	5.82	0.34
10,000	-14.52	0.0050	7.62	0.20
100,000	-18.49	0.0009	9.54	0.14

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

$$x_{0i} = \frac{i - 1/2}{N}, \quad i = 1, \dots, N$$

 $x_{11} = \frac{1}{2}, \quad x_{12} = 2$ only

Logistic regression results

Ν	α	Ne^{α}	eta	e^{β}/N
10	-3.82	0.2184	2.85	1.74
100	-7.13	0.0804	4.19	0.66
1,000	-10.71	0.0223	5.82	0.34
10,000	-14.52	0.0050	7.62	0.20
100,000	-18.49	0.0009	9.54	0.14

$$\beta(N) \to \infty$$
 also $\bar{x} = \frac{5}{4} \notin [0, 1]$ (can't tilt mean so far)

We need conditions:

Tail of F_0 not too heavy

 $\int \|x\| e^{x'\beta} \, dF_0(x) < \infty$

to fix problem from Cauchy example tail weight not an issue in finite samples

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

We need conditions:

Tail of F_0 not too heavy $\int \|x\| e^{x'\beta} dF_0(x) < \infty$ to fix problem from Cauchy example tail weight not an issue in finite samples

Overlap between F_0 and \bar{x}

to fix problem from U(0,1) example overlap is an issue in finite samples but we need stronger overlap condition

Overlap conditions

F has $x^* \in \mathbb{R}^d$ surrounded if

• For all unit vectors $\theta \in \mathbb{R}^d$

•
$$\Pr((x - x^*)'\theta > \epsilon \mid x \sim F_0) > \delta$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 $\bullet \mbox{ for some } \epsilon > 0 \mbox{ and } \delta > 0$

Overlap conditions

F has $x^* \in \mathbb{R}^d$ surrounded if

• For all unit vectors $\theta \in \mathbb{R}^d$

•
$$\Pr((x - x^*)'\theta > \epsilon \mid x \sim F_0) > \delta$$

• for some $\epsilon>0$ and $\delta>0$

For $N \to \infty$ we need:

• F_0 to have $\bar{x} = \frac{1}{n_1} \sum_{i=1}^{n_1} x_{1i}$ surrounded

Overlap conditions

F has $x^* \in \mathbb{R}^d$ surrounded if

• For all unit vectors $\theta \in \mathbb{R}^d$

•
$$\Pr((x - x^*)'\theta > \epsilon \mid x \sim F_0) > \delta$$

• for some $\epsilon>0$ and $\delta>0$

For $N \to \infty$ we need:

• F_0 to have $\bar{x} = \frac{1}{n_1} \sum_{i=1}^{n_1} x_{1i}$ surrounded

For finite samples, Silvapulle (1981, JRSS-B)

- If model has intercept and x's are full rank
- We need some x_0 surrounded by both \hat{F}_1 and \hat{F}_0

Theorem

Let $n \geq 1$ and $x_1, \ldots, x_n \in \mathbb{R}^d$ be fixed. Suppose that

1.
$$F_0$$
 surrounds $\bar{x} = \sum_{i=1}^n x_i/n$

2.
$$\int \|x\| e^{x'\beta} dF_0(x) < \infty \quad \forall \beta \in \mathbb{R}^d$$

Theorem

Let $n \ge 1$ and $x_1, \ldots, x_n \in \mathbb{R}^d$ be fixed. Suppose that 1. F_0 surrounds $\bar{x} = \sum_{i=1}^n x_i/n$ 2. $\int ||x|| e^{x'\beta} dF_0(x) < \infty \quad \forall \beta \in \mathbb{R}^d$ Then the maximizer $(\hat{\alpha}, \hat{\beta})$ of ℓ satisfies

$$\lim_{N \to \infty} \frac{\int e^{x'\hat{\beta}} x \, dF_0(x)}{\int e^{x'\hat{\beta}} \, dF_0(x)} = \bar{x}$$

Theorem

Let $n \ge 1$ and $x_1, \ldots, x_n \in \mathbb{R}^d$ be fixed. Suppose that 1. F_0 surrounds $\bar{x} = \sum_{i=1}^n x_i/n$ 2. $\int \|x\| e^{x'\beta} dF_0(x) < \infty \quad \forall \beta \in \mathbb{R}^d$ Then the maximizer $(\hat{\alpha}, \hat{\beta})$ of ℓ satisfies

$$\lim_{N \to \infty} \frac{\int e^{x'\hat{\beta}} x \, dF_0(x)}{\int e^{x'\hat{\beta}} \, dF_0(x)} = \bar{x}.$$

Steps

- 1. show $\alpha(N)$ and $\beta(N)$ exist for each N
- 2. show $Ne^{\hat{\alpha}(N)}$ is bounded
- 3. show $\|\hat{\beta}\|$ is bounded
- 4. then take partial derivatives as before

Computation

Given an approximation to F_0 :

$$\begin{array}{ll} \text{Solve} & 0 = \int (x - \bar{x}) e^{x'\beta} \, dF_0(x) & d \text{ equations} \\ \text{Same as} & 0 = g(\beta) \equiv \int (x - \bar{x}) e^{(x - \bar{x})'\beta} \, dF_0(x) \\ \text{I.E. Minimize} & f(\beta) = \int e^{(x - \bar{x})'\beta} \, dF_0(x) \\ \text{Hessian is} & H(\beta) = \int (x - \bar{x}) (x - \bar{x})' e^{(x - \bar{x})'\beta} \, dF_0(x) & \text{convex} \end{array}$$

. .

Newton step

$$\beta \leftarrow \beta - H^{-1}g$$

Cost per iteration: $O(d^3)$ vs $O(Nd^2)$ or $O(nd^2)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Mixture of Gaussians

$$F_0 = \sum_{k=1}^{K} \lambda_k N(\mu_k, \Sigma_k) \qquad \lambda_k > 0 \qquad \sum_k \lambda_k = 1$$

Tilt a Gaussian, get a Gaussian:

$$e^{(x-\bar{x})'\beta} e^{-\frac{1}{2}(x-\mu)'\Sigma^{-1}(x-\mu)} = e^{(\mu-\bar{x})'\beta} e^{-\frac{1}{2}(x-\mu-\Sigma\beta)'\Sigma^{-1}(x-\mu-\Sigma\beta)}$$

Newton step is

$$\beta \leftarrow \beta - H^{-1}g$$

$$g = \sum_{k=1}^{K} \lambda_k e^{(\mu_k - \bar{x})'\beta} \Big(\tilde{\mu}_k - \bar{x} \Big), \qquad \tilde{\mu}_k = \mu_k + \Sigma_k \beta$$

$$H = \sum_{k=1}^{K} \lambda_k e^{(\mu_k - \bar{x})'\beta} \Big(\Sigma_k + (\bar{x} - \tilde{\mu}_k)(\bar{x} - \tilde{\mu}_k)' \Big)$$

Drug discovery example

Zhu, Su, Chipman Technometrics, 2005 Y = 1 for active drug Y = 0 for inactive drug d = 6 features 29,821 chemicals only 608 active $\approx 2\%$

 $x_1 \ x_3$ strongest Group means plotted

・ロト・雪ト・雪ト・雪ト 一回 のんの

Drug discovery example ctd

Fits

Plain logistic (608 ones), vs 1 one at \bar{x}_1

Upshot

Same ordering, ROC precision-recall etc.

(日)、

э

Drug discovery example ctd

ROC curves Plain logistic 1 one at \bar{x}_1

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Drug discovery example ctd

Fits

Plain logistic, vs, Pretend F_0 is Gaussian And use \bar{x}_1

Upshot

Slight difference For easy 0s Mixture model might improve

Logistic regression

・ロト ・聞ト ・ヨト ・ヨト

э

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Drug data had

very bad separation Poor ROC

 \bar{x} very surrounded

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Drug data had

very bad separation Poor ROC \bar{x} very surrounded

Artificial version

$$\begin{array}{l} x_{1i} \leftarrow x_{1i} + \delta \\ \delta = (s/10, \ldots, s/10) \\ s = 0, \ldots, 10 \\ \text{Original ROCs in blue} \\ \text{Lumped in red} \end{array}$$

Drug data had

very bad separation Poor ROC \bar{x} very surrounded

Artificial version

$$\begin{array}{l} x_{1i} \leftarrow x_{1i} + \delta \\ \delta = (s/10, \ldots, s/10) \\ s = 0, \ldots, 10 \\ \text{Original ROCs in blue} \\ \text{Lumped in red} \end{array}$$

(日)、

Drug data had

very bad separation Poor ROC \bar{x} very surrounded

Artificial version

$$\begin{array}{l} x_{1i} \leftarrow x_{1i} + \delta \\ \delta = (s/10, \ldots, s/10) \\ s = 0, \ldots, 10 \\ \text{Original ROCs in blue} \\ \text{Lumped in red} \end{array}$$

Upshot

Still only uses $\bar{\boldsymbol{x}}$

Thoughts for fraud detection

Non fraud data, Y = 0

Change slowly over time Large sample size So build a rich model for F_0 Update rarely

Thoughts for fraud detection

Non fraud data, Y = 0

Change slowly over time Large sample size So build a rich model for F_0 Update rarely

Fraud data, Y = 1

May change rapidly in response to detection May have different flavors Clusters appear, disappear, move, change size Rapidly refit model using per cluster \bar{x}
Acknowledgments

- Paul Louisell for comments
- NSF for funds
- Host: University of Florida
- Organizers: Agresti, Young, Daniels, Casella

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Travel help: Robyn Crawford