Infinitely Imbalanced Logistic Regression

Art B. Owen

Stanford University
owen@stat.stanford.edu

12th annual winter workshop
January 2010
University of Florida

Imbalanced data

Setting:

- Data are (X, Y) pairs,

Imbalanced data

Setting:

- Data are (X, Y) pairs,
- Predictors $X \in \mathbb{R}^{d}$

Imbalanced data

Setting:

- Data are (X, Y) pairs,
- Predictors $X \in \mathbb{R}^{d}$
- Binary response variable $Y \in\{0,1\}$

Imbalanced data

Setting:

- Data are (X, Y) pairs,
- Predictors $X \in \mathbb{R}^{d}$
- Binary response variable $Y \in\{0,1\}$
- Sample has lots of $Y=0$,

Imbalanced data

Setting:

- Data are (X, Y) pairs,
- Predictors $X \in \mathbb{R}^{d}$
- Binary response variable $Y \in\{0,1\}$
- Sample has lots of $Y=0$, very few $Y=1$

Imbalanced data

Setting:

- Data are (X, Y) pairs,
- Predictors $X \in \mathbb{R}^{d}$
- Binary response variable $Y \in\{0,1\}$
- Sample has lots of $Y=0$, very few $Y=1$

Examples, $Y=1$ for:

- active drug
- ad gets clicked
- rare disease
- war/coup/veto
- citizen seeks elected office
- non-spam in spam bucket

(Why) does imbalance matter?

Irony:
500 1s and $5000 \mathrm{~s} \Longrightarrow \mathrm{OK}$
$500 \mathrm{1s}$ and $500,0000 \mathrm{~s} \Longrightarrow$ trouble

(Why) does imbalance matter?

Irony:
500 1s and $5000 \mathrm{~s} \Longrightarrow \mathrm{OK}$
$500 \mathrm{1s}$ and $500,0000 \mathrm{~s} \Longrightarrow$ trouble
Issues:

1. It is hard to beat the rule that predicts $Y=0$ always
2. Few $Y=1$ cases constitute a low effective sample size

(Why) does imbalance matter?

Irony:

$$
\begin{aligned}
& 500 \mathrm{1s} \text { and } \quad 5000 \mathrm{~s} \Longrightarrow \text { OK } \\
& 500 \mathrm{ls} \text { and } 500,000 \mathrm{os} \Longrightarrow \text { trouble }
\end{aligned}
$$

Issues:

1. It is hard to beat the rule that predicts $Y=0$ always
2. Few $Y=1$ cases constitute a low effective sample size

Approaches:

1. So take account of priors and/or loss asymmetry (assuming implicit/explicit probability estimates)
2. Effective sample size really is $\#$ of $Y=1$ s

How to deal with imbalanced data:

Coping strategies:

1. Downsample the 0s (adjust prior accordingly)
2. Upsample the 1s:

- Repeat some (or upweight them)
- Add synthetic 1 s

3. One class prob.: find small ellipsoid holding the x_{i} for $y_{i}=1$

How to deal with imbalanced data:

Coping strategies:

1. Downsample the 0s (adjust prior accordingly)
2. Upsample the 1s:

- Repeat some (or upweight them)
- Add synthetic 1 s

3. One class prob.: find small ellipsoid holding the x_{i} for $y_{i}=1$

Workshops on imbalanced data:

- AAAI 2000
- ICML 2003

They prefer "imbalanced" to "unbalanced"

Is it even a problem?

Suppose data are
For $y=1: \quad x_{1 i}, \quad i=1, \ldots, n_{1} \equiv n$
For $y=0: \quad x_{0 i}, \quad i=1, \ldots, n_{0} \equiv N \quad N \gg n$

Is it even a problem?

Suppose data are
For $y=1: \quad x_{1 i}, \quad i=1, \ldots, n_{1} \equiv n$
For $y=0: \quad x_{0 i}, \quad i=1, \ldots, n_{0} \equiv N \quad N \gg n$
Fit logistic regression

$$
\operatorname{Pr}(Y=1 \mid X=x)=\frac{e^{\alpha+x^{\prime} \beta}}{1+e^{\alpha+x^{\prime} \beta}}
$$

Is it even a problem?

Suppose data are
For $y=1: \quad x_{1 i}, \quad i=1, \ldots, n_{1} \equiv n$
For $y=0: \quad x_{0 i}, \quad i=1, \ldots, n_{0} \equiv N \quad N \gg n$
Fit logistic regression

$$
\operatorname{Pr}(Y=1 \mid X=x)=\frac{e^{\alpha+x^{\prime} \beta}}{1+e^{\alpha+x^{\prime} \beta}}
$$

Let $N \rightarrow \infty$ with n fixed
Expect $\hat{\alpha} \rightarrow-\infty$ like $-\log (N)$
But $\hat{\beta}$ can have a useful limit
and $\hat{\beta}$ is of most interest

Is it even a problem?

Suppose data are
For $y=1: \quad x_{1 i}, \quad i=1, \ldots, n_{1} \equiv n$
For $y=0: \quad x_{0 i}, \quad i=1, \ldots, n_{0} \equiv N \quad N \gg n$
Fit logistic regression

$$
\operatorname{Pr}(Y=1 \mid X=x)=\frac{e^{\alpha+x^{\prime} \beta}}{1+e^{\alpha+x^{\prime} \beta}}
$$

Let $N \rightarrow \infty$ with n fixed
Expect $\hat{\alpha} \rightarrow-\infty$ like $-\log (N)$
But $\hat{\beta}$ can have a useful limit
and $\hat{\beta}$ is of most interest
$N / n \rightarrow \infty$ not necessarily so bad (for logistic regression).

Main result

Suppose

$$
\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{1 i} \in \mathbb{R}^{d} \quad \& \quad x \sim F_{0} \quad \text { when } \quad Y=0
$$

Let $\alpha(N)$ and $\beta(N)$ be logistic regression estimates

Main result

Suppose

$$
\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{1 i} \in \mathbb{R}^{d} \quad \& \quad x \sim F_{0} \quad \text { when } \quad Y=0
$$

Let $\alpha(N)$ and $\beta(N)$ be logistic regression estimates

Under mild conditions

$$
N e^{\alpha(N)} \rightarrow A \in \mathbb{R} \quad \text { and } \quad \beta(N) \rightarrow \beta \in \mathbb{R}^{d}
$$

Main result

Suppose

$$
\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{1 i} \in \mathbb{R}^{d} \quad \& \quad x \sim F_{0} \quad \text { when } \quad Y=0
$$

Let $\alpha(N)$ and $\beta(N)$ be logistic regression estimates

Under mild conditions

$$
N e^{\alpha(N)} \rightarrow A \in \mathbb{R} \quad \text { and } \quad \beta(N) \rightarrow \beta \in \mathbb{R}^{d}
$$

where β solves

$$
\bar{x}=\frac{\int x e^{x^{\prime} \beta} d F_{0}(x)}{\int e^{x^{\prime} \beta} d F_{0}(x)}
$$

Interpretation

We have

$$
\bar{x}=\frac{\int x e^{x^{\prime} \beta} d F_{0}(x)}{\int e^{x^{\prime} \beta} d F_{0}(x)}
$$

β is the exponential tilt to take $E_{F_{0}}(X)$ onto \bar{x}

Interpretation

We have

$$
\bar{x}=\frac{\int x e^{x^{\prime} \beta} d F_{0}(x)}{\int e^{x^{\prime} \beta} d F_{0}(x)}
$$

β is the exponential tilt to take $E_{F_{0}}(X)$ onto \bar{x}
For $F_{0}=N\left(\mu_{0}, \Sigma_{0}\right)$

$$
\beta=\Sigma_{0}^{-1}\left(\bar{x}-\mu_{0}\right)
$$

Interpretation

We have

$$
\bar{x}=\frac{\int x e^{x^{\prime} \beta} d F_{0}(x)}{\int e^{x^{\prime} \beta} d F_{0}(x)}
$$

β is the exponential tilt to take $E_{F_{0}}(X)$ onto \bar{x}
For $F_{0}=N\left(\mu_{0}, \Sigma_{0}\right)$

$$
\beta=\Sigma_{0}^{-1}\left(\bar{x}-\mu_{0}\right)
$$

Compare

$$
\begin{aligned}
& \beta=\Sigma^{-1}\left(\mu_{1}-\mu_{0}\right) \text { for } \\
& X \sim N\left(\mu_{j}, \Sigma\right) \text { given } Y=j \in\{0,1\}
\end{aligned}
$$

Surprise!

Suppose β solves

$$
\bar{x}=\frac{\int x e^{x^{\prime} \beta} d F_{0}(x)}{\int e^{x^{\prime} \beta} d F_{0}(x)}
$$

Then only $\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}$ and F_{0} matter
Clearly n is the effective sample size

Surprise!

Suppose β solves

$$
\bar{x}=\frac{\int x e^{x^{\prime} \beta} d F_{0}(x)}{\int e^{x^{\prime} \beta} d F_{0}(x)}
$$

Then only $\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}$ and F_{0} matter
Clearly n is the effective sample size
We could:
replace $\left(x_{1 i}, 1\right)$ for $i=1, \ldots, n$
by just one point $(X, Y)=(\bar{x}, 1)$
and get the same β as $N \rightarrow \infty$

Surprise!

Suppose β solves

$$
\bar{x}=\frac{\int x e^{x^{\prime} \beta} d F_{0}(x)}{\int e^{x^{\prime} \beta} d F_{0}(x)}
$$

Then only $\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}$ and F_{0} matter
Clearly n is the effective sample size
We could:
replace $\left(x_{1 i}, 1\right)$ for $i=1, \ldots, n$
by just one point $(X, Y)=(\bar{x}, 1)$
and get the same β as $N \rightarrow \infty$
Upshot:
IILR downsamples the rare case to a single point Whether logistic works well or badly on given problem
Other classifiers (e.g. CART) would be different

Uses

The predictions are trivial

$$
\operatorname{Pr}(Y=1 \mid X=x) \rightarrow 0 \quad \text { for all } \quad x \in \mathbb{R}^{d}
$$

Uses

The predictions are trivial

$$
\operatorname{Pr}(Y=1 \mid X=x) \rightarrow 0 \quad \text { for all } \quad x \in \mathbb{R}^{d}
$$

But ratios are informative and simple

$$
\frac{\operatorname{Pr}(\widetilde{Y}=1 \mid X=\widetilde{x})}{\operatorname{Pr}(Y=1 \mid X=x)} \rightarrow e^{(\widetilde{x}-x)^{\prime} \beta}
$$

Uses

The predictions are trivial

$$
\operatorname{Pr}(Y=1 \mid X=x) \rightarrow 0 \quad \text { for all } \quad x \in \mathbb{R}^{d}
$$

But ratios are informative and simple

$$
\frac{\operatorname{Pr}(\tilde{Y}=1 \mid X=\widetilde{x})}{\operatorname{Pr}(Y=1 \mid X=x)} \rightarrow e^{(\widetilde{x}-x)^{\prime} \beta}
$$

For fraud or active learning, obtain Y corresponding to largest

- $e^{x^{\prime} \beta}$
(best chance to see a 1)

Uses

The predictions are trivial

$$
\operatorname{Pr}(Y=1 \mid X=x) \rightarrow 0 \quad \text { for all } \quad x \in \mathbb{R}^{d}
$$

But ratios are informative and simple

$$
\frac{\operatorname{Pr}(\widetilde{Y}=1 \mid X=\widetilde{x})}{\operatorname{Pr}(Y=1 \mid X=x)} \rightarrow e^{(\widetilde{x}-x)^{\prime} \beta}
$$

For fraud or active learning, obtain Y corresponding to largest

- $e^{x^{\prime} \beta}$
(best chance to see a 1)
- $v e^{x^{\prime} \beta} \quad$ (when case has value v)

Uses

The predictions are trivial

$$
\operatorname{Pr}(Y=1 \mid X=x) \rightarrow 0 \quad \text { for all } \quad x \in \mathbb{R}^{d}
$$

But ratios are informative and simple

$$
\frac{\operatorname{Pr}(\widetilde{Y}=1 \mid X=\widetilde{x})}{\operatorname{Pr}(Y=1 \mid X=x)} \rightarrow e^{(\widetilde{x}-x)^{\prime} \beta}
$$

For fraud or active learning, obtain Y corresponding to largest

- $e^{x^{\prime} \beta}$
(best chance to see a 1)
- $v e^{x^{\prime} \beta} \quad$ (when case has value v)
- $v e^{x^{\prime} \beta} / c \quad$ (and investigative cost c)

Logistic regression

Log likelihood (with $x_{i} \equiv x_{1 i}$)

$$
\sum_{i=1}^{n}\left\{\alpha+x_{i}^{\prime} \beta-\log \left(1+e^{\alpha+x_{i}^{\prime} \beta}\right)\right\}-\sum_{i=1}^{N}\left\{\log \left(1+e^{\alpha+x_{0 i}^{\prime} \beta}\right)\right\}
$$

Logistic regression

Log likelihood (with $x_{i} \equiv x_{1 i}$)

$$
\sum_{i=1}^{n}\left\{\alpha+x_{i}^{\prime} \beta-\log \left(1+e^{\alpha+x_{i}^{\prime} \beta}\right)\right\}-\sum_{i=1}^{N}\left\{\log \left(1+e^{\alpha+x_{0 i}^{\prime} \beta}\right)\right\}
$$

For large N

$$
\sum_{i=1}^{N}\left\{\log \left(1+e^{\alpha+x_{0 i}^{\prime} \beta}\right)\right\} \approx N \int \log \left(1+e^{\alpha+x^{\prime} \beta}\right) d F_{0}(x)
$$

Centering data

With foresight, center data at \bar{x}

$$
\operatorname{Pr}(Y=1 \mid X=x)=\frac{e^{\alpha+(x-\bar{x})^{\prime} \beta}}{1+e^{\alpha+(x-\bar{x})^{\prime} \beta}}
$$

Centering data

With foresight, center data at \bar{x}

$$
\operatorname{Pr}(Y=1 \mid X=x)=\frac{e^{\alpha+(x-\bar{x})^{\prime} \beta}}{1+e^{\alpha+(x-\bar{x})^{\prime} \beta}}
$$

Centered \log likelihood $\ell(\alpha, \beta)$

$$
n \alpha-\sum_{i=1}^{n} \log \left(1+e^{\alpha+\left(x_{i}-\bar{x}\right)^{\prime} \beta}\right)-N \int \log \left(1+e^{\alpha+(x-\bar{x})^{\prime} \beta}\right) d F_{0}(x)
$$

Centering data

With foresight, center data at \bar{x}

$$
\operatorname{Pr}(Y=1 \mid X=x)=\frac{e^{\alpha+(x-\bar{x})^{\prime} \beta}}{1+e^{\alpha+(x-\bar{x})^{\prime} \beta}}
$$

Centered log likelihood $\ell(\alpha, \beta)$

$$
n \alpha-\sum_{i=1}^{n} \log \left(1+e^{\alpha+\left(x_{i}-\bar{x}\right)^{\prime} \beta}\right)-N \int \log \left(1+e^{\alpha+(x-\bar{x})^{\prime} \beta}\right) d F_{0}(x)
$$

Because $\sum_{i=1}^{n}\left(\alpha+\left(x_{i}-\bar{x}\right)^{\prime} \beta\right)=n \alpha$

Sketch of the proof

Set $\frac{1}{N} \frac{\partial}{\partial \beta} \ell(\alpha, \beta)=0$

$$
0=-\frac{1}{N} \sum_{i=1}^{n} \frac{\left(x_{i}-\bar{x}\right) e^{\alpha+\left(x_{i}-\bar{x}\right)^{\prime} \beta}}{1+e^{\alpha+\left(x_{i}-\bar{x}\right)^{\prime} \beta}}-\int \frac{(x-\bar{x}) e^{\alpha+(x-\bar{x})^{\prime} \beta}}{1+e^{\alpha+(x-\bar{x})^{\prime} \beta}} d F_{0}(x)
$$

Sketch of the proof

Set $\frac{1}{N} \frac{\partial}{\partial \beta} \ell(\alpha, \beta)=0$
$0=-\frac{1}{N} \sum_{i=1}^{n} \frac{\left(x_{i}-\bar{x}\right) e^{\alpha+\left(x_{i}-\bar{x}\right)^{\prime} \beta}}{1+e^{\alpha+\left(x_{i}-\bar{x}\right)^{\prime} \beta}}-\int \frac{(x-\bar{x}) e^{\alpha+(x-\bar{x})^{\prime} \beta}}{1+e^{\alpha+(x-\bar{x})^{\prime} \beta}} d F_{0}(x)$
$N \rightarrow \infty$, so ignore the first sum:

$$
0=\int \frac{(x-\bar{x}) e^{\alpha+(x-\bar{x})^{\prime} \beta}}{1+e^{\alpha+(x-\bar{x})^{\prime} \beta}} d F_{0}(x)
$$

Sketch of the proof

Set $\frac{1}{N} \frac{\partial}{\partial \beta} \ell(\alpha, \beta)=0$
$0=-\frac{1}{N} \sum_{i=1}^{n} \frac{\left(x_{i}-\bar{x}\right) e^{\alpha+\left(x_{i}-\bar{x}\right)^{\prime} \beta}}{1+e^{\alpha+\left(x_{i}-\bar{x}\right)^{\prime} \beta}}-\int \frac{(x-\bar{x}) e^{\alpha+(x-\bar{x})^{\prime} \beta}}{1+e^{\alpha+(x-\bar{x})^{\prime} \beta}} d F_{0}(x)$
$N \rightarrow \infty$, so ignore the first sum:

$$
0=\int \frac{(x-\bar{x}) e^{\alpha+(x-\bar{x})^{\prime} \beta}}{1+e^{\alpha+(x-\bar{x})^{\prime} \beta}} d F_{0}(x)
$$

If $\alpha \rightarrow-\infty$, denominator $\rightarrow 1$, and so β solves:

$$
\int(x-\bar{x}) e^{\alpha+(x-\bar{x})^{\prime} \beta} d F_{0}(x)=0
$$

Example: $F_{0}=N(0,1), \bar{x}=1, n=1, N \rightarrow \infty$

Common values:

$$
x_{0 i} \sim N(0,1)
$$

Rare value

$$
\begin{aligned}
& n=1 \\
& x_{11}=1
\end{aligned}
$$

Example: $F_{0}=N(0,1), \bar{x}=1, n=1, N \rightarrow \infty$

Gaussian $\times 0$ and $\times 1=1$

Common values:

$$
x_{0 i} \sim N(0,1)
$$

Rare value

$$
\begin{aligned}
& n=1 \\
& x_{11}=1
\end{aligned}
$$

Example: $F_{0}=N(0,1), \bar{x}=1, n=1, N \rightarrow \infty$

Gaussian $\times 0$ and $\times 1=1$

Common values:
$x_{0 i} \sim N(0,1)$

Rare value

$$
\begin{aligned}
& n=1 \\
& x_{11}=1
\end{aligned}
$$

We should see $\beta \rightarrow \Sigma_{0}^{-1}\left(\bar{x}-\mu_{0}\right)=1^{-1}(1-0)=1$

Example: $F_{0}=N(0,1), \bar{x}=1, n=1, N \rightarrow \infty$
For $Y=0$ and $i=1, \ldots, N$ take

$$
x_{0 i}=\Phi^{-1}\left(\frac{i-1 / 2}{N}\right)
$$

We should see $\beta \rightarrow \Sigma_{0}^{-1}\left(\bar{x}-\mu_{0}\right)=1^{-1}(1-0)=1$
Logistic regression results

N	α	$N e^{\alpha}$	β
10	-3.19	0.4126	1.5746
100	-5.15	0.5787	1.0706
1,000	-7.42	0.6019	1.0108
10,000	-9.71	0.6058	1.0017
100,000	-12.01	0.6064	1.0003
∞			1

Next: two counterexamples

We will need conditions for the exponential tilting to work.
One counterexample has a Cauchy distribution.
The other a uniform.

Example: now $F_{0}=$ Cauchy

$$
\begin{aligned}
f_{0}(x) & =\frac{1}{\pi} \frac{1}{1+x^{2}} \\
x_{0 i} & =F_{0}^{-1}\left(\frac{i-1 / 2}{N}\right), \quad i=1, \ldots, N \\
x_{1 i} & =1, \quad i=1 \quad \text { only }
\end{aligned}
$$

Example: now $F_{0}=$ Cauchy

$$
\begin{aligned}
f_{0}(x) & =\frac{1}{\pi} \frac{1}{1+x^{2}} \\
x_{0 i} & =F_{0}^{-1}\left(\frac{i-1 / 2}{N}\right), \quad i=1, \ldots, N \\
x_{1 i} & =1, \quad i=1 \quad \text { only }
\end{aligned}
$$

Logistic regression results

N	α	$N e^{\alpha}$	β	$N e^{\beta}$
10	-2.36	0.94100	0.1222260	1.2222
100	-4.60	0.99524	0.0097523	0.9752
1,000	-6.90	0.99953	0.0009537	0.9536
10,000	-9.21	0.99995	0.0000952	0.9515
100,000	-11.51	0.99999	0.0000095	0.9513

Example: now $F_{0}=$ Cauchy

$$
\begin{aligned}
f_{0}(x) & =\frac{1}{\pi} \frac{1}{1+x^{2}} \\
x_{0 i} & =F_{0}^{-1}\left(\frac{i-1 / 2}{N}\right), \quad i=1, \ldots, N \\
x_{1 i} & =1, \quad i=1 \quad \text { only }
\end{aligned}
$$

Logistic regression results

N	α	$N e^{\alpha}$	β	$N e^{\beta}$
10	-2.36	0.94100	0.1222260	1.2222
100	-4.60	0.99524	0.0097523	0.9752
1,000	-6.90	0.99953	0.0009537	0.9536
10,000	-9.21	0.99995	0.0000952	0.9515
100,000	-11.51	0.99999	0.0000095	0.9513

$\beta(N) \rightarrow 0 \quad$ Cauchy has no mean to tilt onto $\bar{x}!$

Example: now $F_{0}=U[0,1]$ and $n_{1}=2$

Common values:

$$
x_{0 i} \sim U(0,1)
$$

Rare values:

$$
\begin{aligned}
& n=2 \\
& x_{11}=0.5 \\
& x_{12}=2.0
\end{aligned}
$$

Example: now $F_{0}=U[0,1]$ and $n_{1}=2$

Unif $\times 0$ and $\times 1=.5,2$
Common values:

$$
x_{0 i} \sim U(0,1)
$$

Rare values:

$$
\begin{aligned}
& n=2 \\
& x_{11}=0.5 \\
& x_{12}=2.0
\end{aligned}
$$

Example: now $F_{0}=U[0,1]$ and $n_{1}=2$

Unif $\times 0$ and $\times 1=.5,2$
Common values:

$$
x_{0 i} \sim U(0,1)
$$

Rare values:

$$
\begin{aligned}
& n=2 \\
& x_{11}=0.5 \\
& x_{12}=2.0
\end{aligned}
$$

We can't tilt $U(0,1)$ to have mean $\bar{x}=1.25$

Example: now $F_{0}=U[0,1]$ and $n_{1}=2$

$$
\begin{aligned}
& x_{0 i}=\frac{i-1 / 2}{N}, \quad i=1, \ldots, N \\
& x_{11}=\frac{1}{2}, \quad x_{12}=2 \quad \text { only }
\end{aligned}
$$

Example: now $F_{0}=U[0,1]$ and $n_{1}=2$

$$
\begin{aligned}
& x_{0 i}=\frac{i-1 / 2}{N}, \quad i=1, \ldots, N \\
& x_{11}=\frac{1}{2}, \quad x_{12}=2 \quad \text { only }
\end{aligned}
$$

Logistic regression results

N	α	$N e^{\alpha}$	β	e^{β} / N
10	-3.82	0.2184	2.85	1.74
100	-7.13	0.0804	4.19	0.66
1,000	-10.71	0.0223	5.82	0.34
10,000	-14.52	0.0050	7.62	0.20
100,000	-18.49	0.0009	9.54	0.14

Example: now $F_{0}=U[0,1]$ and $n_{1}=2$

$$
\begin{aligned}
& x_{0 i}=\frac{i-1 / 2}{N}, \quad i=1, \ldots, N \\
& x_{11}=\frac{1}{2}, \quad x_{12}=2 \quad \text { only }
\end{aligned}
$$

Logistic regression results

N	α	$N e^{\alpha}$	β	e^{β} / N
10	-3.82	0.2184	2.85	1.74
100	-7.13	0.0804	4.19	0.66
1,000	-10.71	0.0223	5.82	0.34
10,000	-14.52	0.0050	7.62	0.20
100,000	-18.49	0.0009	9.54	0.14

$\beta(N) \rightarrow \infty \quad$ also $\quad \bar{x}=\frac{5}{4} \notin[0,1] \quad$ (can't tilt mean so far)

We need conditions:

Tail of F_{0} not too heavy

$$
\int\|x\| e^{x^{\prime} \beta} d F_{0}(x)<\infty
$$

to fix problem from Cauchy example tail weight not an issue in finite samples

We need conditions:

Tail of F_{0} not too heavy

$$
\int\|x\| e^{x^{\prime} \beta} d F_{0}(x)<\infty
$$

to fix problem from Cauchy example tail weight not an issue in finite samples

Overlap between F_{0} and \bar{x}
to fix problem from $U(0,1)$ example overlap is an issue in finite samples but we need stronger overlap condition

Overlap conditions

F has $x^{*} \in \mathbb{R}^{d}$ surrounded if

- For all unit vectors $\theta \in \mathbb{R}^{d}$
- $\operatorname{Pr}\left(\left(x-x^{*}\right)^{\prime} \theta>\epsilon \mid x \sim F_{0}\right)>\delta$
- for some $\epsilon>0$ and $\delta>0$

Overlap conditions

F has $x^{*} \in \mathbb{R}^{d}$ surrounded if

- For all unit vectors $\theta \in \mathbb{R}^{d}$
- $\operatorname{Pr}\left(\left(x-x^{*}\right)^{\prime} \theta>\epsilon \mid x \sim F_{0}\right)>\delta$
- for some $\epsilon>0$ and $\delta>0$

For $N \rightarrow \infty$ we need:

- F_{0} to have $\bar{x}=\frac{1}{n_{1}} \sum_{i=1}^{n_{1}} x_{1 i}$ surrounded

Overlap conditions

F has $x^{*} \in \mathbb{R}^{d}$ surrounded if

- For all unit vectors $\theta \in \mathbb{R}^{d}$
- $\operatorname{Pr}\left(\left(x-x^{*}\right)^{\prime} \theta>\epsilon \mid x \sim F_{0}\right)>\delta$
- for some $\epsilon>0$ and $\delta>0$

For $N \rightarrow \infty$ we need:

- F_{0} to have $\bar{x}=\frac{1}{n_{1}} \sum_{i=1}^{n_{1}} x_{1 i}$ surrounded

For finite samples, Silvapulle (1981, JRSS-B)

- If model has intercept and x 's are full rank
- We need some x_{0} surrounded by both \hat{F}_{1} and \hat{F}_{0}

Theorem

Let $n \geq 1$ and $x_{1}, \ldots, x_{n} \in \mathbb{R}^{d}$ be fixed. Suppose that

1. F_{0} surrounds $\bar{x}=\sum_{i=1}^{n} x_{i} / n$
2. $\int\|x\| e^{x^{\prime} \beta} d F_{0}(x)<\infty \quad \forall \beta \in \mathbb{R}^{d}$

Theorem

Let $n \geq 1$ and $x_{1}, \ldots, x_{n} \in \mathbb{R}^{d}$ be fixed. Suppose that

1. F_{0} surrounds $\bar{x}=\sum_{i=1}^{n} x_{i} / n$
2. $\int\|x\| e^{x^{\prime} \beta} d F_{0}(x)<\infty \quad \forall \beta \in \mathbb{R}^{d}$

Then the maximizer $(\hat{\alpha}, \hat{\beta})$ of ℓ satisfies

$$
\lim _{N \rightarrow \infty} \frac{\int e^{x^{\prime} \hat{\beta}} x d F_{0}(x)}{\int e^{x^{\prime} \hat{\beta}} d F_{0}(x)}=\bar{x} .
$$

Theorem

Let $n \geq 1$ and $x_{1}, \ldots, x_{n} \in \mathbb{R}^{d}$ be fixed. Suppose that

1. F_{0} surrounds $\bar{x}=\sum_{i=1}^{n} x_{i} / n$
2. $\int\|x\| e^{x^{\prime} \beta} d F_{0}(x)<\infty \quad \forall \beta \in \mathbb{R}^{d}$

Then the maximizer $(\hat{\alpha}, \hat{\beta})$ of ℓ satisfies

$$
\lim _{N \rightarrow \infty} \frac{\int e^{x^{\prime} \hat{\beta}} x d F_{0}(x)}{\int e^{x^{\prime} \hat{\beta}} d F_{0}(x)}=\bar{x} .
$$

Steps

1. show $\alpha(N)$ and $\beta(N)$ exist for each N
2. show $N e^{\hat{\alpha}(N)}$ is bounded
3. show $\|\hat{\beta}\|$ is bounded
4. then take partial derivatives as before

Computation

Given an approximation to F_{0} :

Solve

$$
0=\int(x-\bar{x}) e^{x^{\prime} \beta} d F_{0}(x)
$$

d equations
Same as

$$
0=g(\beta) \equiv \int(x-\bar{x}) e^{(x-\bar{x})^{\prime} \beta} d F_{0}(x)
$$

I.E. Minimize

$$
f(\beta)=\int e^{(x-\bar{x})^{\prime} \beta} d F_{0}(x)
$$

Hessian is

$$
H(\beta)=\int(x-\bar{x})(x-\bar{x})^{\prime} e^{(x-\bar{x})^{\prime} \beta} d F_{0}(x) \quad \text { convex }
$$

Newton step

$$
\beta \leftarrow \beta-H^{-1} g
$$

Cost per iteration: $O\left(d^{3}\right)$ vs $O\left(N d^{2}\right)$ or $O\left(n d^{2}\right)$.

Mixture of Gaussians

$$
F_{0}=\sum_{k=1}^{K} \lambda_{k} N\left(\mu_{k}, \Sigma_{k}\right) \quad \lambda_{k}>0 \quad \sum_{k} \lambda_{k}=1
$$

Tilt a Gaussian, get a Gaussian:

$$
e^{(x-\bar{x})^{\prime} \beta} e^{-\frac{1}{2}(x-\mu)^{\prime} \Sigma^{-1}(x-\mu)}=e^{(\mu-\bar{x})^{\prime} \beta} e^{-\frac{1}{2}(x-\mu-\Sigma \beta)^{\prime} \Sigma^{-1}(x-\mu-\Sigma \beta)}
$$

Newton step is

$$
\begin{aligned}
\beta & \leftarrow \beta-H^{-1} g \\
g & =\sum_{k=1}^{K} \lambda_{k} e^{\left(\mu_{k}-\bar{x}\right)^{\prime} \beta}\left(\widetilde{\mu}_{k}-\bar{x}\right), \quad \widetilde{\mu}_{k}=\mu_{k}+\Sigma_{k} \beta \\
H & =\sum_{k=1}^{K} \lambda_{k} e^{\left(\mu_{k}-\bar{x}\right)^{\prime} \beta}\left(\Sigma_{k}+\left(\bar{x}-\widetilde{\mu}_{k}\right)\left(\bar{x}-\widetilde{\mu}_{k}\right)^{\prime}\right)
\end{aligned}
$$

Drug discovery example

Zhu, Su, Chipman
Technometrics, 2005 $Y=1$ for active drug $Y=0$ for inactive drug $d=6$ features 29,821 chemicals only 608 active $\approx 2 \%$
$x_{1} x_{3}$ strongest
Group means plotted

Drug discovery example ctd

Fits
Plain logistic (608 ones), vs
1 one at \bar{x}_{1}
Upshot
Same ordering, ROC precision-recall etc.

Drug discovery example ctd

ROC curves

Plain logistic
1 one at \bar{x}_{1}

Drug discovery example ctd

Fits

Plain logistic, vs,
Pretend F_{0} is Gaussian
And use \bar{x}_{1}

Upshot
Slight difference
For easy 0s
Mixture model might improve

The drug data was not a typical example

Drug data had
very bad separation
Poor ROC
\bar{x} very surrounded

The drug data was not a typical example

Drug data had
very bad separation
Poor ROC
\bar{x} very surrounded
Artificial version
$x_{1 i} \leftarrow x_{1 i}+\delta$
$\delta=(s / 10, \ldots, s / 10)$
$s=0, \ldots, 10$
Original ROCs in blue
Lumped in red

The drug data was not a typical example

Drug data had
very bad separation Poor ROC
\bar{x} very surrounded
Artificial version
$x_{1 i} \leftarrow x_{1 i}+\delta$
$\delta=(s / 10, \ldots, s / 10)$
$s=0, \ldots, 10$
Original ROCs in blue
Lumped in red

The drug data was not a typical example

Drug data had
very bad separation Poor ROC
\bar{x} very surrounded
Artificial version
$x_{1 i} \leftarrow x_{1 i}+\delta$
$\delta=(s / 10, \ldots, s / 10)$
$s=0, \ldots, 10$
Original ROCs in blue
Lumped in red

Upshot
Still only uses \bar{x}

Thoughts for fraud detection

Non fraud data, $Y=0$
Change slowly over time
Large sample size
So build a rich model for F_{0}
Update rarely

Thoughts for fraud detection

Non fraud data, $Y=0$
Change slowly over time
Large sample size
So build a rich model for F_{0}
Update rarely
Fraud data, $Y=1$
May change rapidly in response to detection
May have different flavors
Clusters appear, disappear, move, change size Rapidly refit model using per cluster \bar{x}

Acknowledgments

- Paul Louisell for comments
- NSF for funds
- Host: University of Florida
- Organizers: Agresti, Young, Daniels, Casella
- Travel help: Robyn Crawford

