
First Year Examination
Department of Statistics, University of Florida

August 20, 2009, 8:00 am - 12:00 noon

Instructions:

1. You have four hours to answer questions in this examination.

2. You must show your work to receive credit.

3. Write only on one side of the paper, and start each question on a new page.

4. Questions 1 through 5 are the “theory” questions and questions 6 through 10 are the “applied” ques-
tions. You must do exactly four of the theory questions and exactly four of the applied questions.

5. While the 10 questions are equally weighted, some questions are more difficult than others.

6. The parts within a given question are not necessarily equally weighted.

7. You are allowed to use a calculator.
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The following abbreviations and terminology are used throughout:

• ANOVA = analysis of variance

• cdf = cumulative distribution function

• SS = sums of squares

• iid = independent and identically distributed

• LRT = likelihood ratio test

• mgf = moment generating function

• ML = maximum likelihood

• OLS = ordinary least squares

• pdf = probability density function

• pmf = probability mass function

• N = {1, 2, 3, . . . }

You may use the following facts/formulas without proof:

Gamma density: X ∼ Gamma(α, β) means X has pdf

f(x;α, β) =
1

Γ(α)βα
xα−1 e−x/β I(0,∞)(x)

where α > 0 and β > 0.

Normal density: X ∼ N(µ, σ2) means X has pdf

f(x;µ, σ) =
1√

2πσ2
exp

{
− 1

2σ2
(x− µ)2

}
where µ ∈ R and σ2 > 0.

2



1. Consider an experiment involving four independent, identical trials. Each trial entails randomly choosing a
day of the week; that is, randomly choosing a member of the set

{Sunday,Monday,Tuesday, . . . ,Saturday} .

Let X denote the number of different days in the resulting sequence. For example, if we get “Saturday” all
four times, then X = 1. As another example, if the first two draws result in “Monday,” the third results in
“Sunday,” and the fourth yields “Friday,” then X = 3.

(a) Find Pr(X = 2).

(b) Find E(X).

(c) Let Z denote the number of occurrences of Saturday and Sunday in the sequence. Find the conditional
pmf of X given that Z = 0.

(Express your answers as ratios of integers or sums of ratios of integers - do not use any decimals!)

2. Let X1, X2, . . . , Xn be iid with common pdf given by

f(x;β, θ) =
1
β
e−(x−θ)/βI(θ,∞)(x) ,

where β > 0 and θ ∈ R. Write the order statistics as X(1:n), X(2:n), . . . , X(n:n). (We’re using this notation
instead of the more standard notation, X(1), X(2), . . . , X(n), in order to make the dependence on n more
explicit.)

(a) Derive the pdf of X(1:n).

(b) Define Yn = X(1:n) for n ∈ N. Prove or disprove the following statement: The sequence of random
variables {Yn}∞n=1 converges in probability.

(c) Derive the cdf of X(n:n).

(d) Define Zn = X(n:n) for n ∈ N. Find a non-random sequence {an}∞n=0 such that Zn − an converges
in distribution. (Hint: Is the limit a valid cdf?)
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3. In this question, we will develop a method of simulating from the Gamma(3.5, 3.5) distribution using only
iid Uniform(0, 1) random variables.

(a) LetU ∼ Uniform(0, 1) and let θ be a fixed, positive constant. Derive the distribution ofZ = −θ logU .

(b) Suppose that X1, . . . , Xn are iid Gamma(1, β), where β > 0. Derive the mgf of X1 and use it to show
that the distribution of S = X1 + · · ·+Xn is Gamma(n, β).

(c) Suppose we wish to simulate from the Gamma(3.5, 3.5) distribution. Consider using an accept-
rejection algorithm with a Gamma(n, β) candidate, where n ∈ N and β > 0. Which values of n
and β will lead to valid accept-rejection algorithms?

(d) Chose specific valid values for n and β and then write down the accept-reject algorithm. Remember,
you have access to an unlimited supply of iid Uniform(0, 1) random variables and nothing more.

(e) On average, how many iterations of your algorithm will be required to get a single draw from the
Gamma(3.5, 3.5) distribution? (You don’t have to prove anything here, and your answer may involve
the gamma and exponential functions.)

4. Suppose that n ≥ 2 and that X1, . . . , Xn are iid Bernoulli(p). (Throughout this problem, you may use the
fact that a function of a complete, sufficient statistic is best unbiased for its expectation.)

(a) Find the ML estimator of p. Is it unbiased?

(b) Without appealing to results for exponential families, prove that
∑n

i=1Xi is a complete statistic.

(c) Find the best unbiased estimator of p.

(d) Find the ML estimator of p(1− p). Is it unbiased?

(e) The sample variance, 1
n−1

∑n
i=1

(
Xi −X

)2, is an unbiased estimator of p(1− p). Is it best unbiased?

5. Suppose that X1, . . . , Xn are iid N(0, σ2) and that Y1, . . . , Ym are iid N(0, τ2). Assume further that X =
(X1, . . . , Xn) and Y = (Y1, . . . , Ym) are independent.

(a) Find the ML estimator of σ2.

(b) Construct the LRT statistic for testing H0 : σ2 = τ2 against H1 : σ2 6= τ2.

(c) Show that the LRT statistic can be written in such a way that it involves the data only through the
statistic

F =
1
m

∑m
i=1 Y

2
i

1
n

∑n
i=1X

2
i

.

(d) Find the distribution of F under H0.

(e) The general LRT theory tells us to reject H0 when the LRT statistic is small. Give an equivalent
rejection rule in terms of F .

(f) Explain exactly what you would have to do to identify the rejection region of the size 0.05 LRT.

4



6. Data pairs (Xi, Yi), i = 1, . . . , n, are used to fit a simple linear regression model of the Y values on the X
values.

(a) Write a scalar model equation for the simple linear regression. Identify the mean-related parameters.

(b) Write an expression for a real function of the mean-related parameters that is minimized only by OLS
estimates.

(c) Derive the normal equations (in scalar form) in terms of the data and parameters. Show your work.

(d) State the necessary and sufficient condition(s) under which the OLS estimates are unique.

(e) Suppose you impose the restriction that the intercept parameter equals zero. Derive an expression for
the OLS estimate of the slope parameter under this restriction (when it uniquely exists).

7. For a series of data yt, t = 1, . . . , n, consider the model

yt = α0 + α1 cos(πt/2) + β1 sin(πt/2) + εt, εt ∼ iid N(0, σ2), t = 1, . . . , n (1)

where α0, α1, β1, and σ2 are unknown parameters, and the arguments of cos and sin are in radians (so that
cos(π/2) = 0, sin(π/2) = 1, cos(π) = −1, sin(π) = 0, and so forth). Suppose n = 8.

(a) Is (1) a linear model? Explain.

(b) Write out the full matrix X in the matrix representation Y = Xβ + ε of this data model, where
Y = (y1, . . . , y8)′, β = (α0, α1, β1)′, and ε = (ε1, . . . , ε8)′.

(c) The data values are

y1 = 18 y2 = 13 y3 = 10 y4 = 17 y5 = 18 y6 = 11 y7 = 6 y8 = 27

(i) Compute the OLS estimates of α0, α1, and β1 under model (1).
(ii) Compute the corrected total sum of squares and the residual (error) sum of squares. What are their

degrees of freedom?
(iii) Form a 95% two-sided confidence interval for E(y9), the expected value of the (unobserved)

datum at t = 9.
(iv) Test H0 : α1 = β1 = 0 versus the alternative Ha : α1 6= 0 or β1 6= 0. Use α = 0.05.

(d) Suppose you tried to fit the higher-degree expansion of the form

yt = α0 + α1 cos(πt/2) + β1 sin(πt/2) + α2 cos(πt) + β2 sin(πt) + εt

using OLS. What problem would you encounter? Explain specifically.
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8. A type of electronic component undergoes accelerated life testing by subjection to an extraordinarily high
constant temperature during continuous operation until failure. Twenty-four components are tested, four at
each of six distinct temperatures, and each component’s lifetime is recorded. A plot of lifetime (hours) ver-
sus temperature suggests variance stabilization by using a base-10 log transform. Using OLS to fit constant-
only, simple linear, and quadratic polynomial models for log-lifetime versus temperature (◦C) yields the
following approximate residual (error) sums of squares:

constant-only: 1.20771 simple linear: 0.19933 quadratic: 0.17910

A one-way ANOVA model, fit using OLS with each distinct temperature corresponding to a different factor
level, yields a residual sum of squares of 0.12806.

(a) What specific model assumption was the log transformation chosen to help satisfy?

(b) Assuming the quadratic model is adequate, perform a test for whether the simple linear model is
adequate. State H0 and Ha, and use α = 0.05.

(c) Perform a lack-of-fit test for the quadratic model. State H0 and Ha, and use α = 0.05.

(d) The OLS estimates β̂0 and β̂1 of the intercept and slope in the simple linear model, and the usual
(unbiased) estimate of the variance-covariance matrix of those estimates, are as follows:

β̂ =

[
β̂0

β̂1

]
≈
[

3.92
−0.012

]
V̂ar
(
β̂
)
≈
[

17495 −148.85
−148.85 1.2944

]
× 10−6

Based on the simple linear model (assuming it is entirely correct),

(i) test H0 : β1 = −0.01 versus Ha : β1 < −0.01. Use α = 0.05.
(ii) form a symmetric two-sided 95% prediction interval for the log-lifetime of a component at the

standard operating temperature of 25◦C.

(e) What is the highest degree polynomial model that could be uniquely fit to these data using OLS?
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9. A balanced one-factor experiment with t factor levels and r replications at each level yields responses yij
for replication j at treatment level i. Consider the following two alternative models for the data:

Model I: yij = µ+ τi + εij ,
∑t

i=1τi = 0

Model II: yij = µ+ ai + εij , a1, . . . , at ∼ iid N(0, σ2
a)

where the errors εij are independent and identically distributed as N(0, σ2
e) (with σ2

e > 0) in both models
and are independent of all ai in Model II.

(a) For each model, write outH0 andHa for the test of whether or not there are any factor effects, in terms
of the parameters.

(b) In terms of the data values yij , write out the sum of squares for factor effect, SS(Factor), and the sum
of squares for error, SS(Error). Also give expressions for their corresponding degrees of freedom.

(c) Write an expression for the F -statistic (in terms of SS(Factor) and SS(Error)) for testing the hypothe-
ses in part (a). What is its distribution under each null hypothesis of part (a)?

(d) Letting Fν1,ν2(·) represent the (cumulative) distribution function of the F distribution with ν1 numer-
ator and ν2 denominator degrees of freedom, write expressions for the p-values corresponding to the
F -tests of part (c).

(e) For each model, find the correlation between two different responses that have the same treatment
level.

10. Designers of a portable solar oven are investigating the effect of design factors on maximum sustained
temperature. There are three factors: window thickness (single vs. double), insulation type (air only vs.
fiberglass), and reflective material (foil vs. mylar). Sixteen ovens are constructed, representing each possible
factor level combination twice, then tested in a completely randomized fashion. Resulting temperatures (◦C)
are presented in the following table:

Foil single double
air 90 80 70 80
fiberglass 110 130 100 120

Mylar single double
air 120 100 80 80
fiberglass 130 110 90 110

(a) Name the type of design of this experiment. List all of the treatments it uses.

(b) Compute the treatment sum of squares and the error (residual) sum of squares. What are their corre-
sponding degrees of freedom?

(c) Test for three-way interaction among the factors. State H0 and Ha, and use α = 0.05.

(d) Test for two-way interaction between window thickness and reflective material. State H0 and Ha, and
use α = 0.05.

(e) Suppose this experiment had instead been conducted in a randomized complete block design, but was
otherwise the same. How many blocks would there be, and why? What (if anything) would change
about the analysis?
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