
First Year Examination
Department of Statistics, University of Florida

August 18, 2011, 8:00 am - 12:00 noon

Instructions:

1. You have four hours to answer questions in this examination.

2. You must show your work to receive credit.

3. Questions 1 through 5 are the “theory” questions and questions 6 through 10 are the “applied” ques-
tions. You must do exactly four of the theory questions and exactly four of the applied questions

4. Write your answers on the blank paper provided. Write only on one side of the paper, and start
each question on a new page.

5. Put your number in the upper right-hand corner of every page you turn in. Do not write your
name anywhere on your exam.

6. While the 10 questions are equally weighted, some questions are more difficult than others.

7. The parts within a given question are not necessarily equally weighted.

8. You are allowed to use a calculator.
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The following abbreviations are used throughout:

• iid = independent and identically distributed

• LRT = likelihood ratio test

• mgf = moment generating function

• ML = maximum likelihood

• MSE = mean squared error

• NP = Neyman-Pearson

• pdf = probability density function

• pmf = probability mass function

• N = {1, 2, 3, . . . }

You may use the following facts/formulas without proof:

Normal density: X ∼ N(µ, σ2) means

f(x;µ, σ) =
1√

2πσ2
exp

{
− 1

2σ2
(x− µ)2

}
where µ ∈ R and σ2 > 0.

Poisson mass function: X ∼ Poisson(λ) means X has pmf

P (X = x;λ) =
e−λλx

x!
IZ+(x)

where λ ≥ 0.

Beta density: X ∼ Beta(α, β) means X has pdf

f(x;α, β) =
Γ(α+ β)

Γ(α)Γ(β)
xα−1 (1− x)β−1 I(0,1)(x)

where α > 0 and β > 0. Also, E(X) = α/(α+ β).
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1. Let Y and Z be two random variables with finite second moments.

(a) Use the function h(t) = E
{[

(Y − EY )t + (Z − EZ)
]2} to prove that −1 ≤ ρY Z ≤ 1 where ρY Z

denotes the correlation between Y and Z.

(b) Prove or disprove the following statement: Y and Z are independent if and only if Cov(Y,Z) = 0.

Let n ∈ {2, 3, 4, . . . } and suppose that X1, . . . , Xn are random variables such that 0 < Var(Xi) <∞ for
i = 1, 2, . . . , n.

(c) Show that

Var
( n∑
i=1

Xi

)
=

n∑
i=1

Var(Xi) + 2
n−1∑
i=1

n∑
j=i+1

Cov(Xi, Xj) .

(d) Now suppose that X1, . . . , Xn are iid and let m ∈ {1, 2, . . . , n − 1}. Define U =
∑m

i=1Xi and
V =

∑n
i=1Xi and show that the correlation of U and V can be expressed as a simple function of m

and n.

2. Suppose that X ∼ Bernoulli(p).

(a) Let p̂(X) be an estimator of p. Show that the MSE of p̂(X) takes the form ap2 + bp+ c, and identify
a, b and c.

(b) Let C denote the class of estimators whose MSEs are linear functions of p. Which estimators are in C?

(c) Suppose we put a Beta(α, β) prior on p. Identify the (α, β) pairs that lead to Bayes estimators in the
class C.

Now consider a different family of priors for p that takes the form

π(p; d) = dI(0,0.5)(p) + (2− d)I(0.5,1)(p) , (1)

for d ∈ (0, 2).

(d) Find the posterior density of p given the data x under the prior (1). (All integrals must be evaluated.)

(e) Are there any values of d that lead to Bayes estimators in C?

3



3. Suppose that X1, . . . , Xn are iid Poisson(λ), where n ≥ 2, and let X = (X1, . . . , Xn).

(a) Find the ML estimator of λ, call it λ̂(X). Is the ML estimator unbiased?

(b) Find the Cramér-Rao lower bound for the variance of an unbiased estimator of h(λ) = λe−λ.

(c) Find the ML estimator of h(λ), call it ĥ(X).

(d) Either prove that ĥ(X) is the best unbiased estimator of h(λ) or find the best unbiased estimator of
h(λ).

4. Suppose that the random variables Y1, . . . , Yn satisfy

Yi = βxi + εi ,

for i = 1, . . . , n where x1, . . . , xn are known constants, β is an unknown regression parameter, and
ε1, . . . , εn are iid N(0, σ2) with σ2 known. In this question, we develop the LRT of H0 : β = 0 against
Ha : β 6= 0. We start with some preliminary results.

(a) Derive the mgf of V ∼ N(µ, τ2).

(b) Suppose that W1, . . . ,Wm are independent random variables such that Wi ∼ N(µi, τ
2
i ). Find the

distribution of
∑n

i=1 aiWi where a1, . . . , am are known constants.

Now back to the original problem.

(c) Find the ML estimator of β, call it β̂(Y ).

(d) Construct the LRT statistic for testing H0 : β = 0 against Ha : β 6= 0.

(e) Show that the LRT statistic can be written in such a way that it involves the data, Y , only through
T = β̂2(Y ).

(f) Find the distribution of T = β̂2(Y ) under H0.

(g) The general LRT theory tells us to reject H0 when the LRT statistic is small. Give an equivalent
rejection rule in terms of T .

(h) Suppose that n = 100,
∑100

i=1 x
2
i = 10 and σ2 = 5. Give the exact rejection region of the size 0.10

LRT in terms of T . (You may use the fact that P (Z > 1.645) = 0.05 when Z ∼ N(0, 1).)
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5. Let X1, . . . , Xn be iid discrete uniform on {1, 2, . . . , θ}; that is, the common mass function is given by

f(x|θ) = θ−1I{1,2,...,θ}(x) ,

where θ ∈ Θ = N. Consider testing H0 : θ = θ0 versus H1 : θ = θ1 where θ0 < θ1. The relevant sample
space, X , is given by

X =
{

(x1, x2, . . . , xn) : xi ∈ {1, 2, . . . , θ1} for each i = 1, 2, . . . , n
}
.

There are θn1 elements in X ; that is, #(X ) = θn1 . Recall that a test is nothing more than a partition of X into
the rejection region and the acceptance region. Since there are only a finite number of sample points, there
are only a finite number of possible tests.

(a) Define a set as follows

S =
{

(x1, x2, . . . , xn) ∈ X : max
1≤i≤n

xi > θ0

}
.

Let Pθ0(R) and Pθ1(R) denote the size and power of the test with rejection region R. Show that
Pθ0(R) and Pθ1(R) can both be written as simple functions of n, θ0, θ1, R and S.

(b) Without appealing to the NP Lemma, prove that if S ⊂ R, then R is a most powerful test of its size.

(c) Suppose that the set S



Q.6. Consider the (scalar based) simple linear regression model through the origin: 
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p.1.a. Derive:  
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p.1.c. Which estimator of 1 has the smaller variance? Why? SHOW ALL WORK. (Hint:  
2

1

0
n

XX i

i

S X X


   ) 
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Q.7. A balanced 2-Way Analysis of Variance was conducted as a Completely Randomized Design (where each 

experimental unit receives exactly 1 combination of the levels of fixed factors A and B). The following table gives the 

mean and (standard deviation) of the r = 4 replicates for each of the ab = 2(3) = 6 treatments, for the model: 
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Q.8. A multiple regression model relating Y to 2 independent variables (X1 and X2) is fit, based on n=16 observations.  The 

model fit is: 

 

 

2

0 1 1 2 2

2

Scalar-form: ~ 0, 1,...,

Matrix-Form: ~ ,

i i i i iY X X NID i n

N
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    

Y = Xβ+ε ε 0 I
 

 

X0 X1 X2 Y X'X X'Y

1 0 0 45.71 16 48 48 1111.823

1 2 0 55.03 48 224 144 3647.888

1 4 0 71.15 48 144 224 3549.476

1 6 0 70.39

1 0 2 57.49

1 2 2 60.77 INV(X'X) Beta-hat

1 4 2 72.45 0.2875 -0.0375 -0.0375 49.748

1 6 2 78.16 -0.0375 0.0125 0.0000 3.905

1 0 4 62.25 -0.0375 0.0000 0.0125 2.675

1 2 4 65.76

1 4 4 79.08

1 6 4 89.05 Y'Y Y-bar

1 0 6 68.36 79225.54 69.49

1 2 6 71.19

1 4 6 81.93

1 6 6 83.05  

Compute or obtain  the following quantities from the matrix results above: 

p.8.i. Total Sum of Squares (Uncorrected) and corresponding degrees of freedom. 

p.8.ii. Sum of Squares for the Intercept ()  and corresponding degrees of freedom. 

p.8.iii. Total Sum of Squares (Corrected) and corresponding degrees of freedom. 

p.8.iv. Sum of Squares for Regression and corresponding degrees of freedom. 

p.8.v.  Sum of Squares for Residual and corresponding degrees of freedom. 

p.8.vi. Test Statistic and Rejection Region for testing:  0 1 2: 0H        ( = 0.05 significance level) 

p.8.vii. Test Statistic and Rejection Region for testing:  0 1: 0H       ( = 0.05 significance level, 2-sided) 

p.8.viii.  95% Confidence Interval for 2 

p.8.ix. Test Statistic and Rejection Region for testing:  0 1 2:H       ( = 0.05 significance level, 2-sided) 

p.8.x.  Coefficient of Determination   (R
2
) 

p.8.xi.  Fitted value  when  X1 =X2 =3  

 



Q.9. A study was conducted to measure the variation in endurance within and across females who play college soccer at 

major U.S. colleges and universities. A random sample of t = 10 players are sampled (from the population of a female 

college soccer players), and each player is measured r = 3 times, where the response y is the time to exhaustion on a 

treadmill at a 10-degree slope at 10 kilometers per hour. The model fit is: 
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p.9.a. Derive          ' ' ' ', , , , , , ' 'ij ij ij ij ij i j ij i jE y V y Cov y y Cov y y Cov y y i i j j   

 

p.9.b. Derive the expected values of the Among and Within players mean squares, where the respective sums of squares 

are (show all work): 

   
2 2

1 1 1 1

t r t r

iji i

i j i j

SSA y y SSW y y
  
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p.9.c. For this study,  SSA = 2700 and  SSW = 400. Give point estimates of a
2
 and 2

  

 

p.9.d. The intra-class correlation is defined as:  

2

2 2

a
I

a




 



. Give an estimate of this correlation based on this data 

(note that this will not necessarily be an unbiased estimate).  

 

 

 

 

 

 

 

 

 

 

 



Q.10. A randomized complete block design is conducted to compare t = 3 treatments in r = 6 blocks. The model is fit, 

based on fixed treatments and random blocks (note that standard errors of individual treatment means depend on whether 

blocks are fixed or random, but standard errors of differences of pairs of means do not). The following model is fit: 

       2 2

1

1,..., ; 1,...,

0 ~ 0, ~ 0,

ij i j ij

t

i j b ij j ij

i
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b NID e NID b e

 

  
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The following table gives experimental results: 

 

 

 

p.10.a. Compute the Treatment Sum of Squares and its corresponding degrees of freedom. 

 

p.10.b. Compute the Block Sum of Squares and its corresponding degrees of freedom. 

 

p.10.c. Compute the Error Sum of Squares and its corresponding degrees of freedom. 

 

p.10.d. Test: 0 1 2 3: 0H       at the  = 0.05 significance level. 

 

p.10.e. Use Bonferroni’s method to obtain simultaneous 95% confidence intervals for: 1 2 1 3 2 3, ,        

 

 

 

 

 


