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Auxiliary variables and survey sampling

Auxiliary variables often contain information

about the population.

In standard theory one needs to assume a model

that relates the auxiliary variables to the char-

acteristic of interest.

For example, in stratified populations should

you use a single regression model for the whole

population or a different one for each stratum?

Our approach is Bayesian and objective but we

will not explicitly assume a model and so there

will be no model selection!
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Some Notation

U is a finite population with N units.

yi is the characteristic of interest for unit i.

xi is an auxiliary variable for unit i.

We observe a sample s ⊂ {1,2, . . . , N} using

some sampling design ∆, usually SRSWOR.

y(s) = {yi : i ∈ s} are the “seen”

y(s′) = {yj : j 6∈ s} are the “unseen”

How to relate the “unseen” to the ”seen?
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The Bayesian Way

Ericson (1969) JRSSB

Need joint prior distribution for the population

P
(
y1, y2, . . . , yN

)

After observing sample must find

P
(
yj : j 6∈ s

∣∣∣ yi : i ∈ s
)

the conditional distribution of the unseen given

the seen.

Simulate from the posterior to get completed

copies of the entire population. For each of

the simulated copies compute the parameter

of interest . Use these computed values to find

point and interval estimates of the parameter.
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The Polya Posterior

Imagine a MC is using SRSWOR to select units

one at a time from a population. After select-

ing n of the N units she asks you to use the

seen to estimate the population mean.

How should we relate the seen to the unseen?

Select a unit at random from the unseen. Se-

lect a second unit at random from the seen and

assign its value to the selected unseen unit and

place both with the seen.

Repeat this process using the N −n−1 unseen

and the n + 1 “seen”.

Repeat until all the unseen have been assigned

a simulated value.
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Under Polya Posterior

E
(
µ(y)

∣∣∣ yi i ∈ s
)
= ys

and

V ar
(
µ(y)

∣∣∣ yi i ∈ s
)
=

(
1−

n

N

) vs

n

n − 1

n + 1

where ys and vs are the sample mean and sam-
ple variance and µ(y) is the population mean.

Noninformative Bayesian justification for some
design based procedures.

Ghosh and Meeden (1997)
Lo (1988) Annals and Rubin (1981) Annals
Magnussen and Kohl (2002) Forest Science
Nelson and Meeden (2006) JSPI – Median

Stepwise Bayes proves admissibility.

Instead of Polya sampling why not iid?
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Relation to bootstrap

Assume SRSWOR is the sampling design and

N = kn for some integer k.

Given a sample s a good guess for the popu-

lation is just k copies of y(s).

Assuming our guess is the “truth” we can take

repeated samples of size n from this “popula-

tion” to get an estimate of variance for esti-

mator.

Gross ( 1980) and Booth, Bulter and Hall (1994)

The Polya posterior uses the sample to con-

struct many possible copies of the population

to get an estimate of variance.

The bootstrap uses the sample to construct a

single guess for the population and considers

repeated draws from it to get an estimate of

variance.
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Auxiliary Variable

xi is value of an auxiliary variable for unit i.

Assume µ(x), the population mean of x is known

and we observe yi and xi for all the units in the

sample.

How should the Polya posterior incorporate know-

ing µ(x)?

Just do restricted Polya sampling using the

seen

seen = {(yi, xi) : i ∈ s}

in such a way that every simulated copy of the

population satisfies the constraint on µ(x).
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Can constraints be satisfied?

Suppose N = 10, n = 2 and we know

µ(x) = 1.47

If

{xi : i ∈ s} = {0,1.2}

then there are no simulated copies of the pop-

ulation which satisfy the constraint.

If

{xi : i ∈ s} = {0,2}

then again there are no simulated copies of the

population which satisfy the constraint.
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Approximating the Polya posterior

Under the Polya posterior the only values ap-

pearing in a simulated copy of the entire pop-

ulation are those that appeared in the sample.

For a j ∈ s let λj be the proportion of units in

a completed simulated copy which take on the

value yj. If n/N is small then under the Polya

posterior λ, the vector of λj’s, has approxi-

mately the uniform distribution on the n − 1

dimensional simplex
∑

j∈s λj = 1.

Easy to Simulate from this distribution.

Easy to add constraints to this space. If µ(x)

is know then we are restricted to∑
j∈s

xjλj = µ(x)

Harder to simulate in restricted problem.
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The Constrained Polya Posterior (CPP)

For situations where the regression estimator

would be used the point and interval estimator

of the CPP behave almost the same.

Chen and Qin (1993) Biometrika considered a

point estimator of the median of y assuming

µ(x) is known. In a variety of populations the

CPP did on the average 10% better.

The CPP can incorporate constraints involving

the median of x.

The CPP can incorporate linear inequality con-

straints, for example µ(x) is known to lie in an

interval.
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An Example

A population of 2500 veterans. They are clas-

sified by gender (F and M) and health status

(Good, Average and Poor).

The characteristic of interest is PCS, a mea-

sure of overall quality of life.

The auxiliary variable is age and its population

mean is known.

cor(PCS,age) = -0.22

Strata and Sample Sizes

Good Average Poor

F 353(20) 155(10) 117(10)

M 890(30) 493(20) 492(10)
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The Results

Results for estimating PCS using 200 random

samples.

Strata is the usual stratified estimator which

assume the strata sizes are known.

The CPP estimator assumes the row and col-

umn totals of the strata sizes are know along

with the average age of the individuals in the

population.

Meth A est A aber A lwbd A len F cov

Mean 37.23 1.04 34.91 4.65 0.938

Strata 36.65 0.93 34.32 4.65 0.948

CPP 36.64 0.93 34.34 4.61 0.958

13



A toy stratified population

We constructed a population with 3 strata and

2 auxiliary variables.

Size The x1’s The x2’s The errors

300 gamma(10,1) gamma(2,1) normal(0,1)

200 gamma(15,1) gamma(7,1) normal(0,1.52)

400 gamma(5,1) gamma(3,1) normal(0,3.52)

The true model

stratum 1: yi = 1 + x1ix2i + εi
stratum 2: yi = 3 + x1i + x1ix2i + εi
stratum 3: yi = 2 + x2i + x1ix2i + εi

We assumed that the population median of x1

and the population mean of x2 were known.
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Simulation results

We generated 500 random samples selecting

25 units from the first stratum, 20 units from

the second stratum and 35 units from the third

stratum.

Ave. Ave. Ave. Ave. Freq

value abs err low bd len of cov

Mean 48.0 4.82 36.4 23.1 1.000

Strat 43.4 2.07 38.2 10.4 0.942

CnstPp 43.4 1.52 40.2 6.75 0.936

If just information about auxiliary means is avail-

able then the empirical likelihood based meth-

ods of Chen and Sitter (1999) and Zhong and

Rao (2000) could be used. But what means?
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Minnesota Population Center

The center is a leading developer and dissem-

inator of demographic data.

For example, it creates decade by decade mi-

cro copies of the USA population so that re-

searchers can study time related questions.

Since survey questions and definitions change

over time presenting the data in a consistent

fashion can be a problem.

http://www.pop.umn.edu/
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A Simple Problem

Suppose we have a large random sample from

a population with sample mean, ys. The pop-

ulation consists of two strata whose sizes are

unknown. In addition the large sample con-

tains no strata information.

Suppose we have a much, much smaller ran-

dom sample where we learn the y values, the

stratum membership and the value of the aux-

iliary variable x for each unit in the sample.

The population mean of x is assumed to be

known.

How can we combine this information to get a

good estimate of the strata means?
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A Solution

Use the second sample and the CPP to gener-

ate complete simulated copies of the popula-

tion which satisfy two constraints.

One constraint comes from knowing the pop-

ulation mean of x.

The other forces the mean of every simulated

population to agree with ys.

This allows us to estimate the strata means

and strata sizes using the proportion of units

in the second sample that fall within each stra-

tum for each simulated copy of the entire pop-

ulation.
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An Example

In Stratum 1

xi’s iid gamma(5); yi|xi ind Norm(10 + xi,5
2)

In Stratum 2

xi’s iid gamma(7); yi|xi ind Norm(8+3xi,152)

40% of the population belongs to Stratum 1.

The two sample sizes were 1000 and 40.

500 pairs of random samples were taken.

str1 str2 pop

truemeans 15 29 23.4

bigsmp 14.99 29.02 23.42

CPP 14.99 29.12 23.42

errCPP 1.09 1.35
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Weights and Standard Theory

Weights usually come from the sampling de-

sign. A unit’s weight indicates how many units

of the population it represents.

Taylor series argument for estimating the vari-

ance of estimators of complicated functions.

Weights are often adjusted; examples are rak-

ing and calibration.

Standard theory is sometimes obscure when it

comes to variance estimation.

Why not be a Bayesian?
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Bayesian Weights

Recall λ is the vector of proportions of units in

the sample for a completed simulated copy of

the population. Let

p = ECPP (λ)

then

W = Np = {Npi : i ∈ s}

is a set of Bayesian weights for the sample.

Note cannot arise in a full Bayesian analysis.

Happens here because the CPP assumes that

only the values that appear in the sample can

occur in the population.

Why should a Bayesian care about W?
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More on Bayesian Weights

A sophisticated Bayesian probably will not care.

But in public use files where doing simulation

is to hard naive users want weights attached

to units.

The Bayesian weights will incorporate the same

kinds of information that are used in the design

based approach.

If the range of the weights is not to large then

using them in the the usual frequentist Taylor

series approach to variance estimation can be

thought of as an approximation to a full blown

CPP analysis.

Recall, the Horvitz-Thompson estimator is not

used in practice when the range of the weights

gets to large.

Can the CPP protect against really bad sam-

ples? Maybe.
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A fun read

Statistical Information and Likelihood

A Collection of Critical Essays

by Dr. D. Basu

J. K. Ghosh, Editor (1988)

Basu gives an elegant argument for the Bayesian

approach to finite population sampling. He

demonstrates that for most designs the pos-

terior does not depend on the design.

So the one area in statistics where prior in-

formation is often used the standard methods

cannot be given a standard Bayesian justifica-

tion!
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Concluding Remarks

• Computations were done using the R pack-

age polyapost available in CRAN.

• Can estimate population quantities other

than the mean.

• Will work when prior information involves

linear equality and inequality constraints on

population quantities.

• The CPP has the advantages of the Bayesian

approach but only uses the kinds of prior

information that are usually available.

• No need to select a model.
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