
First Year Examination
Department of Statistics, University of Florida

May 8, 2009, 8:00 am - 12:00 noon

Instructions:

1. You have four hours to answer questions in this examination.

2. You must show your work to receive credit.

3. Write only on one side of the paper, and start each question on a new page.

4. Questions 1 through 5 are the “theory” questions and questions 6 through 10 are the “applied” ques-
tions. You must do exactly four of the theory questions and exactly four of the applied questions.

5. While the 10 questions are equally weighted, some questions are more difficult than others.

6. The parts within a given question are not necessarily equally weighted.

7. You are allowed to use a calculator.
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The following abbreviations and terminology are used throughout:

• ANOVA = analysis of variance

• CRD = completely randomized design

• iid = independent and identically distributed

• mgf = moment generating function

• ML = maximum likelihood

• pdf = probability density function

• pmf = probability mass function

• Z+ = {0, 1, 2, 3, . . . }

• N = {1, 2, 3, . . . }

You may use the following facts/formulas without proof:

Beta density: X ∼ Beta(α, β) means X has pdf

f(x;α, β) =
Γ(α+ β)
Γ(α)Γ(β)

xα−1 (1− x)β−1 I(0,1)(x)

where α > 0 and β > 0.

Gamma density: X ∼ Gamma(α, β) means X has pdf

f(x;α, β) =
1

Γ(α)βα
xα−1 e−x/β I(0,∞)(x)

where α > 0 and β > 0.

Normal density: X ∼ N(µ, σ2) means X has pdf

f(x;µ, σ) =
1√

2πσ2
exp

{
− 1

2σ2
(x− µ)2

}
where µ ∈ R and σ2 > 0.

Poisson density: X ∼ Poisson(λ) means X has pmf

f(x;λ) =
e−λλx

x!
IZ+(x)

where λ > 0.
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1. We have studied the dice game called craps. In case you’ve forgotten the rules, here is the definition of
craps from Webster’s dictionary: “A gambling game played with two dice; a first throw of seven or eleven
wins, and a first throw of two, three, or twelve loses; any other first throw, to win, must be repeated before a
seven is thrown.” Suppose Lucky Chucky plays a game of craps (with a pair of fair dice) and let the random
variable X denote the result of his first roll.

(a) Find the pmf of X .

(b) Find the conditional pmf of X given that Lucky Chucky wins the game.

(Express all of your probabilities as ratios of integers; i.e., do not use any decimals!)

2. Suppose X ∼ Gamma(α, β), Y1, Y2, . . . are iid Gamma(1, 1), and U1, U2, . . . are iid Uniform(0, 1).

(a) Derive the mgf of X and use it to calculate the expected value and variance of X .

(b) Fix θ ∈ R+ and n ∈ N. Derive the pdf of θ
∑n

i=1 Yi.

(c) Derive the pdf of − log(U1).

(d) Fix n ∈ N and assume n is even. Derive the pdf of

U1(1− U2)U3(1− U4)U5(1− U6) · · ·Un−1(1− Un) .

(e) Consider the quadratic function with random coefficients given by U1x
2 +U2x+U3. Find the proba-

bility that it has real roots.

3. Suppose that X1, . . . , Xn are iid Poisson(λ).

(a) Find the Cramér-Rao lower bound for the variance of an unbiased estimator of λ.

(b) Find the ML estimator of λ, call it λ̂(X).

(c) Find the mean and variance of λ̂(X). What can you conclude from this?

(d) Find the ML estimator of h(λ) = λ2e−λ, call it ĥ(X).

(e) Prove or disprove the following statement: ĥ(X) is an unbiased estimator of h(λ).

(f) Find the best unbiased estimator of h(λ).
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4. (The Accept-Reject Algorithm.) Suppose that we want to simulate random variables from the pdf f : R→
[0,∞). Define X = {x ∈ R : f(x) > 0}. Let g(x) be another pdf satisfying {x ∈ R : g(x) > 0} = X, and
suppose that we have a positive number M such that, for all x ∈ X, f(x) ≤Mg(x). Consider the following
two-step algorithm.

1. Draw Y ∼ g(·) and, independently, draw U ∼ Uniform(0, 1).

2. If U < f(Y )
Mg(Y ) , then accept Y and stop; otherwise, return to Step 1.

(a) Prove that the output of this algorithm is a draw from f .

(b) Prove that M ≥ 1.

(c) What is the distribution of the number of times that Steps 1 and 2 must be repeated before the algorithm
terminates?

(d) Now consider a situation where f(x) = c h(x) and h(x) is known, but we cannot integrate h(x) in
closed form, so the normalizing constant, c, is unknown. Suppose we can find a number M∗ such that,
for all x ∈ X, h(x) ≤ M∗g(x). Is there an alternative version of the accept-reject algorithm that can
be used to make exact draws from f(x) in this case? (Hint: c is unknown, so it cannot appear in an
algorithm.)

5. Let X1, . . . , Xn be iid Uniform(θ, θ + 1) where θ ∈ Θ = [0,∞), and assume that n ≥ 2. In this question,
we consider testing H0 : θ = 0 vs H1 : θ > 0.

(a) Consider the function

f(s, t) = n(n− 1)(t− s)n−2I(0 < s < t < 1) .

Show that this function is a valid joint pdf by demonstrating that it satisfies all the required properties.

(b) Let Y1, . . . , Yn be iid Uniform(0, 1). The joint pdf in part (a) is actually the joint pdf of two members
of the set

{
Y(1), Y(2), . . . , Y(n)

}
. Which two? (Explain your reasoning!)

(c) Using the results in parts (a) and (b), derive the joint pdf of X(1) and X(n).

(d) Now consider testing H0 : θ = 0 vs H1 : θ > 0 using a test with rejection region given by{
(x1, . . . , xn) ∈ [0,∞)n : x(1) ≥ k or x(n) ≥ 1

}
where k ∈ (0, 1). Find the value of k that leads to a size 1

10 test, and fix k at that value for the remainder
of this question.

(e) Find a closed form expression for the power function of the test.

(f) Which values of n ∈ {2, 3, 4, . . . } make the following statement true: The power of the test is greater
than 9

10 for all θ > 1
2?
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6. Data pairs (Xi, Yi), i = 1, . . . , 17, are used to fit the model

Yi = β0 + β1Xi + β2X
2
i + β3X

3
i + β4X

4
i + εi

using ordinary least squares. The sequential (“Type I”) sums of squares are, in order,

R(β1 |β0) = 21.4 R(β2 |β0 β1) = 9.1 R(β3 |β0 β1 β2) = 3.2 R(β4 |β0 β1 β2 β3) = 1.3

and the residual (error) sum of squares is 36.3. Suppose that there are exactly 5 distinct values of Xi

represented in the data. Assume the errors are independent and identically normally distributed.

(a) Compute the coefficient of determination (R2).

(b) Perform a lack-of-fit test for the simple linear regression of Yi on Xi (α = 0.05). Remember to state
H0 and Ha.

(c) Write out the (mean-corrected) ANOVA table that would be obtained for the simple linear regression
of Yi on Xi (sums of squares, degrees of freedom, mean squares).

(d) Select an appropriate polynomial degree by successively testing (and dropping) model terms, as in
backward elimination, with significance level 0.05. Show your work and your decision at each step.

(e) Suppose β̂4 = 0.22 is the ordinary least squares estimate of β4. Compute the usual estimated standard
error of β̂4. (Hint: t2ν = F1,ν)

7. Consider the model

yijk` = µ + αi + βij + γijk + εijk` i = 1, . . . , a j = 1, . . . , b k = 1, . . . , c ` = 1, . . . , n

βij ∼ iid N(0, σ2
β), γijk ∼ iid N(0, σ2

γ), εijk` ∼ iid N(0, σ2), all independent,

where α1, . . . , αa are fixed values summing to zero, σ2 > 0, and a ≥ 2, b ≥ 2, c ≥ 2, n ≥ 2.

(a) Find the correlation between y2121 and y2122.

(b) In terms of the observations yijk`, write expressions for mean squares corresponding to the terms βij ,
γijk, and εijk`. (You may use the dot-and-bar notation.)

(c) Give the expected values of the mean squares from the previous part.

(d) Write expressions for the unbiased ANOVA estimators of σ2
β , σ2

γ , and σ2.

(e) Construct a test statistic for H0 : σ2
β = 0 versus Ha : σ2

β > 0, and state the condition under which H0

is rejected.

(f) Form an exact 95% two-sided confidence interval for α1 − α2 based on the t distribution. Use the
notation tα,ν for the value exceeded with probability α by a t-distributed random variable with ν
degrees of freedom.

(g) Form an exact 95% two-sided confidence interval for σ2 based on the chi-square distribution. Use
the notation χ2

α,ν for the value exceeded with probability α by a (central) chi-square random variable
with ν degrees of freedom.
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8. Twenty-four comparable plots of land are used as experimental units to study strategies for controlling blight
in potatoes. Under investigation are two fungicides (F1 versus F2) and two application times (Early versus
Late). The response is yield of blight-free potatoes from each plot. The experiment is conducted in a CRD
with 5 treatment groups. Group descriptions, sizes, and response summary statistics are as follows:

Treatment Group: No Fungicide F1, Early F1, Late F2, Early F2, Late
Group Size 8 4 4 4 4
Sample Mean 15 26 20 32 30
Sample Variance 5 8 10 11 10

(a) Write out a linear (cell) means model equation appropriate for analysis of this data. Clearly define
your notation and specify any conditions on terms.

(b) Compute a corresponding ANOVA table (sums of squares, degrees of freedom, mean squares).

(c) Form a contrast representing interaction between fungicide type and application time, and perform a
test for interaction using this contrast (α = 0.05). Remember to state H0 and Ha.

(d) Form Bonferroni 95% simultaneous two-sided confidence intervals for the pairwise differences in
mean yield for each active treatment condition versus the “No Fungicide” condition. What do you
conclude from these?

(e) Suppose this experiment had been conducted in a balanced CRD, with (possibly) a different number
of plots. Find the minimum number of plots per treatment group such that none of the intervals of the
previous part is wider than it is under the current design, assuming the same estimate of error variance.
What are the new widths? Show your work.
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9. The calorie count yij of a pork (i = 1) or poultry (i = 2) sausage is modeled versus sodium content xij as

yij = βi0 + βi1xij + εij εij ∼ iid N(0, σ2) i = 1, 2 j = 1, . . . , 14

The ordinary least squares estimates, their usual (unbiased) estimated variance-covariance matrix, and the
usual (unbiased) estimate of σ2 are, respectively,

β̂ =


β̂10

β̂11

β̂20

β̂21

 =


84.6
0.175
21.8
0.225

 s2(β̂) =


450 −1.08 0 0
−1.08 0.0028 0 0

0 0 1350 −2.88
0 0 −2.88 0.0063

 s2 = 468

Perform the following parts under the usual model assumptions.

(a) Test whether the expected increase in calories per unit increase in sodium is less for pork than for
poultry sausage. State H0 and Ha and use α = 0.05.

(b) Test H0 : β10 = β20, β11 = β21 versus the general alternative (using α = 0.05).

(c) Form a 95% two-sided prediction interval for the calorie count of a poultry sausage with a sodium
content of 350.

(d) Consider the alternative parameterization

yij = β0 + β1xij + β2wij + β3xijwij + εij

where wij equals 1 if i = 1 and equals 0 if i = 2. Compute the ordinary least squares estimates of β0,
β1, β2, and β3, and an unbiased estimate of the error variance.

(e) Compute the overall sample average of the yij values (y••).
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10. Consider a linear model in the general matrix formulation Y = Xβ + ε where Y = [ y1 · · · yn ]′ is the
column vector of dependent variables, X is a known n × p′ constant matrix with rank p′, β is the column
vector of regression parameters, and ε is the vector of errors.

Let ei be the ordinary least squares residual for yi, and let hii be the corresponding leverage value. Provided
hii < 1 for all i, and n > p′, the standardized residuals are

ri =
ei

s
√

1− hii
i = 1, . . . , n where s =

√
mean square for residual (error) > 0.

(a) Define the leverage hii (in terms of the model).

(b) Suppose Y is replaced by aY for some known constant a 6= 0. Do ei and ri change? If so, how?

(c) Show that r2i ≤ (n− p′)
/

(1− hii) for all i. Can this ever hold with equality? When, or why not?

(d) Is the residual ei normally distributed under the usual normal-theory model assumptions on ε? If so,
give its expected value and variance. If not, briefly explain how you know.

(e) Answer the question of the previous part for ri instead of ei.

(f) Suppose the model is such that

E(yi) =

{
µ1 i = 1, . . . , n1

µ2 i = n1 + 1, . . . , n

for unknown constants µ1 and µ2. Using only the values y1, . . . , yn, n1, n, and explicit numbers, write
expressions for ei and hii (for all i).
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