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Longitudinal/Clustered Data

• Longitudinal outcomes or correlated measurements
collected from the same subjects.



Longitudinal/Clustered Data

• Longitudinal outcomes or correlated measurements
collected from the same subjects.

• Example: CD4 Count Data of HIV seroconverters
(Zeger & Diggle, 1994):

♠ n = 369 subjects.
♠ Response Y : CD4 counts
♠ An overall time trend, θ(T ), T : years since sero-

conversion.
♠ Other covariates, X: age, packs of cigarettes, drug

use, number of sex partners, and depression score.



Outline
• Data structure and model.

• Generalized Estimating Equation –parametric
nonparametric, and semiparametric.

• Interesting issues in the existing approaches:
– global or local?

• A new estimation approach.

• Theoretical properties.

• Numerical investigations.



Model and Basic Data Structure
• Yi = (Yi1, . . . , Yimi)

T : responses.

• Wi = (Wi1, . . . ,Wimi): covariates.

• E(Yij|Wi) = µ (Wij) = µij. Var(Yi|Wi) = Σi.

♠ Parametric: W = X
? µij = µ

(
X t
ijβ
)
.

♠ Nonparametric: W = T
? µij = µ {θ (Tij)}.
♠ Semiparametric: W = (X,T )
? µij = µ

{
X t
ijβ + θ (Tij)

}
.

• Assume mi being finite and µ being a known link.



GEE Marginal Estimator
• Liang & Zeger (1986), Zeger & Liang (1986)

♠ Assume Vi (working covariance matrix) on Σi.
? Vi = S

1/2
i Ri(τ)S1/2

i ,
? Si: diagonal matrix with marginal variances of Yij’s,
? Ri: invertible working correlation matrix.

♠ β̂ is consistent even though Vi 6= Σi; e.g. working indepen-
dence (WI) estimator with Ri = Imi×mi

.
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• Parametric: Let ∆i=diag{µ(1)
ij },

n∑
i=1

∂µ(Xiβ)T

∂β
V −1
i (Yi − µi) =

n∑
i=1

{
XT
i ∆i

}
V −1
i (Yi − µi) = 0,

♠ Most efficient estimator obtained when Vi = Σi.



Non/Semiparametric Marginal Estimator

• A non-exhausting reference list:

♠ Severini & Staniswalis (1994)
♠ Zeger & Diggle (1994)
♠ Wild & Yee (1996)
♠ Hoover, et al. (1998)
♠ Fan & Zhang (2000)
♠ Lin & Yin (2001), with discussion.
♠ Lin & Carroll (2000, 2001)



Nonparametric

• Severini & Staniswalis (SS):

n∑
i=1

{
Ti(t)T∆i(t)

}
V −1
i (t)Kih(t){Yi − µi(α, t)} = 0, where

Kih(t) = diag{Kh(Tij − t)}, µij(α, t) = µ{α0 + α1(Tij − t)/h},
and θ̂(t) = α̂0(t).

• Lin & Carroll (LC):

n∑
i=1

{
Ti(t)T∆i(t)

}
K

1/2
ih (t)V −1

i (t)K1/2
ih (t){Yi − µi(α, t)} = 0,



Semiparametric: LC:

♠ Estimating θ: for a given β,

µij(t, α, β) = µ{XT
ijβ + α0 + α1(Tij − t)/h},

and θ̂(t, β) = α̂0(t, β). Also let Vi = V1i.
♠ Estimating β: profile estimating equations (SS).

n∑
i=1

∂µ{Xiβ + θ̂(Ti;β)}T

∂β
V −1

2i

[
Yi − µ{Xiβ + θ̂(Ti;β)}

]
= 0,

• Taking R1i = I and replacing profile by backfitting result the
estimate of Zeger & Diggle (1994).

• Note: for independent data, the two have equivalent asymptotic
variance (Opsomer & Ruppert, 1999).



Several Interesting Issues
Under the estimation framework described:

• Best estimated θ requiring Ri = I – quite different
from the parametric GEE!.

• In the semiparametric setting,
√
n consistency of β̂

requires either Ri = I or under-smoothing.

• LC still recommended R1i = R2i = I under semipa-
rametric setting.

• Regardless what Ri to be used, β̂ cannot be semipa-
rametric efficient, not even under MVN.

• Numerical results show that β̂ has smaller variances
if accounting for correlation in θ̂ (J-L Wang).



• Numerical results show that β̂(profile) and β̂(backfitting)
have different variation for correlated data.

• The semiparametric efficient score under MVN im-
plies that accounting for correlation in θ̂ is required!

• All results seem to imply that to obtain an efficient β̂,
the θ̂ needs to be

♠ “local”–to eliminate biases.

♠ “global”–to reduce variation.



A New Estimation Approach
• Estimating θ(t) by

n∑
i=1

mi∑
j=1

Kh(t− Tij)
{
µ

(1)
ij G

t
ij(t)

}
V −1
i (Yi − µ∗) = 0,

where θ̂ = α̂0, and

µ∗ = µ
[
I(` = j){α0 + α1(t− Tij)/h}+ I(` 6= j)θ̃(Ti`)

]
,

µ
(1)
ij G

t
ij(t) is again the derivative term, and θ̃ is a con-

sistent estimate of θ; Wang (2003)

• In the semiparametric setting, estimate β using pro-
file method as before; Wang, Carroll & Lin (2003).



Consider a linear case where Yij = θ(Tij) + εij,

θ̂(t) '

∑
i

∑
jKh(Tij − t)

[
(vi)jjYij +

∑
` 6=j(v

i)j`
{
Yil − θ̃il

}]
∑
i

∑
jKh(Tij − t) (vi)jj

,

where (vi)j` denotes the (j, `) entry of (V i)−1 .

• Once point j in cluster i is used, all points within clu-
ster i are used – global.

• Only the contribution of point j to the estimate is
through its response, the rest points are through re-
siduals – local.



Theoretical Properties

• Obtain the smallest variation in θ̂ when Vi = Σi (non-
& semiparametric) – this is consistent with the fin-
dings in parametric scenario.

• For the 1st order properties of θ̂, only one-step up-
date from the WI estimate of θ is needed to get the
minimum asymptotic variance.

• Variance of the proposed θ̂ is uniformly smaller than
or equal to that of the WI estimator.

• No under-smoothing is needed to obtain
√
n consi-

stency for β̂.



• β̂ is asymptotically normal.

• Under MVN, β̂ is semiparametric efficient.

• In general cases, β̂ is more efficient than the WI esti-
mator.

• θ̂ (profile) is at least as efficient as θ̂ (backfitting) for a
wide selections of θ̂ under mild conditions (Hu, Wang
& Carroll, 2003).

• Under linear link, kernel and spline are “equivalent”,
an extension of Silverman (1984); see Lin, Wang,
Welsh & Carroll (2003).



Numerical Studies
• Simulation study for the nonparametric estimator.

• Semiparametric efficiency evaluation.

• CD4 data example.

• In the simulation studies:
♠ θ(t) = sin(2t).
♠ All correlation structures considered are compound

symmetry.
♠ For nonparametric setting, we consider WI, one-

step update and fully iterated estimators.
♠ For semiparametric setting, we consider WI, Zeger-

Diggle–profile (ZD) and the proposed estimators.
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Fig. 1. Quantile plot of R for the one-step and fully iterated estimators vs the
WI estimator among 500 simulated datasets.



Numerical Efficiency Study for β
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Model: Yij = Xijβ + θ(Tij) + εij. X, T , ε: zero mean Gaussian

process with correlation parameters, ρX, ρT , and ρ, respectively.
cor(Xij, Tik) = δjkρxt; δjj = 1, δjk = .6, ρT = 0.3,

ρX = ρxt = 0.3 or 0.6.



CD4 Data Example
• CD4 Count Data of HIV seroconverters (Zeger & Dig-

gle, 1994)
♠ n = 369 subjects; Y : CD4 counts.
♠ An overall time trend, θ(T ), T : years since sero-

conversion.
♠ Other covariates, X: age, packs of cigarettes, drug

use, number of sex partners, and depression score.
♠ Working covariance structure–“random intercept

plus serial correlation and measurement error” of
ZD.
? a random intercept and an exponential decay se-

rial correlation by specifying the covariance struc-
ture as τ 2I + ν2J + ω2H, where J is a matrix of
1’s and H(j, k) = exp(−α|Tij − Tik|).



Regression Coefficients in the CD4 cell counts study in HIV seroconverters
using the Semiparametric Efficient and the Working Independence Estimate.

For the semiparametric efficient estimates, the working covariance parameter,
ξ̂ =(11.32, 3.26, 22.15, 0.23) for Scenario I, and
ξ̂ = (14.1, 6.9, 16.1, 0.22), for Scenario II.

Working Independ Semi. Efficient Semi. Efficient
Scenario I Scenario II

Estimate SE Estimate SE Estimate SE
Age .014 .035 .010 .033 .008 .032
Smoking .984 .182 .549 .144 .579 .139
Drug 1.049 .526 .584 .331 .584 .335
Sex Partners - .054 .059 .080 .038 .078 .039
Depression - .033 .021 -.045 .013 -.046 .014



Estimated θ for CD4 Data
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