Statstical models, selection effects and sampling bias

Peter McCullagh

Department of Statistics University of Chicago

Gainesville, January 2010

イロト イポト イヨト イヨト

ъ

Outline

- Conventional regression models
 - Gaussian models
 - Binary regression model
 - Problems with conventional models
- 2 Auto-generated units
 - Point process model
 - Preferential sampling
 - Logistic illustration of sampling bias
 - Joint distributions
- 3 Volunteer samples
 - Treatment effect
- 4
 - Notation
 - Estimating functions
 - Interference

э

▲ @ ▶ ▲ 三 ▶ .

Gaussian models Binary regression model Problems with conventional models

◆□ > ◆□ > ◆豆 > ◆豆 > →

Conventional regression model

Fixed index set \mathcal{U} (always infinite): u_1, u_2, \ldots subjects, plots... Covariate $x(u_1), x(u_2), \ldots$ (non-random, vector-valued) Response $Y(u_1), Y(u_2), \ldots$ (random, real-valued)

Regression model:

Sample = finite ordered subset u_1, \ldots, u_n (distinct in \mathcal{U}) For each sample with configuration $\mathbf{x} = (x(u_1), \ldots, x(u_n))$ Response distribution $p_{\mathbf{x}}(\mathbf{y})$ on \mathcal{R}^n depends on \mathbf{x}

Kolmogorov consistency condition on distributions $p_{\mathbf{x}}(\cdot)$ **x** is not a random variable $p_{\mathbf{x}}(\cdot)$ is not the conditional distribution given **x**

Gaussian models Binary regression model Problems with conventional models

Gaussian regression model

Covariate $x(u) = (x_1(u), x_2(u))$ partitioned into two components $x_1(u) = (\text{variety}(u), \text{treatment}(u), ...)$ affecting the mean $x_2(u) = (\text{block}(u), \text{coordinates}(u))$ affecting covariances

Example: response distribution for a *fixed* sample of *n* plots

$$p_{\mathbf{x}}(\mathbf{y} \in A; \theta) = N_n(X_1\beta, \ \sigma_0^2 I_n + \sigma_1^2 K[\mathbf{x}_2])(A)$$

 $A \subset \mathcal{R}^n, K[\mathbf{x}] = \{K(x_i, x_j)\}$

block-factor models: K(i,j) = 1 if block(i) = block(j)spatial/temporal models: $K(i,j) = exp(-|x_2(i) - x_2(j)|/\tau)$ Generalized random field: $K(i,j) = -ave_{x \in i, x' \in j} \log |x - x'|$

Equivalent to $Y(u) = \mu(u) + \epsilon(u) + \eta(u)$ with $\epsilon \perp \eta, \dots \ge \epsilon$

Gaussian models Binary regression model Problems with conventional models

ヘロン 人間 とくほ とくほ とう

Binary regression model (GLMM)

Units: u_1, u_2, \ldots subjects, patients, plots (labelled) Covariate $x(u_1), x(u_2), \ldots$ (non-random, \mathcal{X} -valued) Latent process η on \mathcal{X} (Gaussian, for example) Responses $Y(u_1), \ldots$ conditionally independent given η

$$\operatorname{logit} \operatorname{pr}(Y(u) = 1 \mid \eta) = \alpha + \beta x(u) + \eta(x(u))$$

Joint distribution for sample having configuration x

$$p_{\mathbf{x}}(\mathbf{y}) = E_{\eta} \prod_{i=1}^{n} \frac{e^{(\alpha + \beta x_i + \eta(x_i))y_i}}{1 + e^{\alpha + \beta x_i + \eta(x_i)}}$$

parameters α, β, K , $K(x, x') = cov(\eta(x), \eta(x'))$.

Gaussian models Binary regression model Problems with conventional models

ヘロト ヘアト ヘヨト ヘ

- ⊒ →

Binary regression model: computation

GLMM computational problem:

$$p_{\mathbf{x}}(\mathbf{y}) = \int_{\mathcal{R}^n} \prod_{i=1}^n \frac{e^{(\alpha+\beta x_i+\eta(x_i))y_i}}{1+e^{\alpha+\beta x_i+\eta(x_i)}} \phi(\eta; K) \, d\eta$$

Options:

Taylor approx: Laird and Ware; Schall; Breslow and Clayton, McC and Nelder, Drum and McC,...

Laplace approximation: Wolfinger 1993; Shun and McC 1994 Numerical approximation: Egret E.M. algorithm: McCulloch 1994 for probit models Monte Carlo: Z&L,...

Gaussian models Binary regression model Problems with conventional models

ヘロト ヘワト ヘビト ヘビト

But, ..., wait a minute...

 $p_{\mathbf{x}}(\mathbf{y})$ is the distribution for each *fixed* sample of *n* units.

But ... the sample might not be predetermined volunteer samples in clinical trials; pre-screening of patients to increase compliance; behavioural studies in ecology;

marketing studies, with purchase events as units; public policy: crime type with crime events as units Ergo, \mathbf{x} is also random, so we need a joint distribution.

Q1: For a bivariate process, what does $p_{\mathbf{x}}(\mathbf{y})$ represent? Q2: Is it necessarily the case that $p_{\mathbf{x}}(\mathbf{y}) = p(\mathbf{y} | \mathbf{x})$? ... even if sample size is random?

Gaussian models Binary regression model Problems with conventional models

・ロト ・回ト ・ヨト ・ヨト

Problems in the application of conventional models

Clinical trials / market research / traffic studies / crime...

- (i) Operational interpretation of a sample as a fixed subset or as a random subset independent of the process
- (ii) Sample units generated by a random process sequential recruitment, purchase events, traffic studies...
- (iii) Population also generated by a random process in time animal populations, purchase events, crime events,...
- (iv) Samples: random, sequential, quota,...
- (v) Conditional distribution given observed random x versus stratum distribution for fixed x

Gaussian models Binary regression model Problems with conventional models

ヘロト ヘアト ヘヨト

Illustration: Kentucky traffic accidents

Units: traffic accidents in Kentucky Response: seat belt used? (Y or N) Explanatory: x(s) road class at site $s \in$ Kentucky

logit pr(
$$Y(s) = 1 | \eta$$
, event at s) = $\eta(s) + \beta x(s)$
cov($\eta(s), \eta(s')$) = $K(s, s')$

$$pr(Y(s) = 1 | event at s) = E_{\eta} \left(\frac{e^{\eta(s) + \beta x(s)}}{1 + e^{\eta(s) + \beta x(s)}} \right)$$
$$\simeq \frac{e^{\beta^* x(s)}}{1 + e^{\alpha(s) + \beta^* x(s)}}$$

 $|\beta^*| \leq \beta$ (attenuation)

Gaussian models Binary regression model Problems with conventional models

I → [] → I → []

Kentucky traffic accidents: Poisson version

Log intensity of accidents w/o restraint $\eta(s, 0) + \beta_0 x(s)$ Log intensity of accidents with restraint $\eta(s, 1) + \beta_1 x(s)$

$$\begin{aligned} \text{logit pr}(Y(s) &= 1 \mid \text{event at } s, \eta) = \eta(s, 1) - \eta(s, 0) + (\beta_1 - \beta_0) x(s) \\ &= \eta(s) + \beta x(s) \\ \text{pr}(Y(s) &= 1 \mid \text{event at } s) = E_\eta \left(\frac{e^{\eta(s) + \beta x(s)}}{1 + e^{\eta(s) + \beta x(s)}} \right) \\ &\simeq \frac{e^{\alpha(s) + \beta^* x(s)}}{1 + e^{\alpha(s) + \beta^* x(s)}} \end{aligned}$$

Same as logistic model with additive random effect!

Gaussian models Binary regression model Problems with conventional models

・ロン ・四 と ・ ヨ と ・ ヨ と …

æ

Kentucky accidents: alternative Poisson version

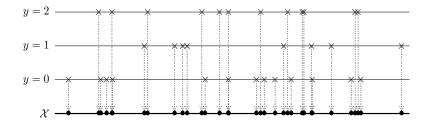
Intensity of accidents given η : w/o restraint: $e^{\eta(s,0)} \exp(\beta_0 x(s))$ with restraint $e^{\eta(s,1)} \exp(\beta_1 x(s))$

pr(accident w/o restraint in $ds | \eta) = e^{\eta(s,0)} e^{\beta_0 x(s)} ds$

pr(accident w/o restraint in ds) = $E(e^{\eta(s,0)})e^{\beta_0 x(s)} ds$ = $m(s,0)e^{\beta_0 x(s)}$ pr(accident with restraint in ds) = $E(e^{\eta(s,1)})e^{\beta_1 x(s)} ds$ pr(Y = 1|accident in ds) = $\frac{m(s,1)e^{\beta_1 x(s)}}{m(s,0)e^{\beta_0 x(s)}+m(s,1)e^{\beta_1 x(s)}}$ log odds(Y = 1 | ...) = log(m(s,1)/m(s,0)) + $(\beta_1 - \beta_0)x(s)$ No approximation, no attenuation!

Point process model Preferential sampling Logistic illustration of sampling bias Joint distributions

Point process model for auto-generated units



A point process on $C \times \mathcal{X}$ for $C = \{0, 1, 2\}$, and the superposition process on \mathcal{X} . Intensity $\lambda_r(x)$ for class r: r = 0, 1, 2.

x-values auto-generated by the superposition process with intensity $\lambda_{\cdot}(x)$.

To each auto-generated unit there corresponds an x-value and a y-value.

Point process model Preferential sampling Logistic illustration of sampling bias Joint distributions

イロト イポト イヨト イヨト

Binary point process model

Intensity process $\lambda_0(x)$ for class 0, $\lambda_1(x)$ for class 1 Log ratio: $\eta(x) = \log \lambda_1(x) - \log \lambda_0(x)$ Events form a PP with intensity λ on $\{0, 1\} \times \mathcal{X}$. Conventional GLMM calculation (Bayesian and frequentist):

$$\operatorname{pr}(Y = 1 \mid x, \lambda) = \frac{\lambda_1(x)}{\lambda_1(x)} = \frac{e^{\eta(x)}}{1 + e^{\eta(x)}}$$
$$\operatorname{pr}(Y = 1 \mid x) = E\left(\frac{\lambda_1(x)}{\lambda_1(x)}\right) = E\left(\frac{e^{\eta(x)}}{1 + e^{\eta(x)}}\right)$$

GLMM calculation is correct in a sense, but irrelevant... ... there might not be an event at x!

Point process model Preferential sampling Logistic illustration of sampling bias Joint distributions

Correct calculation for auto-generated units

pr(event of type r in $dx \mid \lambda$) = $\lambda_r(x) dx + o(dx)$ pr(event of type r in dx) = $E(\lambda_r(x)) dx + o(dx)$ pr(event in SPP in $dx \mid \lambda$) = $\lambda_r(x) dx + o(dx)$ pr(event in SPP in dx) = $E(\lambda_r(x)) dx + o(dx)$

$$\begin{aligned} \operatorname{br}(Y(x) &= r \,|\, \operatorname{SPP} \text{ event at } x) = \frac{E\lambda_r(x)}{E\lambda_r(x)} \\ &= E\left(\frac{\lambda_r(x)}{\lambda_r(x)} \,\Big| \, x \in \operatorname{SPP}\right) = \frac{E\lambda_r(x)}{E\lambda_r(x)} \neq E\left(\frac{\lambda_r(x)}{\lambda_r(x)}\right) \end{aligned}$$

Sampling bias:

Distn for fixed x versus distn for autogenerated x.

Point process model Preferential sampling Logistic illustration of sampling bias Joint distributions

<ロト <回 > < 注 > < 注 > 、

Two ways of thinking

First way: waiting for Godot!

Fix $x \in \mathcal{X}$ and wait for an event to occur in (x, x + dx)pr $(Y = 1 | \lambda, x) = \frac{\lambda_1(x)}{\lambda_*(x)}$ pr $(Y = 1; x) = E\left(\frac{\lambda_1(x)}{\lambda_*(x)}\right) = E(Y_i | i: X_i = x)$

Conventional, mathematically correct, but seldom relevant

Second way: come what may!

SPP event occurs at *x*, a random point in \mathcal{X} joint density at (y, x) proportional to $E(\lambda_y(x)) = m_y(x)$ *x* has marginal density proportional to $E(\lambda_.(x)) = m_.(x)$

$$\mathsf{pr}(Y = 1 \mid x \in \mathsf{SPP}) = \frac{E\lambda_1(x)}{E\lambda_1(x)} \neq E\left(\frac{\lambda_1(x)}{\lambda_1(x)}\right) = E(Y_i \mid i \colon X_i = x)$$

Point process model **Preferential sampling** Logistic illustration of sampling bias Joint distributions

ヘロン 人間 とくほど くほとう

Gaussian spatial models

Standard Gaussian model: $\mathcal{U} = \mathcal{R}^2$ (population of units) Sample: finite ordered subset $\mathbf{x} = (x_1, \dots, x_n)$ (sites) Response process $Y(x) \in \mathcal{R}$ observed at $x \in \mathbf{x}$ Joint distribution for fixed \mathbf{x}

$$p_{\mathbf{x}}(\mathbf{A}) = N(\mathbf{1}\mu, \ \sigma_0^2 I_n + \sigma_1^2 K[\mathbf{x}])(\mathbf{A})$$

 $(\mathcal{K}[\mathbf{x}])_{ij} = \mathcal{K}(x_i, x_j), \, \text{for example exp}(-\|x_i - x_j\|/ au)$

Used for:

parameter estimation via likelihood prediction of the value at unobserved sites given $Y[\mathbf{x}]$ $p_{\mathbf{x},x'}(Y(x') = y' | Y[\mathbf{x}]), \quad E(Y(x') | Y[\mathbf{x}])$ (Kriging) Conditional distribution is Gaussian

Point process model Preferential sampling Logistic illustration of sampling bias Joint distributions

イロト イポト イヨト イヨト

Preferential sampling of spatial processes

Following Diggle, Menezes and Su (RSS discussion paper) Environmental monitoring:

sites selected where pollution levels are thought to be high Drilling:

the most promising sites are selected first

How does preferential sampling affect

(i) likelihood and parameter estimation?

(ii) predictions and conditional distributions?

Condition for benign sampling: $\mathbf{x}^{(r+1)} \perp Y | Y[\mathbf{x}^{(r)}]$

Point process model Preferential sampling Logistic illustration of sampling bias Joint distributions

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

Preferential sampling (contd.)

Point process model for preferential sampling:

$$S \sim GP(0, K) \quad \text{on } \mathcal{X} = \mathcal{R}^{2}$$
$$\lambda(x, y) = e^{\alpha + \beta S(x)} \tau^{-1} \phi\left(\frac{y - \mu(x) - S(x)}{\tau}\right) \quad \text{at } (x, y)$$
$$\lambda_{\bullet}(x) = e^{\alpha + \beta S(x)} \quad \text{marginal intensity at } x \in \mathcal{X}$$

(preferential sampling if $\beta \neq 0$)

Point process density on $A \subset \mathcal{R}^2$

$$p_{\mathcal{A}}(\mathbf{x},\mathbf{y}) = E_{\lambda}\left(e^{-\Lambda_{\bullet}(\mathcal{A})}\prod_{\mathbf{x}}\lambda(x_i,y_i)\right)$$

Point process model Preferential sampling Logistic illustration of sampling bias Joint distributions

ヘロア ヘビア ヘビア・

Spatial preferential sampling (contd.)

Diggle's Gaussian model sampled preferentially

 $S \sim GP(0, K)$ (ground truth) $Y(x) = \mu(x) + S(x) + \epsilon(x)$ (observed at certain sites in *A*)

sites $\mathbf{x} \subset \mathcal{R}^2$ generated with intensity $\exp(\alpha + \beta S(x))$

Implications:

$$E(Y(x)) = \mu(x) \text{ for each fixed } x$$

$$E(Y(x) \mid x \in \mathbf{x}) = \mu(x) + \beta K(x, x)$$

$$E(Y(x) \mid x, x' \in \mathbf{x}) = \mu(x) + \beta K(x, x) + \beta K(x, x')$$

$$\operatorname{cov}(Y(x), Y(x') \mid x, x' \in \mathbf{x}) = K(x, x')$$

Point process model Preferential sampling Logistic illustration of sampling bias Joint distributions

Logistic illustration of sampling bias

$$\begin{split} \eta_0(x) &\sim GP(0, K), &\lambda_0(x) = \exp(\eta_0(x)) \\ \eta_1(x) &\sim GP(\alpha + \beta x, K), &\lambda_1(x) = \exp(\eta_1(x)) \\ \eta(x) &= \eta_1(x) - \eta_0(x) \sim GP(\alpha + \beta x, 2K), &K(x, x) = \sigma^2 \end{split}$$

One-dimensional sampling distributions:

$$\rho(x) = p_x(Y = 1) = E\left(\frac{e^{\eta(x)}}{1 + e^{\eta(x)}}\right) \quad \text{(fixed } x\text{)}$$
$$\text{logit}(\rho(x)) \simeq \alpha^* + \beta^* x \quad (|\beta^*| < |\beta|)$$
$$\pi(x) = \text{pr}(Y = 1 \mid x \in \text{SPP}) = \frac{E\lambda_1(x)}{E\lambda_1(x)} = \frac{e^{\alpha + \beta x + \sigma^2/2}}{e^{\sigma^2/2} + e^{\alpha + \beta x + \sigma^2/2}}$$
$$\text{logit } \text{pr}(Y = 1 \mid x \in \text{SPP}) = \alpha + \beta x$$

No approximation; no attenuation

ヘロア ヘビア ヘビア・

ъ

Point process model Preferential sampling Logistic illustration of sampling bias Joint distributions

ヘロト ヘ戸ト ヘヨト ヘヨト

Conditional joint distributions of $Y[\mathbf{x}]$ given \mathbf{x}

Quota sampling with fixed ${f x}$

$$p_{\mathbf{x}}(\mathbf{y}) = E\left(\prod \frac{\lambda_{y_i}(x_i)}{\lambda_{\cdot}(x_i)}\right)$$
$$= E\left(\prod \frac{e^{y_i\eta(x_i)}}{1 + e^{\eta(x_i)}}\right)$$

coincides with standard GLMM model

Sequential sampling fixed time: #x random

$$p(\mathbf{y} | \mathbf{x}) = \frac{E \prod \lambda_{y_i}(x_i) e^{-\int \lambda_{\bullet}(x)\nu(dx)}}{E \prod \lambda_{\bullet}(x_i) e^{-\int \lambda_{\bullet}(x)\nu(dx)}}$$

Treatment effect

Alternative formulation: auto-selection

To each $u \in \mathcal{U}$ there corresponds a random intensity $\lambda_{y,t}^{(u)}$

$$\begin{array}{ccc} t = 0 & t = 1 \\ y = 0 & \begin{pmatrix} \lambda_{00}^{(u)} & \lambda_{01}^{(u)} \\ \lambda_{10}^{(u)} & \lambda_{11}^{(u)} \end{pmatrix} \end{array}$$

 $pr(u \in Sample \mid \lambda) = \lambda_{..}^{(u)} \quad \text{(random and small)}$ $pr(u \in S \& t_u = t \mid \lambda) = \lambda_{.t}^{(u)}$ $pr(Y_u = 1 \mid u \in S \& t_u = t, \lambda) = \lambda_{1t}^{(u)} / \lambda_{.t}^{(u)}$

Randomization implies $\lambda_{.0}^{(u)} = \lambda_{.1}^{(u)}$

イロト 不得 とくほと くほとう

Treatment effect

Auto-selection and volunteer samples (contd)

$$pr(u \in Sample | \lambda) = \lambda_{..}^{(u)} \quad (volunteer intensity)$$

$$pr(u \in S \& t_u = t | \lambda) = \lambda_{.t}^{(u)}$$

$$pr(Y_u = 1 | u \in S \& t_u = t, \lambda) = \frac{\lambda_{1t}^{(u)}}{\lambda_{.t}^{(u)}}$$

$$pr(Y_u = 1 | u \in S \& t_u = t) = \frac{E(\lambda_{1t}^{(u)})}{E(\lambda_{.t}^{(u)})} \quad (PP)$$

$$pr(Y_u = 1 | t_u = t) = E\left(\frac{\lambda_{1t}^{(u)}}{\lambda_{.t}^{(u)}}\right) \quad (GLMM \text{ for fixed } u)$$

ヘロン ヘアン ヘビン ヘビン

2

Treatment effect

Defining the treatment effect $\tau(x)$

Classical definition involves two fixed units $u \neq u'$ such that x(u) = x(u') = x and t(u) = 0, t(u') = 1Definitions 1 & 1':

$$\frac{\text{odds}(Y(u') = 1)}{\text{odds}(Y(u) = 1)} = e^{\tau(x)} = \frac{\text{odds}(Y(u) = 1 \mid t(u) = 1)}{\text{odds}(Y(u) = 1 \mid t(u) = 0)}$$

Exchangeability: \longrightarrow Ratio same for all pairs u, u'

Classical definition 2: (also for fixed units as above)

$$\frac{\Pr(Y(u') = 1, Y(u) = 0)}{\Pr(Y(u') = 0, Y(u) = 1)} = e^{\tau'(x)}$$

 $Y(u) \perp Y(u')$ implies $\tau(x) = \tau'(x)$ But τ' may depend on the relationship between u, u'.

Treatment effect

Defining the treatment effect (contd)

Given $u, u' \in S_x$ such that x(u) = x(u') = xPP definition 1:

$$\frac{\text{odds}(Y(u') = 1 \mid u' \in S_x, t(u') = 1)}{\text{odds}(Y(u) = 1 \mid u \in S_x, t(u) = 0)} = e^{\tau(x)}$$

PP definition 2: (explicitly involving pairs)

$$\frac{\Pr(Y(u') = 1, Y(u) = 0 \mid u, u' \in S_x, t(u) = 0, t(u') = 1)}{\Pr(Y(u') = 0, Y(u) = 1 \mid u, u' \in S_x, t(u) = 0, t(u') = 1)} = e^{\tau'(x)}$$

If $N_{rs} = \#\{u \in S_x : Y(u) = r, t(u) = s\}$
 $N_{00}N_{11} - e^{\tau'(x)}N_{01}N_{10}$ has exactly zero expectation

ヘロト 人間 とくほとくほとう

3

Notation: meaning of $E(Y_i | X_i = x)$

Exchangeable sequence $(Y_1, X_1), (Y_2, X_2), \ldots$ with binary *Y implies* conditionally iid given λ

Stratum *x*: $U_x = \{i : X_i = x\}$ an infinite random subsequence Stratum average: ave $\{Y_i : i \in U_x\} = \lambda_1(x)/\lambda_1(x)$ Stratum mean = expected value of stratum average:

$$\rho(\mathbf{x}) = E\left(\frac{\lambda_1(\mathbf{x})}{\lambda_{\bullet}(\mathbf{x})}\right) \simeq \frac{e^{\alpha^* + \beta^* \mathbf{x}}}{1 + e^{\alpha^* + \beta^* \mathbf{x}}}$$

is declared target in much biostatistical work (PA)

Correct calculation for a random stratum in SPP:

$$\pi(x) = E\left(\frac{\lambda_1(x)}{\lambda_{\boldsymbol{\cdot}}(x)} \mid x \in \text{SPP}\right) = \frac{E(\lambda_1(x))}{E(\lambda_{\boldsymbol{\cdot}}(x))} = \frac{e^{\alpha + \beta x}}{1 + e^{\alpha + \beta x}}$$

Conditional mean $\pi(x) = E(Y_i | X_i = x)$ versus stratum mean Ξ

Consequences of ambiguous notation

Sample $(Y_1, X_1), (Y_2, X_2), \dots$ observed sequentially

$$\pi(x) = E\left(\frac{\lambda_1(x)}{\lambda_i(x)} \mid x \in \text{SPP}\right) = \frac{e^{\alpha + \beta x}}{1 + e^{\alpha + \beta x}} = E(Y_i \mid X_i = x)$$
$$\rho(x) = E\left(\frac{\lambda_1(x)}{\lambda_i(x)}\right) \simeq \frac{e^{\alpha^* + \beta^* x}}{1 + e^{\alpha^* + \beta^* x}} = E(Y_i \mid i: X_i = x)$$

($\rho(x)$ computed by logistic-normal integral)

Conventional PA estimating function $Y_i - \rho(x_i)$ is such that

$$E(Y_1 - \rho(x) | X_1 = x) = \pi(x) - \rho(x) \neq 0$$

and same for Y_2, \ldots

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ○ ○ ○

nterference

Estimating functions done correctly

Mean intensity for class $r: m_r(x) = E(\lambda_r(x))$ $\pi_r(x) = m_r(x)/m_r(x); \quad \rho_r(x) = E(\lambda_r(x)/\lambda_r(x))$

$$E(Y_i) = \rho(x)$$
 for each *i* in $\mathcal{U}_x = \{u : X_u = x\}$

For autogenerated x, $E(Y|x \in \text{SPP}) = \pi(x) \neq \rho(x)$

$$T(\mathbf{x},\mathbf{y}) = \sum_{x \in \text{SPP}} h(x)(Y(x) - \pi(x))$$

has zero mean for auto-generated configurations **x**. Note: $E(T | \mathbf{x}) \neq 0$; average is also over configurations

・ロト ・同ト ・ヨト ・ヨト

Interference

Explanation of unbiasedness

- $\mathbf{z} = \{(x_1, y_1), \ldots\}$ configuration generated in (0, t). $\mathbf{x} = \{x_1, \ldots, \}$ marginal configuration (SPP)
- **z** is a random measure with mean $t m_r(x) \nu(dx)$ at (r, x)**x** is marginal random measure with mean $t m_{\cdot}(x) \nu(dx)$ at $x \pi_r(x) = m_r(x)/m_{\cdot}(x)$

Hence $E(\mathbf{z}(r, dx)) = \pi_r(x)E(\mathbf{x}(dx))$ for all (r, x) implies

$$T(\mathbf{x}, \mathbf{y}) = \sum_{x \in \text{SPP}} h(x) (Y(x) - \pi(x))$$
$$= \int_{\mathcal{X}} h(x) \left(\mathbf{z}(r, dx) - \pi_r(x) \mathbf{x}(dx) \right)$$

has zero expectation. But $E(T | \mathbf{x}) \neq 0$.

イロト 不得 とくほ とくほ とうほ

Interference

variance calculation: binary case

 (\mathbf{y}, \mathbf{x}) generated by point process;

$$T(\mathbf{x},\mathbf{y}) = \sum_{x \in \text{SPP}} h(x)(Y(x) - \pi(x))$$

 $E(T(\mathbf{x},\mathbf{y})) = 0; \qquad E(T \mid \mathbf{x}) \neq 0$

$$\operatorname{var}(T) = \int_{\mathcal{X}} h^{2}(x)\pi(x)(1 - \pi(x)) \, m_{\cdot}(x) \, dx$$
$$+ \int_{\mathcal{X}^{2}} h(x)h(x') \, V(x, x') \, m_{\cdot}(x, x') \, dx \, dx'$$
$$+ \int_{\mathcal{X}^{2}} h(x)h(x')\Delta^{2}(x, x')m_{\cdot}(x, x') \, dx \, dx'$$

V: spatial or within-cluster correlation; Δ : interference

ヘロト 人間 ト ヘヨト ヘヨト

ъ

Interference

What is interference?

Physical/biological interference: distribution of Y(u) depends on x(u')

Sampling interference for autogenerated units

 $m_r(x) = E(\lambda_r(x));$ $m_{rs}(x, x') = E(\lambda_r(x)\lambda_s(x'))$ Univariate distributions:

 $\pi_r(x) = m_r(x)/m_{\cdot}(x) = \operatorname{pr}(Y(x) = r \mid x \in \operatorname{SPP})$ Bivariate distributions: $\pi_{rs}(x, x') = m_{rs}(x, x')/m_{\cdot}(x, x')$ $\pi_{rs}(x, x') = \operatorname{pr}(Y(x) = r, Y(x') = s \mid x, x' \in \operatorname{SPP})$

Hence $\pi_{r}(x, x') = \operatorname{pr}(Y(x) = r \mid x, x' \in \operatorname{SPP})$ $\Delta_r(x, x') = \pi_r(x, x') - \pi_r(x)$

No second-order sampling interference if $\Delta_r(x, x') = 0$

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Interference

Inference: Conventional Gaussian model

Model $p_{\mathbf{x}}(A) = N_n(X\beta, \Sigma_{\mathbf{x}} = \sigma_0^2 I_n + K[\mathbf{x}])(A)$ Rationalization $Y(i) = x'_i\beta + \epsilon_i + \eta(x(i))$

Stratum average: $\bar{Y}(\mathcal{U}_x) = \text{ave}\{Y_i \mid i : x_i = x\} = x'\beta + \eta(x)$

Conditional distribution of Y_u for $u \in U_x$ given observation y, X

$$Y_{u} | \text{data} \sim N(x'\beta + k'\Sigma_{\mathbf{x}}^{-1}(y - X\beta), \Sigma_{uu} - k'\Sigma_{\mathbf{x}}^{-1}k)$$

$$\bar{Y}(\mathcal{U}_{x}) | \text{data} \sim N(x'\beta + k'\Sigma_{\mathbf{x}}^{-1}(y - X\beta), K(x, x) - k'\Sigma_{\mathbf{x}}^{-1}k)$$

$$k_{i} = K(x, x_{i}), \text{ (such as } e^{-|x - x_{i}|} \text{ or } |x - x_{i}|^{3})$$

Stratum average is a random variable, not a parameter Estimate is a distribution (not a function of sufficient statistic) Likewise for GLMMs

Interference

Inference and predicton for the PP model

For a sequential sample Observation $(\mathbf{x}, \mathbf{y}) \equiv (\mathbf{x}^{(0)}, \dots, \mathbf{x}^{(k-1)})$ Product density $m_r(\mathbf{x}^{(r)}) = E(\prod_{x \in \mathbf{x}^{(r)}} \lambda_r(x))$ for class rConditional distribution as a random labelled partition of \mathbf{x} :

$$p(\mathbf{y} | \mathbf{x}) \propto m_0(\mathbf{x}^{(0)}) \cdots m_{k-1}(\mathbf{x}^{(k-1)})$$

For a subsequent autogenerated event

$$p(Y(x') = r \mid \text{data}, x' \in \text{SPP}) \propto m_r(\mathbf{x}^{(r)}, x') / m_r(\mathbf{x}^{(r)})$$

Use likelihood or estimating function to estimate parameters Use conditional distribution for inference/prediction

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Interference

Brief summary of conclusions

- (i) Reasonable case for fixed-population model in certain areas laboratory work; field trials; veterinary trials;...
- (ii) Good case for autogenerated units in other areas clinical trials; marketing; crime; animal behaviour
- (iii) The choice matters in random-effects models
- (iv) $\pi(x) = E(Y_i | X_i = x)$ versus $\rho(x) = E(Y_i | i: X_i = x)$ attenuation or non-attenuation
- (v) What is modelled and estimated by PA? claims to estimate $\rho(x)$ but actually estimates $\pi(x)$
- (vi) What does the GLMM likelihood estimate? Difficult to say; probably neither

ヘロン ヘアン ヘビン ヘビン