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Outline

• Motivation and background on image and shape analysis

• Geometry of plane curves

• Observation model: trace generated by a time warped

curvature + white noise

• Prior model: knots in a buffer region about a template

curvature

• MCMC implementation

• Application to Shakespeare’s signature
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Motivation

People are able to recognize their own handwriting or

signature at a glance.

Manuscript experts can usually determine genuineness

with almost scientific exactitude . . . or so they claim!

Subtle variations in handwriting style are used to date

ancient manuscripts.

Forensic applications.
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Shakespeare’s signature

Welcombe Enclosure Agreement, October 28, 1614.
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Secretary hand alphabet from a book on penmanship published in 1571 when

Shakespeare was 7, possibly used by pupils at Stratford Grammar School.
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Northumberland Manuscript, circa 1594 (discovered in 1867).
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From first page of Shakespeare’s Will, March 25, 1616, signed mid-April 1616

(discovered in 1747)
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Last page of Shakespeare’s Will. Holographic?
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Hamilton (1985) ascribed the ability of recognizing

variations in handwriting to the “feel” of a script, to the

“sum total of the viewer’s knowledge, the infusion of

intuition and an immense amount of experience.”

Manuscript experts often assess the “feel” of documents

very quickly by examining them upside down, so the

words themselves become obscured.

The “shape” of the handwriting is therefore a key

ingredient in such analysis.

A model-based statistical approach to off-line signature

recognition is not yet available.
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The statistical problem

Condense the information in the handwriting into a

suitable low-dimensional object.

Shape an essential feature.

Temporal information (e.g., acceleration) not directly

available for off-line analysis, but model should reflect

temporal generation of the observed curves.

FDA Workshop January, 2003



11

Image analysis

Grenander’s theory of deformable templates: useful for

recognizing an interesting shape (e.g., hand, galaxy,

mitochondrion) in a graylevel image.

Shape described by a flexible template, typically a

polygon; edge lengths and angles governed, e.g., by a

Markov chain.
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Shape analysis

Statistical theory of shapes based on landmarks: Kendall

(1977), Bookstein (1986), . . . , Small (1996), Dryden

and Mardia (1998), Lele and Richtsmeier (2000).

Procedures invariant under translations, rotations, and

isotropic rescalings.

Iron Age brooches, from Small (1996)
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Computerized recognition of signatures

Progress more rapid in on-line applications than off-line.

Information more easily recorded in on-line environments;

pen position, velocity, etc.

Dimauro et al. (1997), Plamondon et al. (1989, 1990):

numerical similarity features (from data provided by

digitizers).

Lee (1996): neural network based signature verification.

Matsuura and Sakai (1996): random impulse response

model of handwriting.
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Martens and Claesen (1997): on-line signature

verification system based on 3D force patterns and pen

inclination angles.

Abuhaiba et al. (1994, 1998): algorithm for polygonal

approximation of graylevel images of handwriting.

Machine learning techniques: useful for recognizing

handwriting based on large training sets.
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Statistical modeling approaches

Only developed for on-line applications

Hastie et al. (1992): signatures for a given individual

treated as time warped and spatially transformed versions

of a template signature in the x-y plane:

αobs,i(t) = Ai[hi(t)]F [hi(t)] + µi[hi(t)] + noise

Penalized least squares (cubic spline smoothing) used to

fit the model.
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Functional data analysis

Ramsay and Silverman (1997): handwriting used as a key

example.

Ramsay (2000): Additive white noise superimposed on a

differential equation model for the acceleration vector.

Time warping to register the samples of handwriting.
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Elements of the proposed approach

• Observation model: white noise superimposed in an

underlying curvature function

• Prior on the curvature function and an independent time

warping mechanism

• MCMC to explore the posterior distribution of signatures

Why curvature?

Invariant under translations and rotations

(not invariant under rescalings though!)
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Geometry of planar curves

Parameterized curve α : [a, b]→ R
2

α(t) = (x(t), y(t))T

Trace: α([a, b])

Velocity vector: V (t) = α′(t) = (x′(t), y′(t))T

Arc length: L(t) =
∫ t
a |α

′(u)| du

Arc length parameterization: β(s) = α(L−1(s))
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Curvature: Rate at which curve pulls away from its tangent. For

an arc-length parameterized curve:

κ(t) = 〈α′′(t),n(t)〉
= (x′′(t), y′′(t))(−y′(t), x′(t))T

= x′(t)y′′(t)− x′′(t)y′(t)

V (t) = (V1(t), V2(t))T

dκ(t) = V1(t)dV2(t)− V2(t)dV1(t)
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Curve is characterized by its curvature up to
translation and rotation:

α(t) = α(a) +
∫ t

a

V (s) ds

V (t) =
(

cos θ(t)
sin θ(t)

)
; θ(t) = ϕ+

∫ t

a

κ(s) ds.

Curvature is inversely proportional to scale: cα(t) has

curvature κ(t)/c, for c > 0.

Important to re-scale observed signatures to have same

arc-length τ > 0.
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Observation model

Observed arc-length parameterized velocity:

V (t) = α′obs(t) =
(

cos θ(t)
sin θ(t)

)

θ(t) = ϕ+
∫ t

0
κ(s) ds+ σW (t)

W (t) standard Brownian motion
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Simulated traces from the observation model (σ = 0.2) under the template

curvature κ0.
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Conditional log-likelihood for κ given σ2

`cont(κ|V, σ2) =
1
σ2

∫ τ

0

κ(s) {V1(s) dV2(s)− V2(s) dV1(s)}

− 1
2σ2

∫ τ

0

κ(s)2 ds+
1
8
σ2τ.

Proof

Itô’s formula to find an SDE for V (t), then Girsanov’s formula.
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Gaussian shift experiment

dZσ(t) = κ(t) dt+ σdW (t)

Zσ(t) =
∫ t

0

{V1(s) dV2(s)− V2(s) dV1(s)}+ σ2

∫ t

0

V1(s)V2(s) ds

Le Cam (1986). Nonparametric regression (Brown and Low, 1996),

density estimation (Nussbaum, 1996).
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Kernel estimator of κ

κ̂(t) =
1
b

∫ τ

0

K

(
t− s
b

)
dZσ(t)

Wavelet thresholding preferable with spiky curvature

functions.
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Joint likelihood of κ and σ2

Discrete observations of V on grid sj = jτ/N :

`(κ, σ2|V ) = `(κ|V, σ2) + `(σ2|V )

`(σ2|V ) = −N
2

(
log(σ2) +

σ̂2

σ2

)
where

σ̂2 =
1
τ

N∑
j=1

{
(V1(sj)− V1(sj−1))2 + (V2(sj)− V2(sj−1))2

}
σ̂2 tends to σ2 in probability as N →∞ but is is upwardly biased in

practice: sharp curves in the signature represent jumps in V .
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Time warping of a baseline curvature κ

Observed velocity vectors V (i), i = 1, . . . , n

hi: [0, τ ]→ [0, τ ] increasing.

Curvature for ith signature:

κi(t) = κ(hi(t))

Time warping is unidentifiable

Minimize the difference (in some sense) between V (i) and the trace

generated by the time warped baseline κ(hi(t)).

Procrustes curve registration: minimizes differences between time
warped records.
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Full likelihood

Baseline curvature κ

Time warping functions h = (hi, i = 1, . . . , n)
Variances σ2 = (σ2

i , i = 1, . . . , n)

`(κ,h,σ2|data) =
n∑
i=1

`(κ, hi, σ2
i |V (i)).
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Prior

• realizations of the trace should be consistent with known

features of the signature shape;

• flexible enough to represent a wide variety of possible

signatures;

• gives a parsimonious representation of the baseline cur-

vature and time warping functions;

• MCMC feasible for sampling from the posterior distribu-

tion.
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Baseline curvature process

Constrain baseline curvature κ to go through points X (knots) in

buffer region:

B = {(t, y) : κ0(t)− ε ≤ y ≤ κ0(t) + ε, t ∈ [0, τ ]}

where template curvature κ0 is derived from a template trace:
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Template κ0 and buffer region.
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Knots of baseline curvature process

Strauss process X with unormalized density

f(x) = βcard(x)γd(x)

wrt unit rate Poisson process; β > 0, 0 < γ ≤ 1
d(x) = # pairs of knots within horiz. distance r.

List the points in X in order: (tj, yj), j = 1, . . . , c, where

c = card(X), 0 < t1 < t2 < . . . < tc < τ , and set

(t0, y0) = (0, κ0(0)), (tc+1, yc+1) = (τ, κ0(τ)).

FDA Workshop January, 2003



33

Baseline curvature process:

κ(t) =
(
tj+1 − t
tj+1 − tj

)
{κ0(t) + yj − κ0(tj)}

+
(

t− tj
tj+1 − tj

)
{κ0(t) + yj+1 − κ0(tj+1)}

for tj ≤ t ≤ tj+1, j = 0, 1, . . . , c+ 1.
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Time warping process

Increasing continuous piecewise linear process with knots

at jτ/p, j = 0, . . . , p, constrained so that hi(τ) ≤ τ .

π(hi|κ) ∝ exp{−ηJ(hi|κ)}

J(hi|κ) =
∫ τ

0

angle(V (i)(t), V (i)
fitted(t)) dt

angle(u, v) = cos−1(uTv)

V
(i)
fitted(t) has curvature function κ(hi(t)).
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Posterior density

πpost(κ,h,σ2) ∝ exp{`(κ,h,σ2|data)}π(h|κ)π(κ)π(σ2)

Metropolis-within-Gibbs

Random walk Metropolis: σ2 and slopes in h

A sampler for the spatial point process X under

πpost(·|h,σ2) used to update κ (Geyer and Møller, 1994)
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Analysis of Shakespeare’s signature

Components of the velocity vector V (i)(t) for the data and the template.
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Posterior mean baseline curvature and buffer region.
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Traces of the data; traces from posterior mean baseline curvature adjusted by each

posterior mean time warping; posterior mean time warping.
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Simulated traces from fitted observation model (σ = 0.2) under posterior mean

baseline curvature and posterior mean time warping h3(t).
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More Shakespeare signatures

Belott–Mountjoy deposition, June 19, 1612; Conveyance for a gatehouse in

Blackfriars, London, March 10, 1612/13.

On Will.
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Signature verification

Bayesian bootstrap

Compare Vnew(t) of a new signature with draws Vboot from posterior.

D = min
i=1,...,n

∫ τ

0

angle(Vnew(t), V (i)
boot(t)) dt

Draws from ‘null’ distribution of D: replace Vnew in D by V
(I)
boot∗

drawn independently from the fitted model

D∗ = min
i=1,...,n

∫ τ

0

angle(V (I)
boot∗(t), V

(i)
boot(t)) dt

I selected at random from 1, . . . , n.
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From Shakespeare’s will, and a modern forgery; Q-Q plots of D versus D∗.
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Conclusion

• Off-line signature and handwriting analysis placed on a

more scientific footing

• Approach useful for comparison of short, smooth seg-

ments of signatures or words

For more: stat.fsu.edu/∼mckeague/ps/sig.pdf

FDA Workshop January, 2003


