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Outline

— Review
— Three challenges 1n constructing Pls

— Combining a statistical approach with a
learning theory approach to constructing PIs

— Relevance to confidence measures for the value
of a dynamic treatment regime.




Review

— X 1s the vector of features in R4, Y 1s the binary
label in {/-1,1}

— Misclassification Rate: err(f) = E[1{Y # f(X)}]

1
J
— Data: N 11d observations of (Y, X)

— Given a space of classifiers, F , and theAdata, use
some method to construct a classifier, f

— The goal is to provide a PI for err( f)




Review

— Since the loss function 1{Y # f(X)}is not
smooth, one commonly uses a smooth surrogate
loss to estimate the classifier

— Surrogate Loss: L(Y,f(X))

— femingcr EN[L(Y, f(X))]




Review

General approach to providing a PI:

— We estimate err(f) using the data, resulting in
err(f)
— Derive approximate distribution for

[ T ;)
(err(F) —err(F))

— Use this approximate distribution to construct a
prediction interval for err(f)




Review

A common choice for err(f) is the
resubstitution error or training error:

errrs(f)

C1i

evaluated at f = f e.g.if f(z) = Sign($Tﬁ))
then

err(f) = En[1{Y XT3 < 0}]




Three challenges

1) F 1stoo large leading to over-fitting and

—_—

E [err(f} —err(f)

< 0 (negative bias)

2) err(f) = E[1{Y # f(X)}]is a non-smooth

function of f.

3) er;(\f ) may behave like an extreme quantity

No assumption that f is close to optimal.




A Challenge

2) err(f) = E[1{Y # f(X)}] is non-smooth.

Example: The unknown optimal classifier has
quadratic decision boundary. We fit, by
least squares, a linear decision boundary

J(x)=sign(f, + p; x)




Density

Density
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Density of err(f)

Three Point Dist. (n=30)

oz 0.4 0.8 o_g

Prediction Ermor

Three Point Dist. (n=100)

oz 0.4 0.8 o_g

Prediction Ermor




Meaan Absolute Deviation

0.15

0.10

0.05

0.00

—_—

Bias of Common err(f) on
Three Point Example
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Coverage

Coverage of Bootstrap PI in Three Point
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Coverage
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Coverage of Correctly Centered

Bootstrap PI (goal= 95%)
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Coverage of 95% PI

(Three Point Example)
Sample | Bootstrap Yang CUD-
Size Percentile CV Bound
30 79 75 97
50 79 .62 97
100 78 46 96
200 78 35 96
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Non-smooth

In general the distribution of

N

VN(err(f) —err(f))

may not converge as the training set increases

(variance never settles down).
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Intuition

Consider the large sample variance of
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Varianceis p(1 — p), p = P[YXTﬁ < 0]

if in place of 3 we put 3 where 8 is close to 0
then due to the non-smoothness 1n

y at 3 =0 we can get

@®
AN
(@)

jittering.
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Pls from Learning Theory

Given a result of the form: for all N

P [suPfegy [eFrs(f) — err(f)] < Byg| > 13

where f is known to belong to G and

errrs(f) = En[1{Y # f(X)]

forms a conservative /-o PI:
Prrmg(f\—Rm:<Pfrr( f) < errrs(f) 4+ By

rQ




Combine statistical ideas with
learning theory 1deas

Construct a prediction interval for

Su | {f\_pmm( \|
j NI‘/ ’b\J/ "\J /|

where G v is chosen to be small yet contain f

---from this PI deduce a conservative PI for

err(f)

---use the surrogate loss to perform estimation and to

construct G N -




Construct a prediction interval for

--- Gy should contain all f that are close to f
--- all f for which

En[L(Y, f
--- f 1s the “limiting value” of i

f=argmaxscr E[L(Y, f(X)]
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Interval

1ction

Pred

Construct a prediction interval for
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Prediction Interval
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g (N(EN[L(Y, F(X)) — EN[L(Y, F(XDD)

errrs(f) —err(f)| %

|
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Bootstrap

We use bootstrap to obtain an estimate of an
upper percentile of the distribution of

{(erfﬁ«s(f) —err(f)) X }

R g (N(BNILOYFOO) - ByILKY, FOOD)

feF

to obtain b,,. The PI is then

A

err(f) —bp <err(f) <err(f)+by
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Implementation

e Approximation space for the classifier 1s
linear:

e Surrogate loss is least squares:

L(y, f(z)) = (y— ' B)?

e err(f) =errrs(f) (resubstitution error)
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Implementation
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Implementation

e Bootstrap version:
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distribution
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Cud-Bound Level Sets (n=30)
Three Point Dist.
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Computational Issues
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e Partition RY into equivalence classes defined

by the 2N possible values of the first term.

e Each equivalence class, M, can be written
as a set of f satisfying linear constraints.

e The first term 1s constant on M,
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Computational Issues

can be written as

27

since g 1s non-decreasing.




Computational Issues

e Reduced the problem to the computation of
at most 2N mixed integer quadratic
programming problems.

e Using commercial solvers (e.g. CPLEX) the
CUD bound can be computed for
moderately sized data sets 1n a few minutes

on a standard desktop (2.8 GHz processor
2GB RAM).
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Comparisons, 95% PI

Data CUD BS M Y
Magic 1.0 92 98 99
Mamm. 1.0 .68 43 98
Ion. 1.0 61 76 .99
Donut 1.0 .88 .63 94
3-Pt 97 .83 90 75
Balance 95 91 61 .99
Liver 1.0 96 1.0 1.0

Sample size = 30 (1000 data sets)
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Comparisons, Length of PI

Data CUD BS M Y
Magic .60 28 46
Mamm. 46 42
Ion. 42 S0
Donut 47 41
3-Pt 38

Balance 38 48
Liver .62 37 33 49

Sample s1ze=30 (1000 data sets)
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Intuition

In large samples
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Intuition

The large sample distribution 1s the same as the
sup.,

distribution of

-
T BN

where
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Intuition
If P[X'B#0]=1

then the distribution i1s approximately that of a

(A il 1 o o — DIVIA Nl
IV Y, P\ —P))y P — 1A P Y

(imiting distribution for binomial, as expected).

33




Intuition
If P[XI5=0]=1

the distribution 1s approximately that of

sup..cg N(0, P[Y X1~y < 0]P[Y X1~ > 0])
where
~ c ./ ——1\T' <7 ——1~7\ D)
G={v:(y-T'2)'£(y-x7'2) < B}
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Discussion

 Further reduce the conservatism of the CUD-
bound.

— Replace B by other quantities.

— Other surrogates (exponential, logit)

e Construct a principle for minimizing the length
of the conservative PI?

e The real goal 1s to produce PIs for the Value of
a policy.
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The simplest Dynamic treatment regime (e.g. policy) 1s
a decision rule 1f there 1s only one stage of treatment

1 Stage for each individual
X1, A1, X2

X .

4+ Observation available at j* stage

A 4 - Action at j stage (usually a treatment)

Primary Outcome:

Y =r(Xq,Xo)

36




Goal:

Construct decision rules that input patient information
and output a recommended action; these decision rules
should lead to a maximal mean Y.

In future one selects action: a1 = d(X71)

37




Single Stage

* Find a confidence interval for the mean
outcome 1f a particular estimated policy
(here one decision rule) 1s employed.

 Treatment A 1s randomized in {-1,1}.

e Suppose the decision rule 1s of form

d(X1) = sign(B! X1)

e We do not assume the optimal decision
boundary is linear.
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Single Stage

N

Mean outcome following this policy 1s V(B)

p(A1|X1) is the randomization probability,




STAR™D "Sequenced Treatment to Relieve Depression”

Preference Treatment Intermediate Preference Treatment

Two Outcome Three
Follow-up

e

/ CIT + BUS Remission / L2-Tx +THY

Augment R Augment R

CIT + BUP-SR

\ Bup-SR MIRT
Switch ya Switch /

R R

\z \

SER NTP

L2-TX +LlI

CIT Non-remission

7O\

40




Oslin ExXTENd

8 wks Response

Naltrexone

/

TDM + Naltrexone

CBI

| — Random
Early Trigger for assignment:
Nonresponse
\ Random
assignment:
Nonresponse
Random
assignment:
8 wks Response Random
/ assignment:
Late Trigger for
\
Nonresponse Random
assignment:
Nonresponse

T

CBI +Naltrexone

Naltrexone

\

TDM + Naltrexone

CBI

CBI +Naltrexone




This seminar can be found at:
http://www.stat.Isa.umich.edu/~samurphy/
seminars/UFlorida01.09.09.ppt

Email Eric or me with questions or if you would
like a copy of the associated paper:

laber @umich.edu or samurphy @umich.edu
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Bias of Common err(f) on
Three Point Example
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