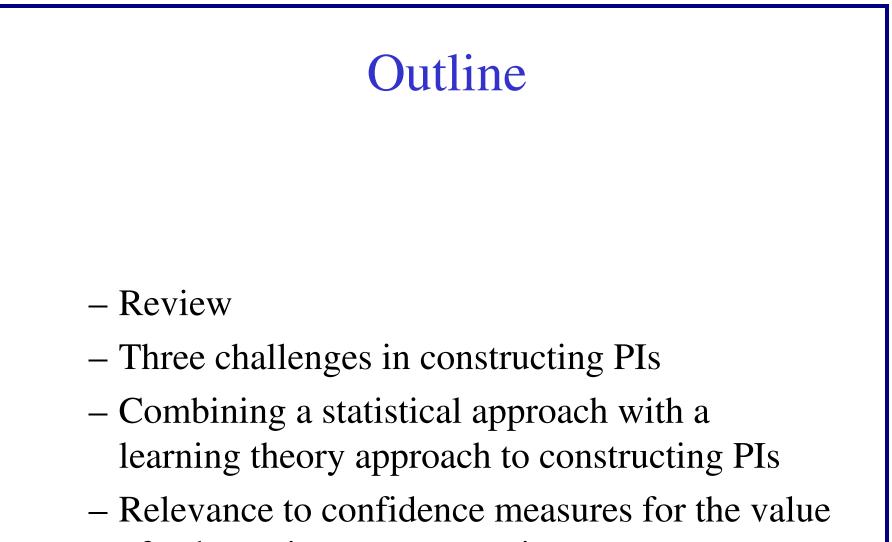
A Prediction Interval for the Misclassification Rate

E.B. Laber & S.A. Murphy



of a dynamic treatment regime.

- X is the vector of features in \mathbb{R}^q , Y is the binary label in $\{-1,1\}$

- Misclassification Rate: $err(f) = E[1\{Y \neq f(X)\}]$

- Data: N iid observations of (Y,X)
- Given a space of classifiers, ${\cal F}$, and the data, use some method to construct a classifier, \widehat{f}

– The goal is to provide a PI for $err(\hat{f})$

- Since the loss function $1{Y \neq f(X)}$ is not smooth, one commonly uses a smooth surrogate loss to estimate the classifier
- Surrogate Loss: L(Y,f(X))

$$-\widehat{f} \in \min_{f \in \mathcal{F}} E_N[L(Y, f(X))]$$

 $(E_N \text{ denotes expectation with respect to empirical distribution})$

General approach to providing a PI:

- We estimate $err(\hat{f})$ using the data, resulting in $err(\hat{f})$
- Derive approximate distribution for

$$\left(\widehat{err(\widehat{f})} - err(\widehat{f})\right)$$

– Use this approximate distribution to construct a prediction interval for $err(\hat{f})$

A common choice for $err(\hat{f})$ is the resubstitution error or training error:

$$e\widehat{rr}_{rs}(f) = E_n[\mathbf{1}\{Y \neq f(X)]$$

evaluated at $f = \hat{f}$ e.g. if $f(x) = sign(x^T\beta)$) then

$$err(\widehat{f}) = E_n[\mathbf{1}\{YX^T\widehat{\beta} < \mathbf{0}\}]$$

Three challenges

- 1) \mathcal{F} is too large leading to over-fitting and $E\left[\widehat{err(\hat{f})} - err(\hat{f})\right] < 0$ (negative bias)
- 2) $err(f) = E[1{Y \neq f(X)}]$ is a non-smooth function of *f*.

3) $err(\hat{f})$ may behave like an extreme quantity

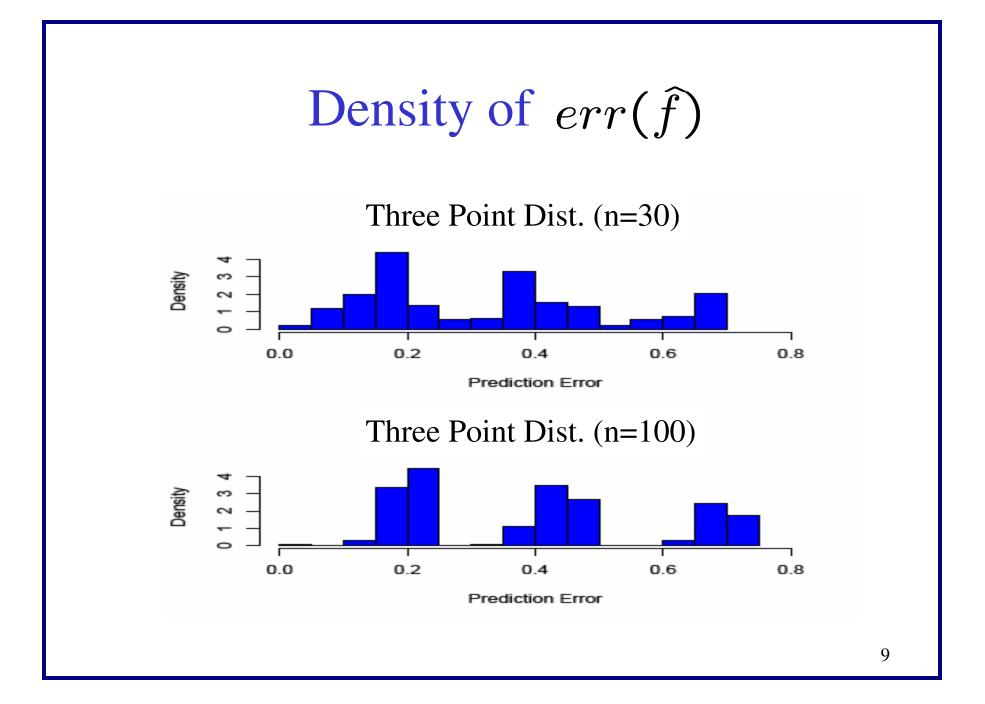
No assumption that \widehat{f} is close to optimal.

A Challenge

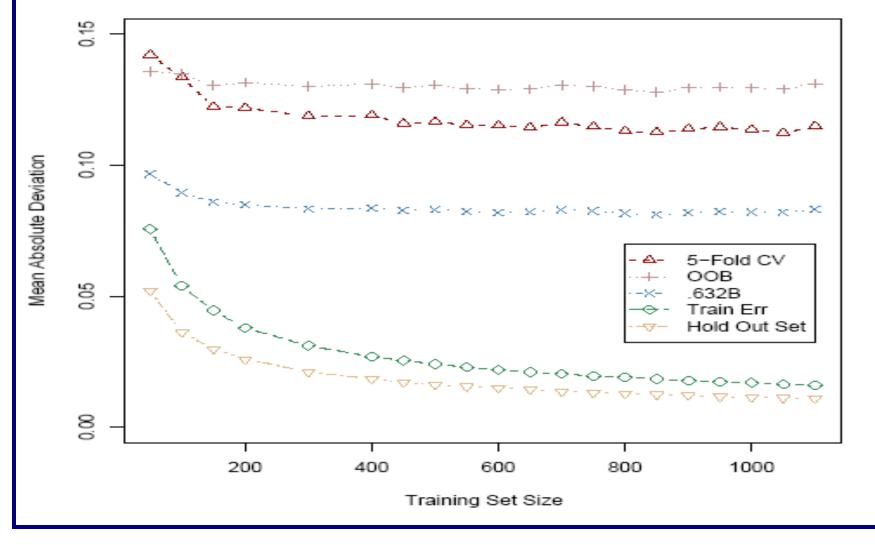
2) $err(f) = E[1{Y \neq f(X)}]$ is non-smooth.

Example: The unknown optimal classifier has quadratic decision boundary. We fit, by least squares, a linear decision boundary $f(x) = sign(\beta_0 + \beta_1 x)$

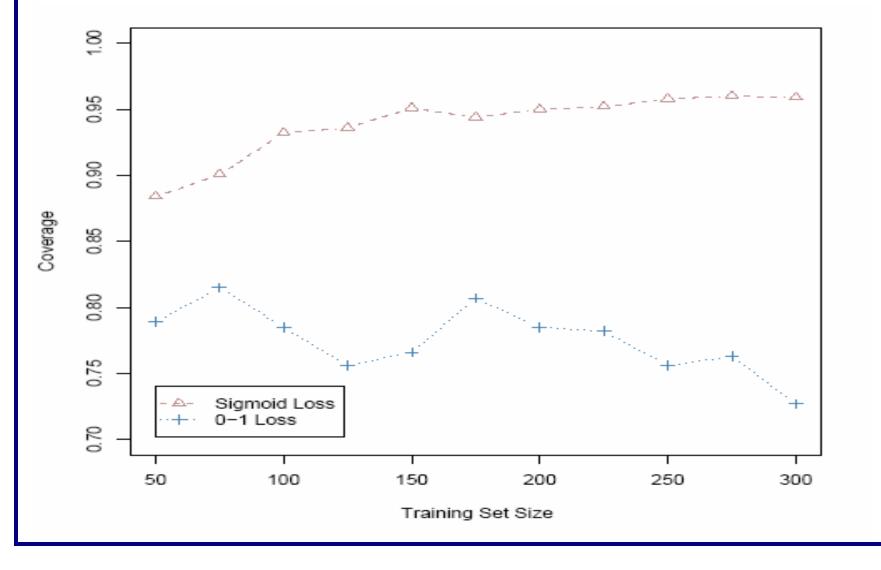
 $err(f) = E[1\{Y(\beta_0 + \beta_1 X) < 0)\}]$

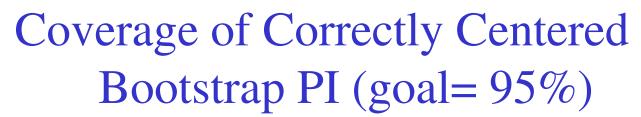


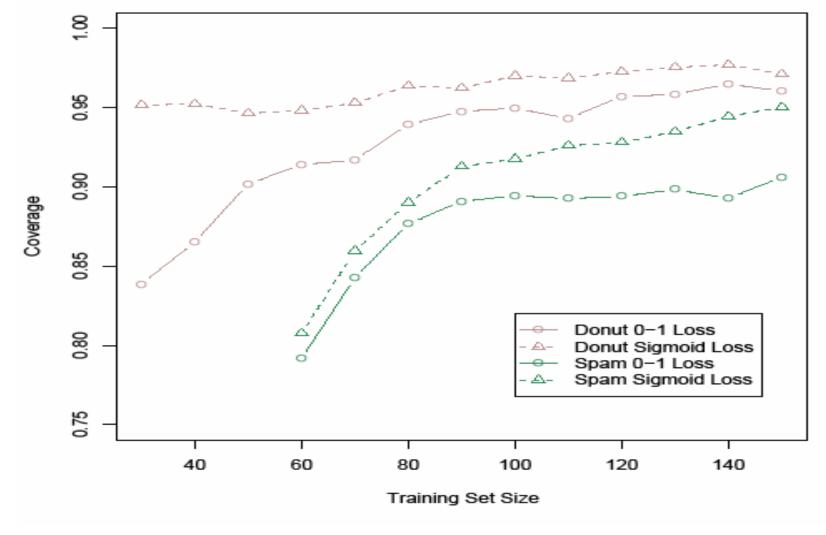
Bias of Common $err(\hat{f})$ on Three Point Example



Coverage of Bootstrap PI in Three Point Example (goal =95%)







Coverage of 95% PI (Three Point Example)

Sample Size	Bootstrap Percentile	Yang CV	CUD- Bound
30	.79	.75	.97
50	.79	.62	.97
100	.78	.46	.96
200	.78	.35	.96

Non-smooth

In general the distribution of

$$\sqrt{N}(err(\widehat{f}) - err(\widehat{f}))$$

may not converge as the training set increases (variance never settles down).

Intuition

Consider the large sample variance of $\sqrt{N} \left(E_N [\mathbf{1} \{ Y X^T \beta < \mathbf{0}] - E[\mathbf{1} \{ Y X^T \beta < \mathbf{0}] \right)$ Variance is p(1-p), $p = P[YX^T\beta < 0]$ if in place of β we put $\hat{\beta}$ where $\hat{\beta}$ is close to 0 then due to the non-smoothness in $p = P(YX^T\beta < 0)$ at $\beta = 0$ we can get jittering. 15

PIs from Learning Theory Given a result of the form: for all N $P\left[\sup_{f \in \mathcal{G}_N} |\widehat{err}_{rs}(f) - err(f)| < B_{N,\delta}\right] > 1 - \delta$ where \hat{f} is known to belong to \mathcal{G}_N and $e\widehat{rr}_{rs}(f) = E_N[\mathbf{1}\{Y \neq f(X)]$

forms a conservative $1-\delta$ PI:

$$e\widehat{rr}_{rs}(\widehat{f}) - B_{N,\delta} < err(\widehat{f}) < e\widehat{rr}_{rs}(\widehat{f}) + B_{N,\delta}$$

Combine statistical ideas with learning theory ideas

Construct a prediction interval for

$$\sup_{f \in \mathcal{G}_N} |e\widehat{rr}_{rs}(f) - err(f)|$$

where \mathcal{G}_N is chosen to be small yet contain \widehat{f}

---from this PI deduce a conservative PI for $err(\hat{f})$

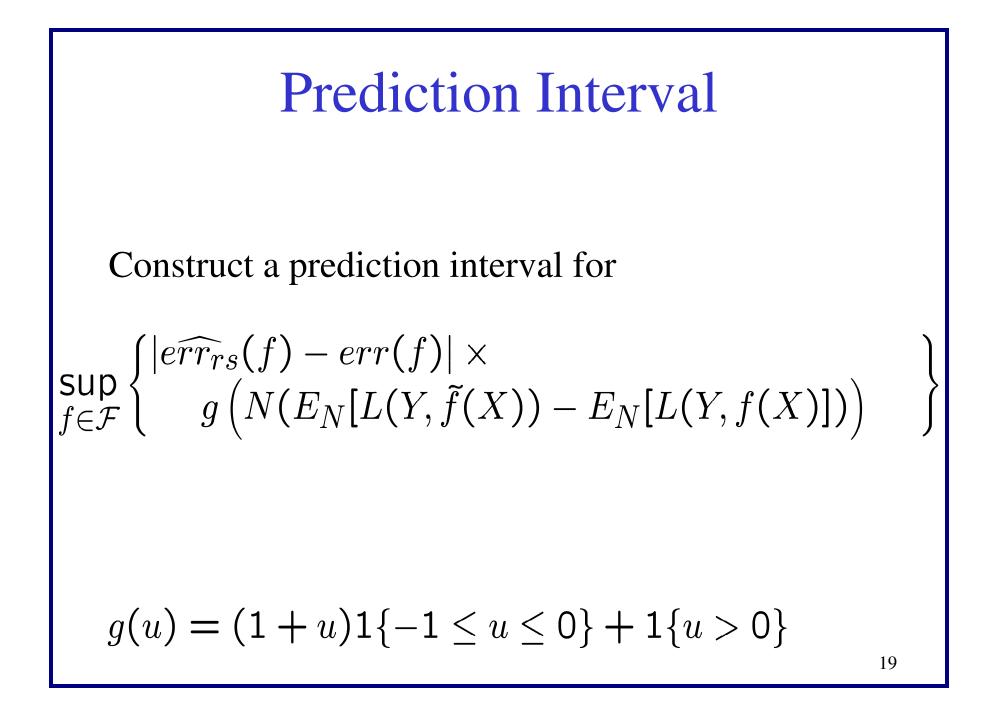
---use the surrogate loss to perform estimation and to construct G_N

Construct a prediction interval for $\sup_{f \in \mathcal{G}_N} |e\widehat{rr}_{rs}(f) - err(f)|$

--- \mathcal{G}_N should contain all f that are close to \widehat{f} --- all f for which

 $E_N[L(Y,\tilde{f}(X)) - E_N[L(Y,f(X)] > 0$

--- \tilde{f} is the "limiting value" of \hat{f} ; $\tilde{f} = \arg \max_{f \in \mathcal{F}} E[L(Y, f(X))]$



$$\begin{aligned} & \left| \widehat{err(\hat{f})} - err(\hat{f}) \right| \lesssim \left| \widehat{err_{rs}}(\hat{f}) - err(\hat{f}) \right| \\ &= \\ & \left| \widehat{err_{rs}}(\hat{f}) - err(\hat{f}) \right| \times \\ & g\left(N(E_N[L(Y,\tilde{f}(X)) - E_N[L(Y,\hat{f}(X)])) \right) \\ &\leq \\ & \sup_{f \in \mathcal{F}} \begin{cases} \left| \widehat{err_{rs}}(f) - err(f) \right| \times \\ & g\left(N(E_N[L(Y,\tilde{f}(X)) - E_N[L(Y,f(X)])) \right) \\ &\leq \end{cases} \end{aligned} \end{aligned}$$

Bootstrap

We use bootstrap to obtain an estimate of an upper percentile of the distribution of

$$\sup_{f \in \mathcal{F}} \begin{cases} (\widehat{err_{rs}}(f) - err(f)) \times \\ g\left(N(E_N[L(Y, \tilde{f}(X)) - E_N[L(Y, f(X)]))\right) \end{cases}$$

to obtain b_U . The PI is then

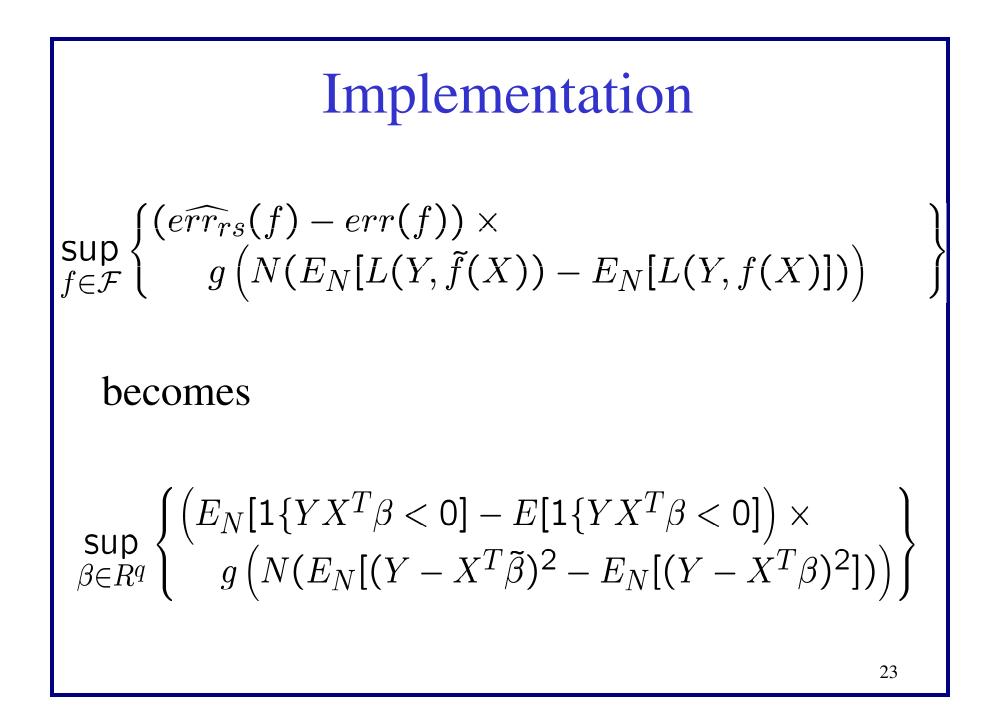
$$\widehat{err(\widehat{f})} - b_L \leq err(\widehat{f}) \leq \widehat{err(\widehat{f})} + b_U$$

Implementation

- Approximation space for the classifier is linear: $\mathcal{F} = \{f(x) = sign(x^T\beta) : \beta \in R^p\}$
- Surrogate loss is least squares:

$$L(y, f(x)) = (y - x^T \beta)^2$$

•
$$err(\hat{f}) = err_{rs}(\hat{f})$$
 (resubstitution error)

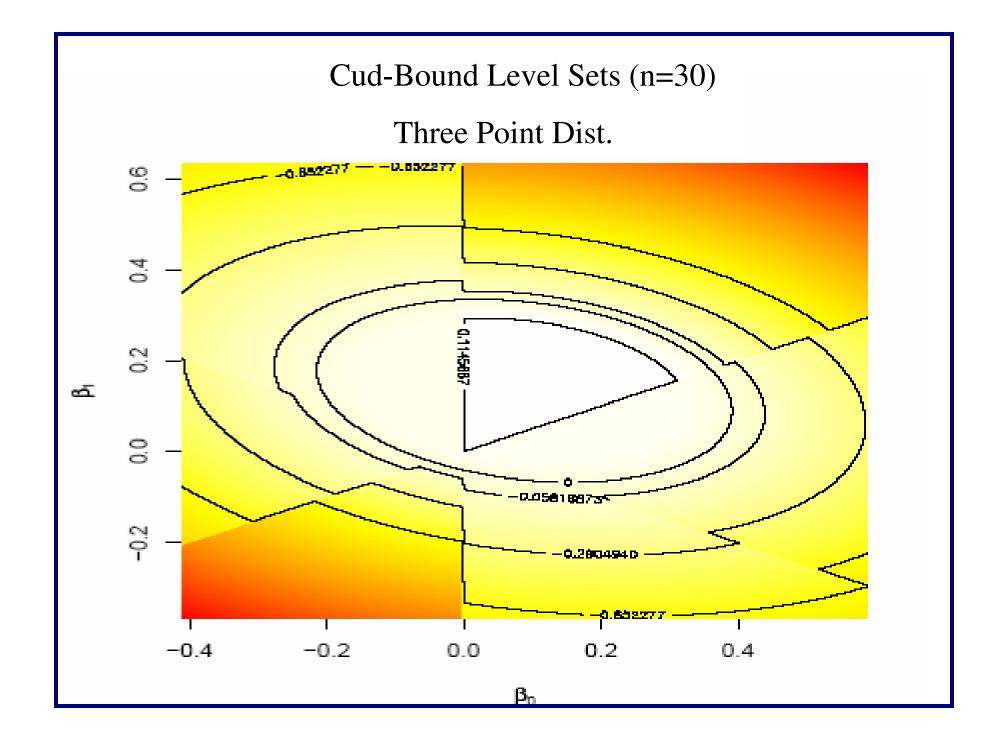


Implementation

• Bootstrap version:

$$\sup_{\beta \in R^{q}} \left\{ \begin{bmatrix} E_{N}^{*} [\mathbb{1}\{YX^{T}\beta < 0] - E_{N} [\mathbb{1}\{YX^{T}\beta < 0]] \times \\ g \left(N(E_{N}^{*} [(Y - X^{T}\widehat{\beta})^{2} - E_{N}^{*} [(Y - X^{T}\beta)^{2}]) \right) \right\}$$

• E_N^* denotes the expectation for the bootstrap distribution



Computational Issues

- $\sup_{\beta \in R^{q}} \left\{ \begin{bmatrix} E_{N}^{*} [\mathbb{1}\{YX^{T}\beta < 0] E_{N} [\mathbb{1}\{YX^{T}\beta < 0]] \times \\ g \left(N(E_{N}^{*} [(Y X^{T}\widehat{\beta})^{2} E_{N}^{*} [(Y X^{T}\beta)^{2}]) \right) \right\}$
 - Partition *R^q* into equivalence classes defined by the 2N possible values of the first term.
 - Each equivalence class, M_i can be written as a set of β satisfying linear constraints.
 - The first term is constant on \mathcal{M}_i

Computational Issues

$$\sup_{\beta \in R^q} \begin{cases} \left[E_N^* [\mathbf{1}\{YX^T \beta < \mathbf{0}\}] - E_N [\mathbf{1}\{YX^T \beta < \mathbf{0}\}] \right] \times \\ g\left(N(E_N^* [(Y - X^T \widehat{\beta})^2 - E_N^* [(Y - X^T \beta)^2])) \right) \end{cases} \end{cases}$$

can be written as

 $\max_{i} \left\{ \begin{array}{c} C(\mathcal{M}_{i}) \times \\ g\left(N(E_{N}^{*}[(Y - X^{T}\widehat{\beta})^{2} - \inf_{\beta \in \mathcal{M}_{i}} E_{N}^{*}[(Y - X^{T}\beta)^{2}])\right) \right\} \right.$

since g is non-decreasing.

Computational Issues

- Reduced the problem to the computation of at most 2N mixed integer quadratic programming problems.
- Using commercial solvers (e.g. CPLEX) the CUD bound can be computed for moderately sized data sets in a few minutes on a standard desktop (2.8 GHz processor 2GB RAM).

Comparisons, 95% PI

Data	CUD	BS	Μ	Y
Magic	1.0	.92	.98	.99
Mamm.	1.0	.68	.43	.98
Ion.	1.0	.61	.76	.99
Donut	1.0	.88	.63	.94
3-Pt	.97	.83	.90	.75
Balance	.95	.91	.61	.99
Liver	1.0	.96	1.0	1.0

Sample size = 30 (1000 data sets)

Comparisons, Length of PI

Data	CUD	BS	М	Y
Magic	.60	.31	.28	.46
Mamm.	.46	.53	.32	.42
Ion.	.42	.43	.30	.50
Donut	.47	.59	.32	.41
3-Pt	.38	.48	.32	.46
Balance	.38	.09	.29	.48
Liver	.62	.37	.33	.49

Sample size=30 (1000 data sets)

Intuition
In large samples

$$\sup_{\beta \in R^{q}} \left\{ \begin{array}{l} \sqrt{N} \left(E_{N} [1\{YX^{T}\beta < 0] - E[1\{YX^{T}\beta < 0] \right) \times \\ g \left(N(E_{N} [(Y - X^{T}\tilde{\beta})^{2} - E_{N} [(Y - X^{T}\beta)^{2}]) \right) \end{array} \right\}$$
behaves like

$$\sup_{\gamma \in R^{q}} [X(\gamma)] g \left(Z^{T}\gamma - \frac{1}{2}\gamma^{T}\Sigma\gamma \right)$$

$$\gamma = \sqrt{N}(\beta - \tilde{\beta})$$
³¹

Intuition

The large sample distribution is the same as the distribution of

$$\sup_{\gamma \in R^q} [X(\gamma)] g \left(Z^T \gamma - \frac{1}{2} \gamma^T \Sigma \gamma \right)$$

where $\Sigma = E[XX^T], Z \sim N(0, \sigma^2 \Sigma),$ $X(\gamma) \sim N(0, p_{\gamma}(1 - p_{\gamma}))$

$$p_{\gamma} = P[X^T \tilde{\beta} < 0] + P[X^T \tilde{\beta} = 0, YX^T \gamma < 0]_{32}$$

Intuition

If
$$P[X^T \tilde{\beta} \neq 0] = 1$$

then the distribution is approximately that of a

$$N(0, p(1-p)), p = P[X^T \tilde{\beta} < 0]$$

(limiting distribution for binomial, as expected).

Intuition
If
$$P[X^T \tilde{\beta} = 0] = 1$$

the distribution is approximately that of
 $\sup_{\gamma \in \mathcal{G}} N(0, P[YX^T \gamma < 0]P[YX^T \gamma \ge 0])$
where
 $\mathcal{G} = \{\gamma : (\gamma - \Sigma^{-1}Z)^T \Sigma(\gamma - \Sigma^{-1}Z) \le B\}$
 $\sqrt{N}(\hat{\beta} - \tilde{\beta}) = \Sigma_n^{-1} Z_n$

Discussion

- Further reduce the conservatism of the CUDbound.
 - Replace $\tilde{\beta}$ by other quantities.
 - Other surrogates (exponential, logit)
- Construct a principle for minimizing the length of the conservative PI?
- The real goal is to produce PIs for the Value of a policy.

The simplest Dynamic treatment regime (e.g. policy) is a decision rule if there is only one stage of treatment

1 Stage for each individual

 X_1, A_1, X_2

 X_j : Observation available at jth stage

 A_j : Action at jth stage (usually a treatment)

Primary Outcome:

$$Y = r(X_1, X_2)$$

Goal:

Construct decision rules that input patient information and output a recommended action; these decision rules should lead to a maximal mean Y.

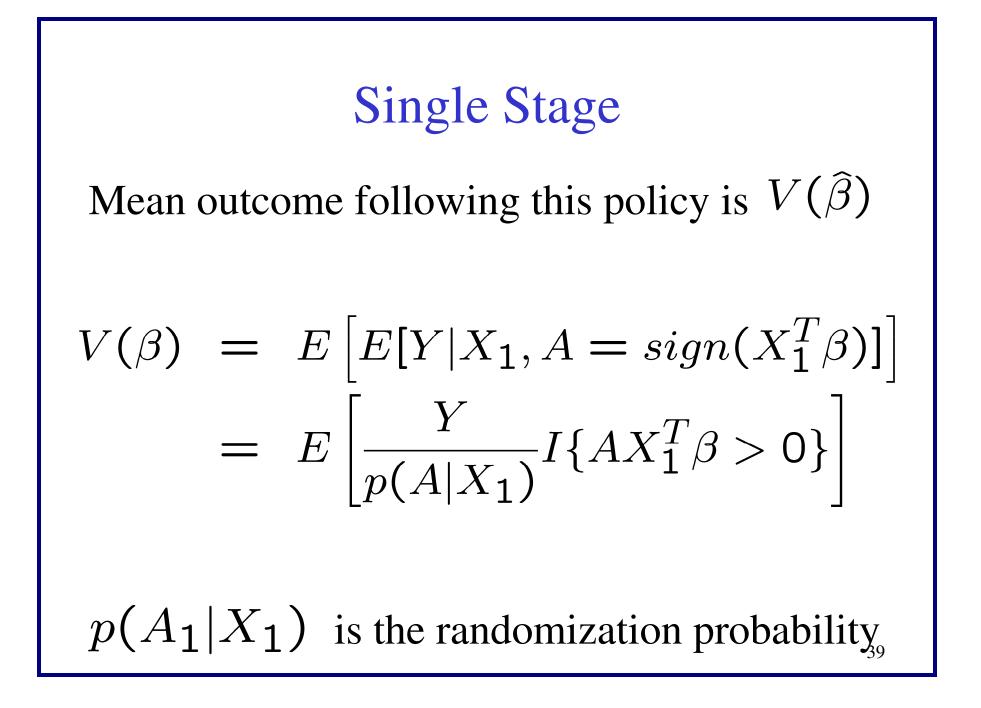
In future one selects action: $a_1 = d(X_1)$

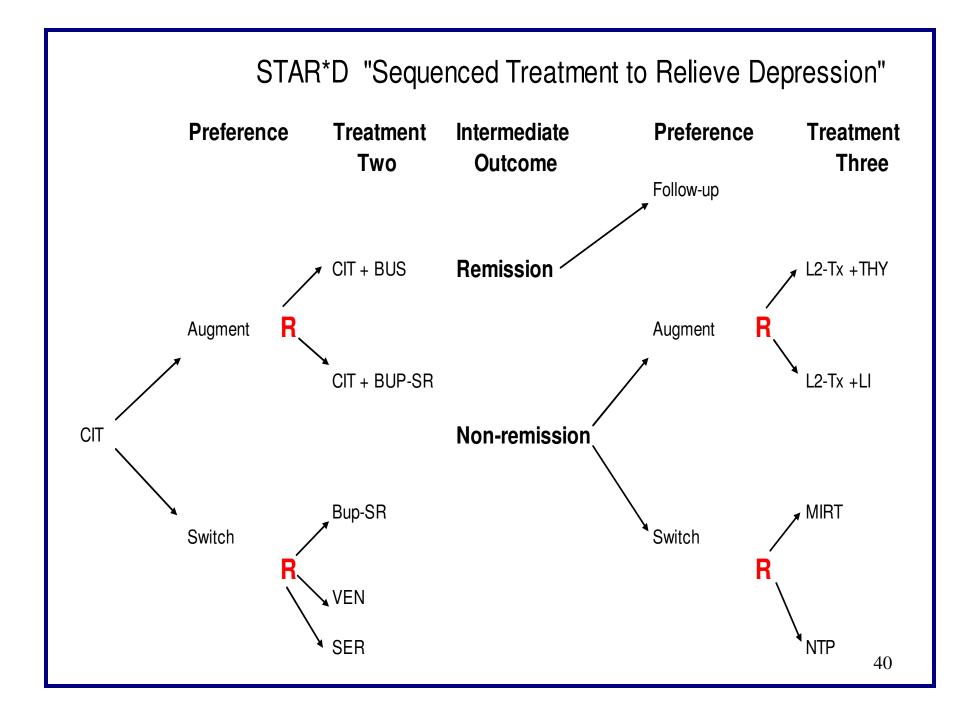
Single Stage

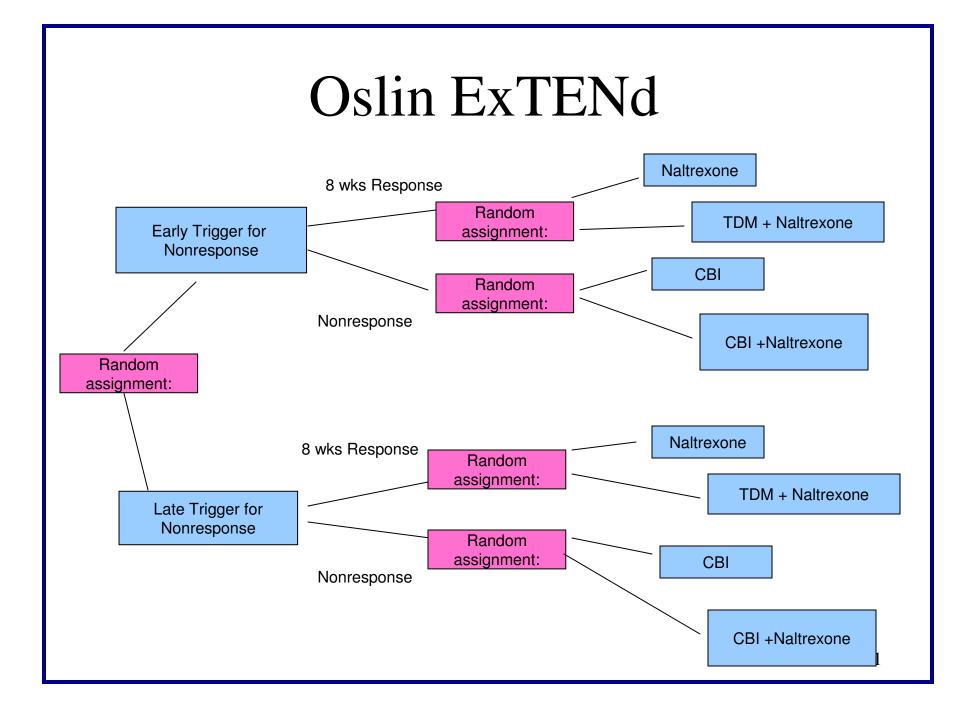
- Find a confidence interval for the mean outcome if a particular estimated policy (here one decision rule) is employed.
- Treatment *A* is randomized in {-1,1}.
- Suppose the decision rule is of form

 $\hat{d}(X_1) = sign(\hat{\beta}^T X_1)$

• We do not assume the optimal decision boundary is linear.







This seminar can be found at:

http://www.stat.lsa.umich.edu/~samurphy/ seminars/UFlorida01.09.09.ppt

Email Eric or me with questions or if you would like a copy of the associated paper: laber@umich.edu or samurphy@umich.edu

Bias of Common $err(\hat{f})$ on Three Point Example

