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Outline

– Review

– Three challenges in constructing PIs

– Combining a statistical approach with a 

learning theory approach to constructing PIs

– Relevance to confidence measures for the value 

of a dynamic treatment regime.
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Review

– X is the vector of features in Rq, Y is the binary 

label in {-1,1}

– Misclassification Rate: 

– Data: N iid observations of (Y,X)

– Given a space of classifiers,     , and the data, use 

some method to construct a classifier, 

– The goal is to provide a PI for 
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Review

– Since the loss function                         is not 

smooth, one commonly uses a smooth surrogate 

loss to estimate the classifier

– Surrogate Loss:   L(Y,f(X))

–
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Review

General approach to providing a PI:

– We estimate using the data, resulting in

– Derive approximate distribution for 

– Use this approximate distribution to construct a 

prediction interval for 
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Review

A common choice for                is the 

resubstitution error or training error:

evaluated at               e.g. if    

then
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Three challenges

1) is too large leading to over-fitting and 

(negative bias)

2) is a non-smooth 

function of f.

3) may behave like an extreme quantity

No assumption that      is close to optimal.
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A Challenge

2) is non-smooth.

Example:  The unknown optimal classifier has 

quadratic decision boundary.  We fit, by 

least squares, a linear decision boundary

f(x)= sign(β0 + β1 x)
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Density of 

Three Point Dist. (n=30)

Three Point Dist. (n=100)
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Bias of Common                on              

Three Point Example
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Coverage of Bootstrap PI in Three Point 

Example (goal =95%)
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Coverage of Correctly Centered    

Bootstrap PI (goal= 95%)
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Non-smooth

In general the distribution of  

may not converge as the training set increases 

(variance never settles down).
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Intuition

Consider  the large sample variance of 

Variance is 

if in place of we put where      is close to   0        

then due to the non-smoothness in

at              we can get 

jittering.
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PIs from Learning Theory

Given a result of the form:  for all N

where     is known to belong to       and

forms a conservative 1-δ PI:
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Combine statistical ideas with 

learning theory ideas

Construct a prediction interval for

where        is chosen to be small yet contain     

---from this PI deduce a conservative PI for          

---use the surrogate loss to perform estimation and to 
construct 
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Construct a prediction interval for

--- should contain all    that are close to 

--- all f for which 

--- is the “limiting value” of    ;
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Prediction Interval

Construct a prediction interval for

---
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Prediction Interval
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Bootstrap

We use bootstrap to obtain an estimate of an 

upper percentile of the distribution of 

to obtain bU.  The PI is then
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Implementation

• Approximation space for the classifier is 
linear:

• Surrogate loss is least squares: 

• (resubstitution error)         
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Implementation

becomes
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Implementation

• Bootstrap version:

• denotes the expectation for the bootstrap

distribution 
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Cud-Bound Level Sets (n=30)

Three Point Dist.
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Computational Issues

• Partition Rq into equivalence classes defined 

by the 2N possible values of the first term.

• Each equivalence class,        can be written 

as a set of β satisfying linear constraints.

• The first term is constant on 
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Computational Issues

can be written as

since g is non-decreasing.
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Computational Issues

• Reduced the problem to the computation of 

at most 2N mixed integer quadratic 

programming problems.  

• Using commercial solvers (e.g. CPLEX) the 

CUD bound can be computed for 

moderately sized data sets in a few minutes 

on a standard desktop (2.8 GHz processor 

2GB RAM). 
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Comparisons, 95% PI
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Comparisons, Length of PI

Sample size=30 (1000 data sets)

.48.29.09.38Balance

.46.32.48.383-Pt

.50.30.43.42Ion.

.49.33.37.62Liver

.41.32.59.47Donut

.42.32.53.46Mamm.

.46.28.31.60Magic

YMBSCUDData



31

Intuition

In large samples

behaves like
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Intuition

The large sample distribution is the same as the 

distribution of

where 
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Intuition
If                                           

then the distribution is approximately that of a

(limiting distribution for binomial, as expected).
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Intuition

If                                       

the distribution is approximately that of 

where                           
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Discussion

• Further reduce the conservatism of the CUD-

bound.

– Replace      by other quantities. 

– Other surrogates (exponential, logit)

• Construct a principle for minimizing the length 

of the conservative PI?

• The real goal is to produce PIs for the Value of 

a policy.
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The simplest Dynamic treatment regime (e.g. policy) is 

a decision rule if there is only one stage of treatment 

1 Stage for each individual

Observation available at jth stage

Action at jth stage (usually a treatment)

Primary Outcome:
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Goal: 

Construct decision rules that input patient information 

and output a recommended action; these decision rules 

should lead to a maximal mean Y.  

In future one selects action:
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Single Stage

• Find a confidence interval for the mean 

outcome if a particular estimated policy 

(here one decision rule) is employed.  

• Treatment A is randomized in {-1,1}.

• Suppose the decision rule is of form

• We do not assume the optimal decision 

boundary is linear.
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Single Stage 

Mean outcome following this policy is

is the randomization probability
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STAR*D  "Sequenced Treatment to Relieve Depression"

Preference Treatment Intermediate Preference Treatment 

     Two     Outcome       Three

Follow-up

CIT + BUS Remission L2-Tx +THY

Augment     R Augment     R

CIT + BUP-SR L2-Tx +LI

   CIT Non-remission

Bup-SR MIRT

Switch Switch

    R     R
VEN

SER NTP
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Oslin ExTENd

Late Trigger for

Nonresponse

8 wks Response

TDM + Naltrexone

CBI

Random

assignment:

CBI +Naltrexone

Nonresponse

Early Trigger for 
Nonresponse

Random

assignment:

Random

assignment:

Random

assignment:

Naltrexone

8 wks Response

Random

assignment:

CBI +Naltrexone

CBI

TDM + Naltrexone

Naltrexone

Nonresponse
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This seminar can be found at:

http://www.stat.lsa.umich.edu/~samurphy/

seminars/UFlorida01.09.09.ppt

Email Eric or me with questions or if you would 

like a copy of the associated paper:

laber@umich.edu or samurphy@umich.edu
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Bias of Common                on              

Three Point Example


