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Conventional regression model

Fixed index set U (always infinite): u1,u2, . . . subjects, plots...
Covariate x(u1), x(u2), . . . (non-random, vector-valued)
Response Y (u1),Y (u2), . . . (random, real-valued)

Regression model:
Sample = finite ordered subset u1, . . . ,un (distinct in U)
For each sample with configuration x = (x(u1), . . . , x(un))
Response distribution px(y) on Rn depends on x

Kolmogorov consistency condition on distributions px(·)
x is not a random variable
px(·) is not the conditional distribution given x
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Gaussian regression model

Covariate x(u) = (x1(u), x2(u)) partitioned into two components
x1(u) = (variety(u), treatment(u), . . .) affecting the mean
x2(u) = (block(u), coordinates(u)) affecting covariances

Example: response distribution for a fixed sample of n plots

px(y ∈ A; θ) = Nn(X1β, σ
2
0In + σ2

1K [x2])(A)

A ⊂ Rn, K [x] = {K (xi , xj)}
block-factor models: K (i , j) = 1 if block(i) = block(j)
spatial/temporal models: K (i , j) = exp(−|x2(i)− x2(j)|/τ)
Generalized random field: K (i , j) = −avex∈i, x ′∈j log |x − x ′|

Equivalent to Y (u) = µ(u) + ε(u) + η(u) with ε ⊥ η,...
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Binary regression model (GLMM)

Units: u1,u2, . . . subjects, patients, plots (labelled)
Covariate x(u1), x(u2), . . . (non-random, X -valued)
Latent process η on X (Gaussian, for example)
Responses Y (u1), . . . conditionally independent given η

logit pr(Y (u) = 1 | η) = α + βx(u) + η(x(u))

Joint distribution for sample having configuration x

px(y) = Eη
n∏

i=1

e(α+βxi +η(xi ))yi

1 + eα+βxi +η(xi )

parameters α, β,K , K (x , x ′) = cov(η(x), η(x ′)).
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Binary regression model: computation

GLMM computational problem:

px(y) =

∫
Rn

n∏
i=1

e(α+βxi +η(xi ))yi

1 + eα+βxi +η(xi )
φ(η; K ) dη

Options:

Taylor approx: Laird and Ware; Schall; Breslow and Clayton,
McC and Nelder, Drum and McC,...

Laplace approximation: Wolfinger 1993; Shun and McC 1994
Numerical approximation: Egret
E.M. algorithm: McCulloch 1994 for probit models
Monte Carlo: Z&L,...
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But, . . ., wait a minute...

px(y) is the distribution for each fixed sample of n units.
But ... the sample might not be predetermined

volunteer samples in clinical trials;
pre-screening of patients to increase compliance;
behavioural studies in ecology;
marketing studies, with purchase events as units;
public policy: crime type with crime events as units

Ergo, x is also random, so we need a joint distribution.

Q1: For a bivariate process, what does px(y) represent?
Q2: Is it necessarily the case that px(y) = p(y |x)?

... even if sample size is random?
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Problems in the application of conventional models

Clinical trials / market research / traffic studies / crime...

(i) Operational interpretation of a sample as a fixed subset
or as a random subset independent of the process

(ii) Sample units generated by a random process
sequential recruitment, purchase events, traffic studies...

(iii) Population also generated by a random process in time
animal populations, purchase events, crime events,...

(iv) Samples: random, sequential, quota,...

(v) Conditional distribution given observed random x
versus stratum distribution for fixed x
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Illustration: Kentucky traffic accidents

Units: traffic accidents in Kentucky
Response: seat belt used? (Y or N)
Explanatory: x(s) road class at site s ∈ Kentucky

logit pr(Y (s) = 1 | η,event at s) = η(s) + βx(s)
cov(η(s), η(s′)) = K (s, s′)

pr(Y (s) = 1 |event at s) = Eη

(
eη(s)+βx(s)

1 + eη(s)+βx(s)

)

' eβ
∗x(s)

1 + eα(s)+β∗x(s)

|β∗| ≤ β (attenuation)
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Kentucky traffic accidents: Poisson version

Log intensity of accidents w/o restraint η(s,0) + β0x(s)
Log intensity of accidents with restraint η(s,1) + β1x(s)

logit pr(Y (s) = 1 |event at s, η) = η(s,1)− η(s,0) + (β1 − β0)x(s)

= η(s) + βx(s)

pr(Y (s) = 1 |event at s) = Eη

(
eη(s)+βx(s)

1 + eη(s)+βx(s)

)

' eα(s)+β∗x(s)

1 + eα(s)+β∗x(s)

Same as logistic model with additive random effect!
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Kentucky accidents: alternative Poisson version

Intensity of accidents given η:
w/o restraint: eη(s,0) exp(β0x(s))
with restraint eη(s,1) exp(β1x(s))

pr(accident w/o restraint in ds | η) = eη(s,0)eβ0x(s) ds

pr(accident w/o restraint in ds) = E(eη(s,0))eβ0x(s) ds =
m(s,0)eβ0x(s)

pr(accident with restraint in ds) = E(eη(s,1))eβ1x(s) ds

pr(Y = 1|accident in ds) = m(s,1)eβ1x(s)

m(s,0)eβ0x(s)+m(s,1)eβ1x(s)

log odds(Y = 1 | . . .) = log(m(s,1)/m(s,0)) + (β1 − β0)x(s)

No approximation, no attenuation!
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Point process model for auto-generated units
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A point process on C × X for C = {0, 1, 2}, and the superposition process on X .

Intensity λr(x) for class r: r = 0, 1, 2.

x-values auto-generated by the superposition process with intensity λ.(x).

To each auto-generated unit there corresponds an x-value and a y-value.

1

Peter McCullagh Auto-generated units



university-logo

Conventional regression models
Auto-generated units

Volunteer samples
Notation

Estimating functions

Point process model
Preferential sampling
Logistic illustration of sampling bias
Joint distributions

Binary point process model

Intensity process λ0(x) for class 0, λ1(x) for class 1
Log ratio: η(x) = logλ1(x)− logλ0(x)
Events form a PP with intensity λ on {0,1} × X .
Conventional GLMM calculation (Bayesian and frequentist):

pr(Y = 1 | x , λ) =
λ1(x)

λ.(x)
=

eη(x)

1 + eη(x)

pr(Y = 1 | x) = E
(
λ1(x)

λ.(x)

)
= E

(
eη(x)

1 + eη(x)

)
GLMM calculation is correct in a sense, but irrelevant. . .
. . . there might not be an event at x !
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Correct calculation for auto-generated units

pr(event of type r in dx |λ) = λr (x) dx + o(dx)

pr(event of type r in dx) = E(λr (x)) dx + o(dx)

pr(event in SPP in dx |λ) = λ.(x) dx + o(dx)

pr(event in SPP in dx) = E(λ.(x)) dx + o(dx)

pr(Y (x) = r |SPP event at x) =
Eλr (x)

Eλ.(x)

= E
(
λr (x)

λ.(x)

∣∣∣ x ∈ SPP
)

=
Eλr (x)

Eλ.(x)
6= E

(
λr (x)

λ.(x)

)
Sampling bias:

Distn for fixed x versus distn for autogenerated x .
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Two ways of thinking

First way: waiting for Godot!
Fix x ∈ X and wait for an event to occur in (x , x + dx)

pr(Y = 1 |λ, x) = λ1(x)
λ.(x)

pr(Y = 1; x) = E
(
λ1(x)
λ.(x)

)
= E(Yi | i : Xi = x)

Conventional, mathematically correct, but seldom relevant

Second way: come what may!
SPP event occurs at x , a random point in X
joint density at (y , x) proportional to E(λy (x)) = my (x)
x has marginal density proportional to E(λ.(x)) = m.(x)

pr(Y = 1 | x ∈ SPP) =
Eλ1(x)

Eλ.(x)
6= E

(
λ1(x)

λ.(x)

)
= E(Yi | i : Xi = x)
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Gaussian spatial models

Standard Gaussian model: U = R2 (population of units)
Sample: finite ordered subset x = (x1, . . . , xn) (sites)
Response process Y (x) ∈ R observed at x ∈ x
Joint distribution for fixed x

px(A) = N(1µ, σ2
0In + σ2

1K [x])(A)

(K [x])ij = K (xi , xj), for example exp(−‖xi − xj‖/τ)

Used for:
parameter estimation via likelihood
prediction of the value at unobserved sites given Y [x]
px,x ′(Y (x ′) = y ′ |Y [x]), E(Y (x ′) |Y [x]) (Kriging)

Conditional distribution is Gaussian
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Preferential sampling of spatial processes

Following Diggle, Menezes and Su (RSS discussion paper)
Environmental monitoring:

sites selected where pollution levels are thought to be high
Drilling:

the most promising sites are selected first

How does preferential sampling affect
(i) likelihood and parameter estimation?
(ii) predictions and conditional distributions?

Condition for benign sampling: x(r+1) ⊥⊥ Y |Y [x(r)]
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Preferential sampling (contd.)

Point process model for preferential sampling:

S∼GP(0,K ) on X = R2

λ(x , y) = eα+βS(x)τ−1φ

(
y − µ(x)− S(x))

τ

)
at (x , y)

λ.(x) = eα+βS(x) marginal intensity at x ∈ X

(preferential sampling if β 6= 0)

Point process density on A ⊂ R2

pA(x,y) = Eλ

(
e−Λ.(A)

∏
x

λ(xi , yi)

)
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Spatial preferential sampling (contd.)

Diggle’s Gaussian model sampled preferentially

S ∼ GP(0,K ) (ground truth)
Y (x) = µ(x) + S(x) + ε(x) (observed at certain sites in A)

sites x ⊂ R2 generated with intensity exp(α + βS(x))

Implications:
E(Y (x)) = µ(x) for each fixed x
E(Y (x) | x ∈ x) = µ(x) + βK (x , x)
E(Y (x) | x , x ′ ∈ x) = µ(x) + βK (x , x) + βK (x , x ′)
cov(Y (x),Y (x ′) | x , x ′ ∈ x) = K (x , x ′)

Peter McCullagh Auto-generated units
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Logistic illustration of sampling bias

η0(x)∼GP(0,K ), λ0(x) = exp(η0(x))

η1(x)∼GP(α + βx ,K ), λ1(x) = exp(η1(x))

η(x) = η1(x)− η0(x)∼GP(α + βx , 2K ), K (x , x) = σ2

One-dimensional sampling distributions:

ρ(x) = px (Y = 1) = E
(

eη(x)

1 + eη(x)

)
(fixed x)

logit(ρ(x))'α∗ + β∗x (|β∗| < |β|)

π(x) = pr(Y = 1 | x ∈ SPP) =
Eλ1(x)

Eλ.(x)
=

eα+βx+σ2/2

eσ2/2 + eα+βx+σ2/2

logit pr(Y = 1 | x ∈ SPP) =α + βx

No approximation; no attenuation
Peter McCullagh Auto-generated units
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Conditional joint distributions of Y [x] given x

Quota sampling with fixed x

px(y) = E
(∏ λyi (xi)

λ.(xi)

)
= E

(∏ eyiη(xi )

1 + eη(xi )

)
coincides with standard GLMM model

Sequential sampling fixed time: #x random

p(y |x) =
E
∏
λyi (xi) e−

R
λ.(x)ν(dx)

E
∏
λ.(xi) e−

R
λ.(x)ν(dx)
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Alternative formulation: auto-selection

To each u ∈ U there corresponds a random intensity λ(u)
y ,t

( t = 0 t = 1
y = 0 λ

(u)
00 λ

(u)
01

y = 1 λ
(u)
10 λ

(u)
11

)

pr(u ∈ Sample |λ) = λ(u)
.. (random and small)

pr(u ∈ S & tu = t |λ) = λ
(u)
.t

pr(Yu = 1 |u ∈ S & tu = t , λ) = λ
(u)
1t /λ

(u)
.t

Randomization implies λ(u)
.0 = λ

(u)
.1
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Auto-selection and volunteer samples (contd)

pr(u ∈ Sample |λ) = λ(u)
.. (volunteer intensity)

pr(u ∈ S & tu = t |λ) = λ
(u)
.t

pr(Yu = 1 |u ∈ S & tu = t , λ) =
λ

(u)
1t

λ
(u)
.t

pr(Yu = 1 |u ∈ S & tu = t) =
E(λ

(u)
1t )

E(λ
(u)
.t )

(PP)

pr(Yu = 1 | tu = t) = E
(
λ

(u)
1t

λ
(u)
.t

)
(GLMM for fixed u)
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Defining the treatment effect τ(x)

Classical definition involves two fixed units u 6= u′ such that
x(u) = x(u′) = x and t(u) = 0, t(u′) = 1

Definitions 1 & 1’:

odds(Y (u′) = 1)

odds(Y (u) = 1)
= eτ(x) =

odds(Y (u) = 1 | t(u) = 1)

odds(Y (u) = 1 | t(u) = 0)

Exchangeability: −→ Ratio same for all pairs u,u′

Classical definition 2: (also for fixed units as above)

pr(Y (u′) = 1,Y (u) = 0)

pr(Y (u′) = 0, Y (u) = 1)
= eτ

′(x)

Y (u) ⊥⊥ Y (u′) implies τ(x) = τ ′(x)
But τ ′ may depend on the relationship between u,u′
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Defining the treatment effect (contd)

Given u,u′ ∈ Sx such that x(u) = x(u′) = x
PP definition 1:

odds(Y (u′) = 1 |u′ ∈ Sx , t(u′) = 1)

odds(Y (u) = 1 |u ∈ Sx , t(u) = 0)
= eτ(x)

PP definition 2: (explicitly involving pairs)

pr(Y (u′) = 1,Y (u) = 0 |u,u′ ∈ Sx , t(u) = 0, t(u′) = 1)

pr(Y (u′) = 0,Y (u) = 1 |u,u′ ∈ Sx , t(u) = 0, t(u′) = 1)
= eτ

′(x)

If Nrs = #{u ∈ Sx : Y (u) = r , t(u) = s}
N00N11 − eτ

′(x)N01N10 has exactly zero expectation

Peter McCullagh Auto-generated units
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Notation: meaning of E(Yi |Xi = x)

Exchangeable sequence (Y1,X1), (Y2,X2), . . . with binary Y
implies conditionally iid given λ

Stratum x : Ux = {i : Xi = x} an infinite random subsequence
Stratum average: ave{Yi : i ∈ Ux} = λ1(x)/λ.(x)
Stratum mean = expected value of stratum average:

ρ(x) = E
(
λ1(x)

λ.(x)

)
' eα

∗+β∗x

1 + eα∗+β∗x

is declared target in much biostatistical work (PA)

Correct calculation for a random stratum in SPP:

π(x) = E
(
λ1(x)

λ.(x)

∣∣∣ x ∈ SPP
)

=
E(λ1(x))

E(λ.(x))
=

eα+βx

1 + eα+βx

Conditional mean π(x) = E(Yi |Xi = x) versus stratum mean
ρ(x) = E(Yi | i : Xi = x)Peter McCullagh Auto-generated units
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Consequences of ambiguous notation

Sample (Y1,X1), (Y2,X2), . . . observed sequentially

π(x) = E
(
λ1(x)

λ.(x)

∣∣∣ x ∈ SPP
)

=
eα+βx

1 + eα+βx = E(Yi |Xi = x)

ρ(x) = E
(
λ1(x)

λ.(x)

)
' eα

∗+β∗x

1 + eα∗+β∗x
= E(Yi | i : Xi = x)

(ρ(x) computed by logistic-normal integral)

Conventional PA estimating function Yi − ρ(xi) is such that

E(Y1 − ρ(x) |X1 = x) = π(x)− ρ(x) 6= 0

and same for Y2, . . ..

Peter McCullagh Auto-generated units
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Estimating functions done correctly

Mean intensity for class r : mr (x) = E(λr (x))
πr (x) = mr (x)/m.(x); ρr (x) = E(λr (x)/λ.(x))

E(Yi) = ρ(x) for each i in Ux = {u : Xu = x}

For autogenerated x , E(Y |x ∈ SPP) = π(x) 6= ρ(x)

T (x,y) =
∑

x∈SPP

h(x)(Y (x)− π(x))

has zero mean for auto-generated configurations x.
Note: E(T |x) 6= 0; average is also over configurations

Peter McCullagh Auto-generated units
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Explanation of unbiasedness

z = {(x1, y1), . . .} configuration generated in (0, t).
x = {x1, . . . , } marginal configuration (SPP)

z is a random measure with mean t mr (x) ν(dx) at (r , x)
x is marginal random measure with mean t m.(x) ν(dx) at x
πr (x) = mr (x)/m.(x)

Hence E(z(r ,dx)) = πr (x)E(x(dx)) for all (r , x) implies

T (x,y) =
∑

x∈SPP

h(x)(Y (x)− π(x))

=

∫
X

h(x)
(

z(r ,dx)− πr (x)x(dx)
)

has zero expectation. But E(T |x) 6= 0.
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variance calculation: binary case

(y,x) generated by point process;

T (x,y) =
∑

x∈SPP

h(x)(Y (x)− π(x))

E(T (x,y)) = 0; E(T |x) 6= 0

var(T ) =

∫
X

h2(x)π(x)(1− π(x)) m.(x) dx

+

∫
X 2

h(x)h(x ′) V (x , x ′) m..(x , x ′) dx dx ′

+

∫
X 2

h(x)h(x ′)∆2(x , x ′)m..(x , x ′) dx dx ′

V : spatial or within-cluster correlation;
∆: interference

Peter McCullagh Auto-generated units



university-logo

Conventional regression models
Auto-generated units

Volunteer samples
Notation

Estimating functions

Interference

What is interference?

Physical/biological interference:
distribution of Y (u) depends on x(u′)

Sampling interference for autogenerated units
mr (x) = E(λr (x)); mrs(x , x ′) = E(λr (x)λs(x ′))

Univariate distributions:
πr (x) = mr (x)/m.(x) = pr(Y (x) = r | x ∈ SPP)

Bivariate distributions: πrs(x , x ′) = mrs(x , x ′)/m..(x , x ′)
πrs(x , x ′) = pr(Y (x) = r , Y (x ′) = s | x , x ′ ∈ SPP)

Hence πr .(x , x ′) = pr(Y (x) = r | x , x ′ ∈ SPP)

∆r (x , x ′) = πr .(x , x ′)− πr (x)

No second-order sampling interference if ∆r (x , x ′) = 0
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Inference: Conventional Gaussian model

Model px(A) = Nn(Xβ, Σx = σ2
0In + K [x])(A)

Rationalization Y (i) = x ′i β + εi + η(x(i))

Stratum average: Ȳ (Ux ) = ave{Yi | i : xi = x} = x ′β + η(x)

Conditional distribution of Yu for u ∈ Ux given observation y ,X

Yu |data∼N(x ′β + k ′Σ−1
x (y − Xβ), Σuu − k ′Σ−1

x k)

Ȳ (Ux ) |data∼N(x ′β + k ′Σ−1
x (y − Xβ), K (x , x)− k ′Σ−1

x k)

ki = K (x , xi), (such as e−|x−xi | or |x − xi |3)

Stratum average is a random variable, not a parameter
Estimate is a distribution (not a function of sufficient statistic)
Likewise for GLMMs
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Inference and predicton for the PP model

For a sequential sample
Observation (x,y) ≡ (x(0), . . . ,x(k−1))
Product density mr (x(r)) = E(

∏
x∈x(r) λr (x)) for class r

Conditional distribution as a random labelled partition of x:

p(y |x) ∝ m0(x(0)) · · ·mk−1(x(k−1))

For a subsequent autogenerated event

p(Y (x ′) = r |data, x ′ ∈ SPP) ∝ mr (x(r), x ′)/mr (x(r))

Use likelihood or estimating function to estimate parameters
Use conditional distribution for inference/prediction
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Brief summary of conclusions

(i) Reasonable case for fixed-population model in certain areas
laboratory work; field trials; veterinary trials;...

(ii) Good case for autogenerated units in other areas
clinical trials; marketing; crime; animal behaviour

(iii) The choice matters in random-effects models

(iv) π(x) = E(Yi |Xi = x) versus ρ(x) = E(Yi | i : Xi = x)
attenuation or non-attenuation

(v) What is modelled and estimated by PA?
claims to estimate ρ(x) but actually estimates π(x)

(vi) What does the GLMM likelihood estimate?
Difficult to say; probably neither
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