High Dimensional Bayesian Classifiers

David Madigan Columbia University stat.columbia.edu/~madigan

Columbia's expansion faces substantial community opposition.

"in data analysis there is no longer any problem of computation"

- Benzécri, 2005

Logistic Regression

•Linear model for log odds of category membership:

$$\log \frac{p(y=1 | \mathbf{x}_i)}{p(y=-1 | \mathbf{x}_i)} = \sum \beta_j x_{ij} = \beta \mathbf{x}_i$$

Maximum Likelihood Training

 Choose parameters (β_j's) that maximize probability (likelihood) of class labels (y_i's) given documents (x_i's)

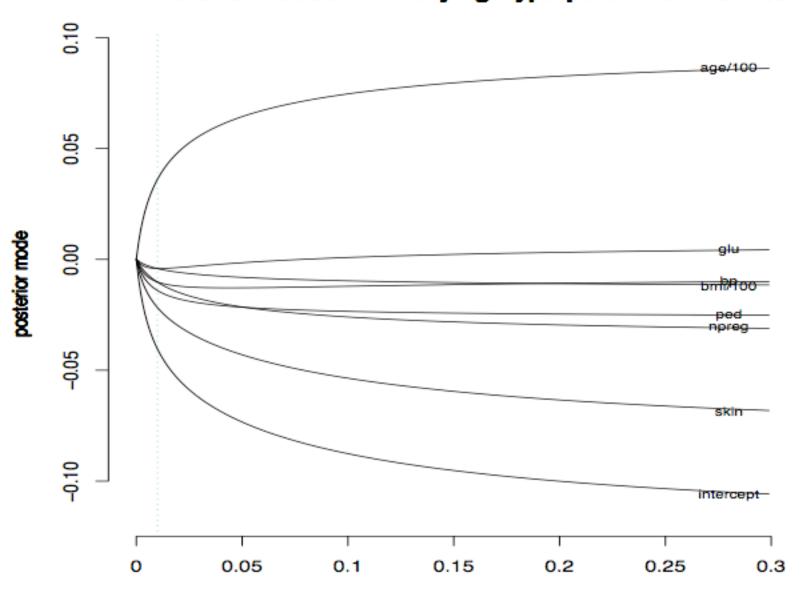
$$L(oldsymbol{eta}) = p(oldsymbol{eta}|D) = (\prod_{oldsymbol{i}=1}^n rac{1}{1+\exp(-oldsymbol{eta}^Toldsymbol{x}_{oldsymbol{i}}y_{oldsymbol{i}})})$$

- Tends to overfit
- Not defined if *d* > *n*
- Feature selection

Shrinkage/Regularization/Bayes

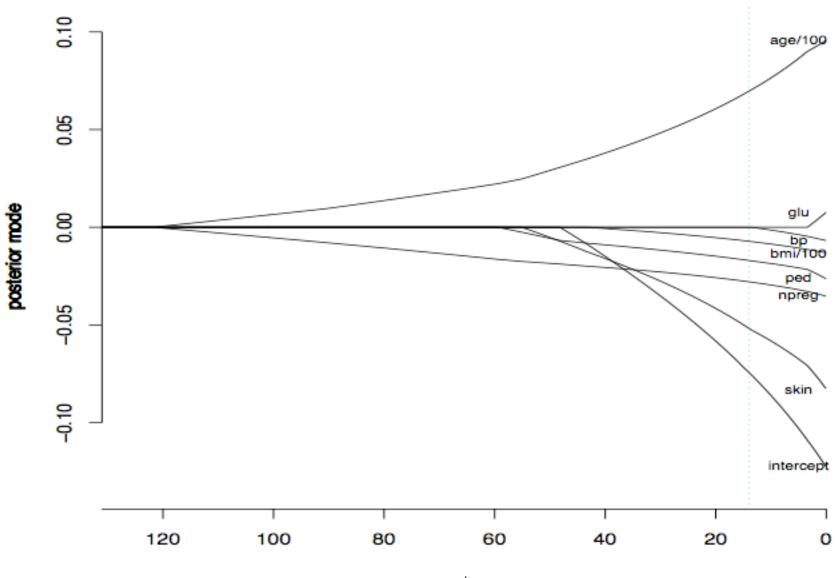
- Avoid combinatorial challenge of feature selection
- L1 shrinkage: regularization + feature selection
- Expanding theoretical understanding
- Large scale
- Empirical performance

Ridge Logistic Regression

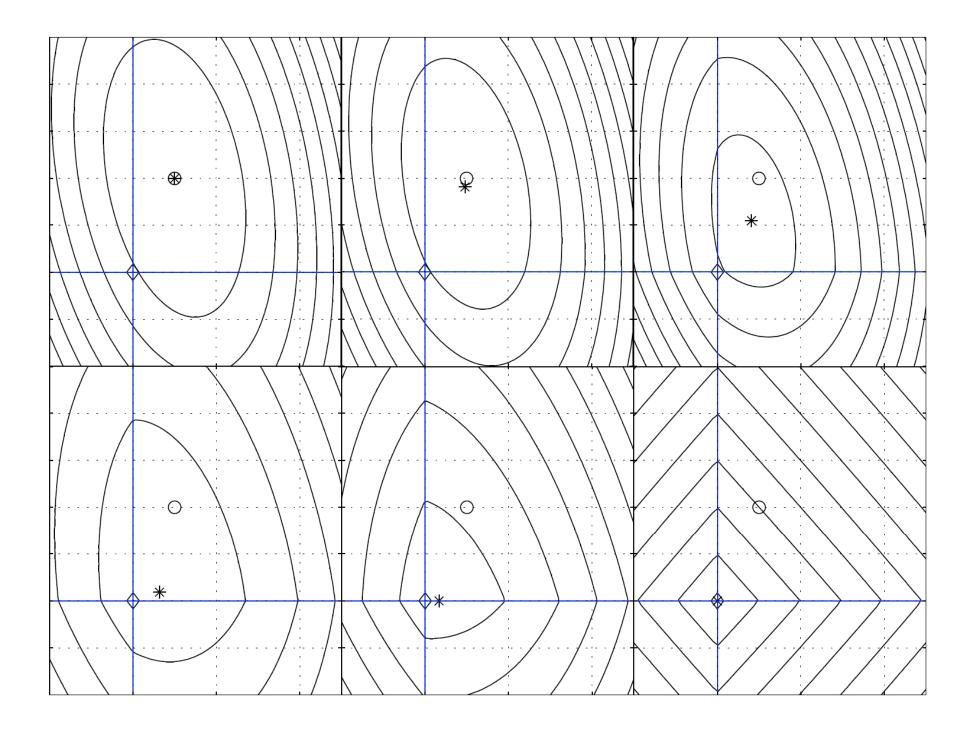

Maximum likelihood plus a constraint:

$$\sum_{j=1}^p \beta_j^2 \le s$$

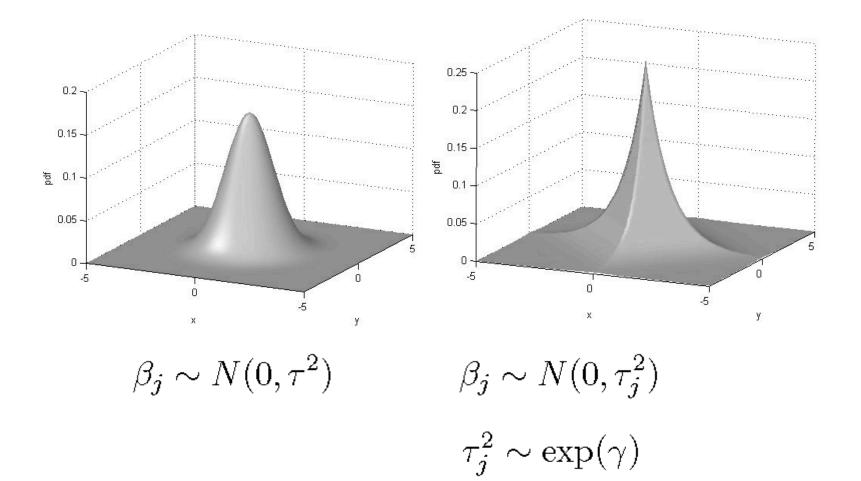
Lasso Logistic Regression


Maximum likelihood plus a constraint:

$$\sum_{j=1}^{p} \left| \boldsymbol{\beta}_{j} \right| \leq s$$


Posterior Modes with Varying Hyperparameter – Gaussian

S



Posterior Modes with Varying Hyperparameter – Laplace

1/s

Bayesian Perspective

Implementation: BXR

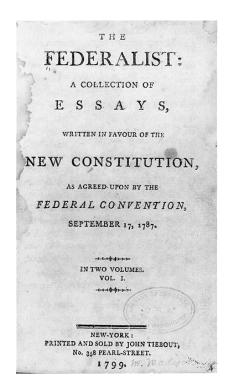
- Highly-optimized open source C++ implementation
- Compiled versions for Linux, Windows, and Mac
- Binary and multiclass, hierarchical, informative priors
- L1 and L2 regularization
- Gauss-Seidel co-ordinate descent algorithm
- Fast? (parallel?)
- http://www.bayesianregression.org

Aleks Jakulin's results

domain	DMD	h DOT		s / ins TAN		DET	DL'9
krkp	0.09		-0.29				0.05
monk2	0.65			0.63			0.45
tic-tac-toe			-0.55				
tic-tac-toe titanic	0.09				- Martin Contraction		
		·0.53		all second se	0.48		0.48
lenses		0.72					0.40
monk1		0.49					0.02
mushroom	0.00			0.00	0.00		0.00
shuttle	0.09	0.10			0.07		0.07
soy-small*		·0.31			0.00		0.00
wine	_	0.09		0.29	0.19		0.11
yeast-class*		0.06			0.25		0.12
anneal				0.17	0.11		0.11
balance-scale		0.17			0.51		0.51
lung-cancer*		1.02					1.18
monk3	0.11						0.11
post-op		0.61		1.78		0.67	0.67
promoters*	0.24	0.23				0.52	0.52
adult	0.28	0.29	-0.42	0.33	0.30	0.30	0.30
audiology*	1.04	1.31	3.55	$\cdot 5.56$	2.24	2.21	2.21
australian	0.33	0.36	0.46	0.94	0.41	0.37	0.37
breast-LJ	0.55	0.59	0.62	0.89	0.67	0.58	0.58
breast-wisc	0.10	0.12	0.21	0.23	0.21	0.16	0.16
bupa	0.60	0.60	0.62	0.60	0.62	0.61	0.61
car	0.18	0.18	-0.32	0.18	0.19	0.19	0.19
cinc	0.91	0.96	1.00	$\cdot 1.03$	0.93	0.92	0.92
crx	0.33	0.34	0.49	0.93	0.37	0.35	0.35
ecoli	0.45	0.55	0.89	0.94	0.85	0.81	0.81
german	0.50	0.51	0.54	.1.04	0.65	0.58	0.59
glass	0.74	0.78		-1.76	1.12	0.99	0.99
hayes-roth	0.29			-1.18	0.45	0.45	0.45
heart	1.01			1.53	1.11	1.09	1.09
hepatitis	0.36			-1.31		0.39	
horse-colic	0.71			-5.97			0.82
ionosphere	0.19			0.74			0.30
iris	0.16			0.32	0.27		0.18
lymph	0.50			.1.25	0.98		0.79
o-ring	0.66		0.83		1.41		0.67
p-tumor*	1.82	1.93		.4.76	2.65		
pima	0.46			0.49	0.51		0.48
segment		0.14					
soy-large*	0.25		0.57	0.47	0.68		0.66
spam			0.57				0.19
vehicle	0.15				0.19		0.19
voting	0.54		-1.78 -0.60		0.69		
5.7	0.11				0.21		0.14
wdbc	0.09			0.29			0.13
200*	0.35	0.47	0.38	0.46	0.40	0.38	0.38

1-of-K Sample Results: brittany-l

Feature Set	% errors	Number o Features	of
"Argamon" function words, raw tf	74.8	380	
POS	75.1	44	
1suff	64.2	121	
1suff*POS	50.9	554	
2suff	40.6	1849	
2suff*POS	34.9	3655	4.6 million parameters
3suff	28.7	8676	
3suff*POS	27.9	12976	
3suff+POS+3suff*POS+Arga mon	27.6	22057	
All words	23.9	52492	


89 authors with at least 50 postings. 10,076 training documents, 3,322 test documents.

BMR-Laplace classification, default hyperparameter

Madigan et al. (2005)

The Federalist

- "The authorship of certain numbers of the 'Federalist' has fairly reached the dignity of a well-established historical controversy." (Henry Cabot Lodge, 1886)
- Historical evidence is muddled

Paper Number	Author
1	Hamilton
2-5	Jay
6-9	Hamilton
10	Madison
11-13	Hamilton
14	Madison
15-17	Hamilton
18-20	Joint: Hamilton and Madison
21-36	Hamilton
37-48	Madison
49-58	Disputed
59-61	Hamilton
62-63	Disputed
64	Jay
65-85	Hamilton

JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION

Number 302

JUNE, 1963

Volume 58

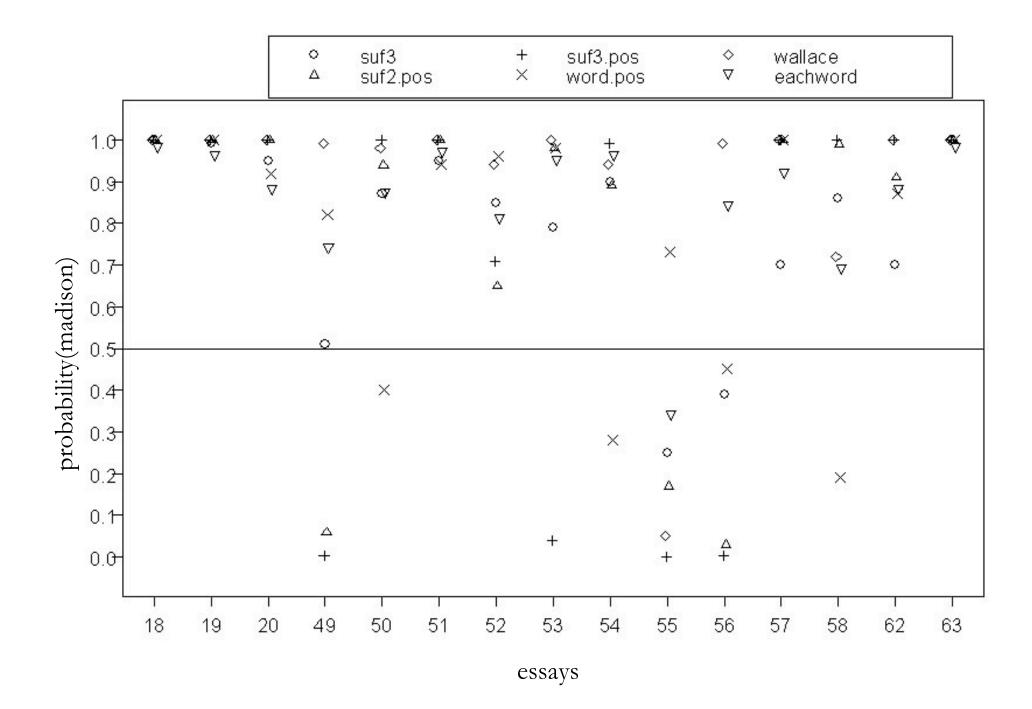
INFERENCE IN AN AUTHORSHIP PROBLEM^{1,2}

A comparative study of discrimination methods applied to the authorship of the disputed *Federalist* papers

FREDERICK MOSTELLER Harvard University and Center for Advanced Study in the Behavioral Sciences AND DAVID L. WALLACE University of Chicago

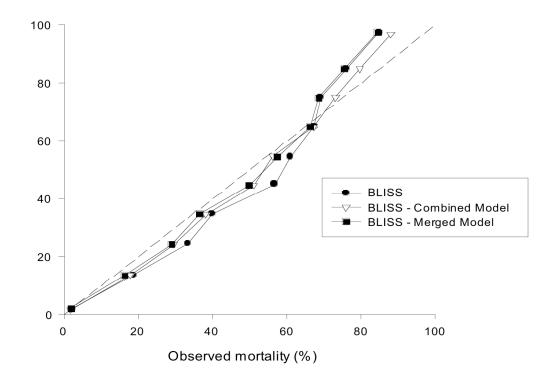
• "High" dimensional Bayesian classification

•Used function words with Naïve Bayes with Poisson and Negative Binomial model

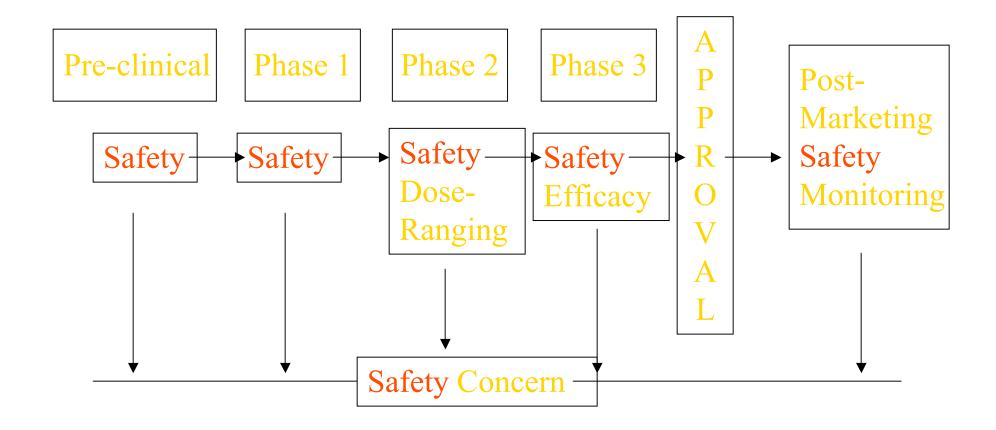

•Out-of-sample predictive performance

F. Summing up

In summary, the following points are clear:


1) Madison is the principal author. These data make it possible to say far more than ever before that the odds are enormously high that Madison wrote the 12 disputed papers. Weakest support is given for No. 55. Support for Nos. 62 and 63, most in doubt by current historians, is tremendous.

Feature Set	10-fold Error Rate	
Charcount	0.21	
POS	0.19	
Suffix2	0.12	
Suffix3	0.09	
Words	0.10	
Charcount+POS	0.12	
Suffix2+POS	0.08	
Suffix3+POS	0.04	best
Words+POS	0.08	
484 features	0.05	
Wallace features	0.05	
Words (>=2)	0.05	
Each Word	0.05	


Risk Severity Score for Trauma

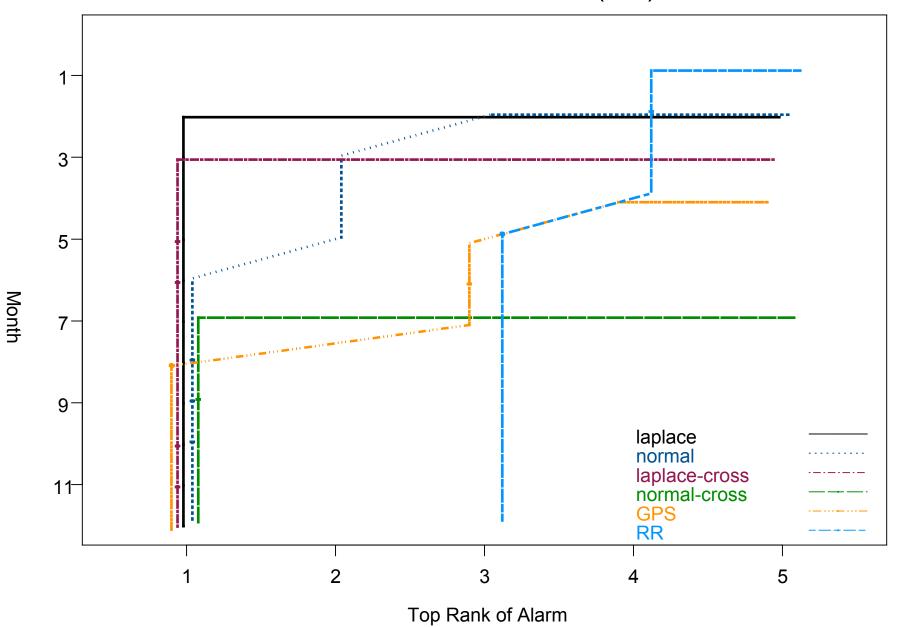
- Standard "ICISS" score poorly calibrated
- Lasso logistic regression with 2.5M predictors:

Burd and Madigan (2007)

Safety in Lifecycle of a Drug/Biologic product

U.S. Department of Health and Human Services		Form Approved:	OMB No. 0910-0291, Expires: 10/31/08
MEDWATCH	For VOLUNTARY reporting of		See OMB statement on reverse. DA USE ONLY
MedWatch	adverse events, product problems	and Triage unit	DA USE ONLY
The FDA Safety Information and	product use errors	sequence #	
Adverse Event Reporting Program	Page of		
A. PATIENT INFORMATION	D. SUSPECT	PRODUCT(S)	
1. Patient Identifier 2. Age at Time of Event, or 3. Sex		h, Manufacturer (from product label)	1
Date of Birth: Fer		,,	
In confidence			
B. ADVERSE EVENT, PRODUCT PROBLEM OR	EBBOR #2		
Check all that apply:	2. Dose or Am	ount Frequency	Route
1. Adverse Event Product Problem (e.g., defectation	#1		
Product Use Error Problem with Different Manufacto			
2. Outcomes Attributed to Adverse Event	#2		
(Check all that apply)	3. Dates of Use (If unknown, give duration) from/to (or	5. Event Abated After Use
Death: Disability or Pe	manent Damage best estimate)		Stopped or Dose Reduced?
(mm/dd/)yyyy) Life-threatening Congenital And	maly/Birth Defect		A1 Yes No Doesn't Apply
	Important Medical Events) 42		A2 Yes No Doesn't
	d Disesseis of F	leason for Use (Indication)	Арру
Required Intervention to Prevent Permanent Impairment/Dat			 Event Reappeared After Reintroduction?
3. Date of Event (mm/dd)(yyy) 4. Date of this Rep	ort (mm/da/yyyy)		At Vec No Doesn't
	#2		Apply
5. Describe Event, Problem or Product Use Error	6. Lot#	7. Expiration Date	42 Yes No Doesn't Apply
	#1	#1	9. NDC # or Unique ID
	#2	A2	
		MEDICAL DEVICE	
<u></u>	1. Brand Name	MEDICAL DEVICE	
3			
	2. Common Devi	be Name	
	2. Manufactures	Name, City and State	
	3. Wanunacturer	tame, city and State	
	4. Model #	Lot #	5. Operator of Device
5			Health Professional
4	Catalog #	Expiration Date (nmidd)yyy)
	Serial #	Other #	Other:
	6. If implemented	for Data (considerational 7, 14 E)	minuted. One Pate immittinged
	6. If Implanted, G	ive Date (mm/dd/yyyy) 7. If Ex	eplanted, Give Date (mm/dd)(yyy)
	8. Is this a Single	use Device that was Reprocessed	and Reused on a Patient?
		No	
	9. If Yes to item ?	vo. 8, Enter Name and Address of I	Reprocessor
6. Relevant Tests/Laboratory Data, Including Dates			
	F. OTHER (ONCOMITANT) MEDICAL	PRODUCTS
		and therapy dates (exclude treatment	
 Other Relevant History, Including Preexisting Medical Condi race, pregnancy, smoking and alcohol use, liver/kidney problems 	dons (e.g., allergies, ; etc.) C DEPODT	R (See confidentiality see	etion on back)
	1. Name and Add		don on backy
	Phone #	E-mail	
C. PRODUCT AVAILABILITY	2. Health Profess	ional? 3. Occupation	4. Also Reported to:
Product Available for Evaluation? (Do not send product to FDA)	Yes 🗌	No	Manufacturer
	5. If you do NOT	want your identity disclosed	User Facility
Yes No Returned to Manufacturer or:	(mm/dd/yyyy) to the manufact	turer, place an "X" in this box:	Distributor/Importer

FORM FDA 3500 (10/05) Submission of a report does not constitute an admission that medical personnel or the product caused or contributed to the event.


Monitoring Spontaneous Drug Safety Reports

- Most reports contain several drugs and several AEs
- FDA, vendors, PhRMA, focus on 2X2 contingency table projections

	AE j = Yes	AE j = No	Total
Drug <i>i</i> = Yes	<i>a</i> =20	<i>b</i> =100	120
Drug i = No	<i>c</i> =100	<i>d</i> =980	1080
Total	120	1080	1200

- 15,000 drugs * 16,000 AEs = 240 million tables
- Shrinkage methods better than e.g. chi square tests
- "Innocent bystander" (i.e., confounding)
- Regress each AE on all drugs
- Regress all AE's on all drugs

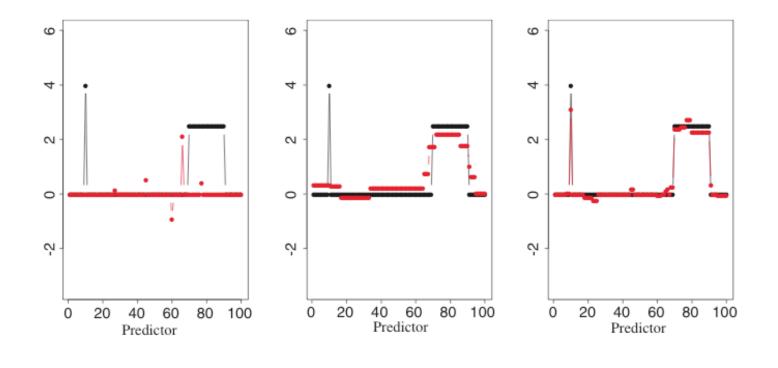
AMOC of CHOL-HEPATITIS (5%) simu+1

Consistency

- lasso consistently estimates the regression function (Greenshtein and Ritov, 2004)
- Lasso not always consistent for variable selection
- SCAD (Fan and Li, 2001, JASA) consistent but nonconvex
- Zhao and Yu (2006) "irrepresentable condition"
- relaxed lasso (Meinshausen and Buhlmann), adaptive lasso (Wang et al) have certain consistency results
- Zou (2006, JASA) adaptive lasso --> BXR

High-Dimensional <u>Bayes</u>? Engineered Priors

(ModApte; training=100 documents)


	Macro F1	ROC
Laplace	37.2	76.2
Laplace & DK- based variance	65.3	87.1
Laplace & DK- based mode	72.0	93.5

Fused Lasso

- If there are many correlated features, lasso gives non-zero weight to only one of them
- Maybe correlated features (e.g. time-ordered) should have similar coefficients?

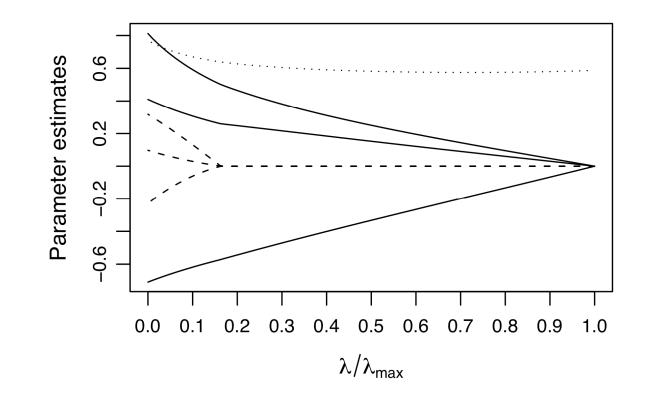
$$\hat{\beta} = \arg\min\left\{\sum_{i} \left(y_i - \sum_{j} x_{ij}\beta_j\right)^2\right\}$$

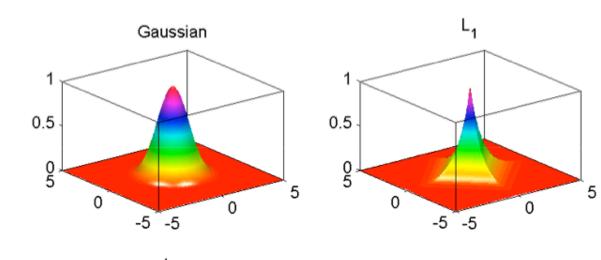
subject to
$$\sum_{j=1}^{p} |\beta_j| \leq s_1$$
 and $\sum_{j=2}^{p} |\beta_j - \beta_{j-1}| \leq s_2$

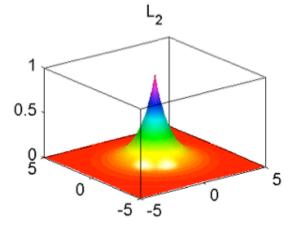
lasso-only

fusion-only

lasso+fusion

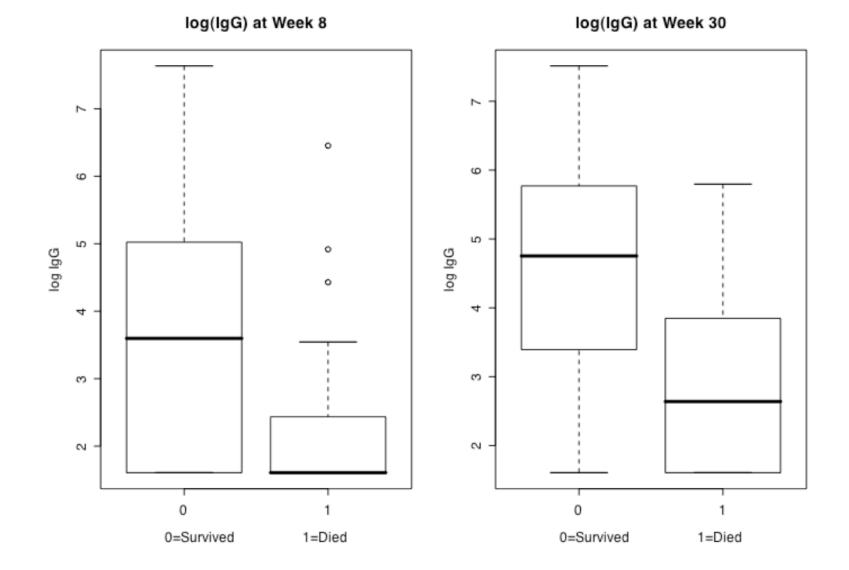

Group Lasso

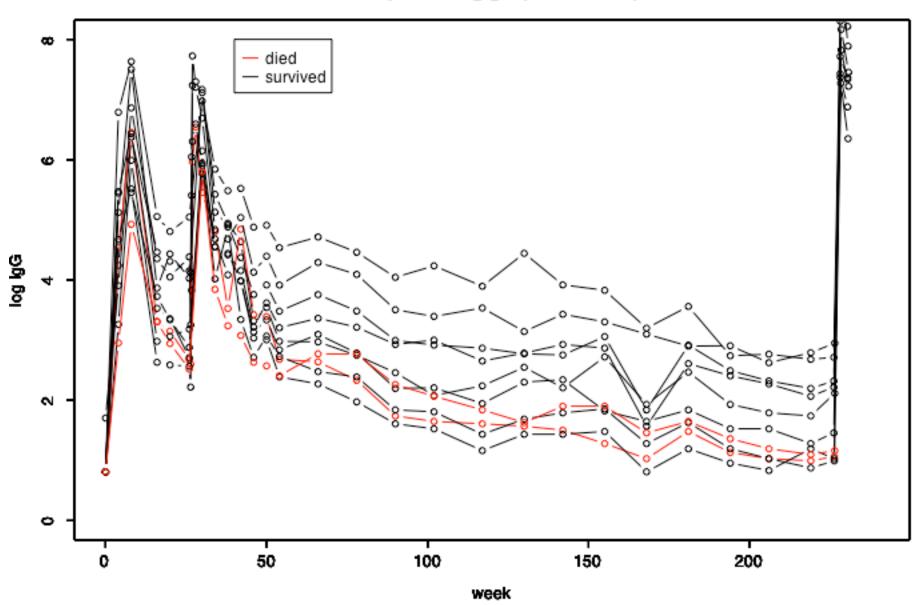

- Suppose you represent a categorical predictor with indicator variables
- Might want the set of indicators to be in or out

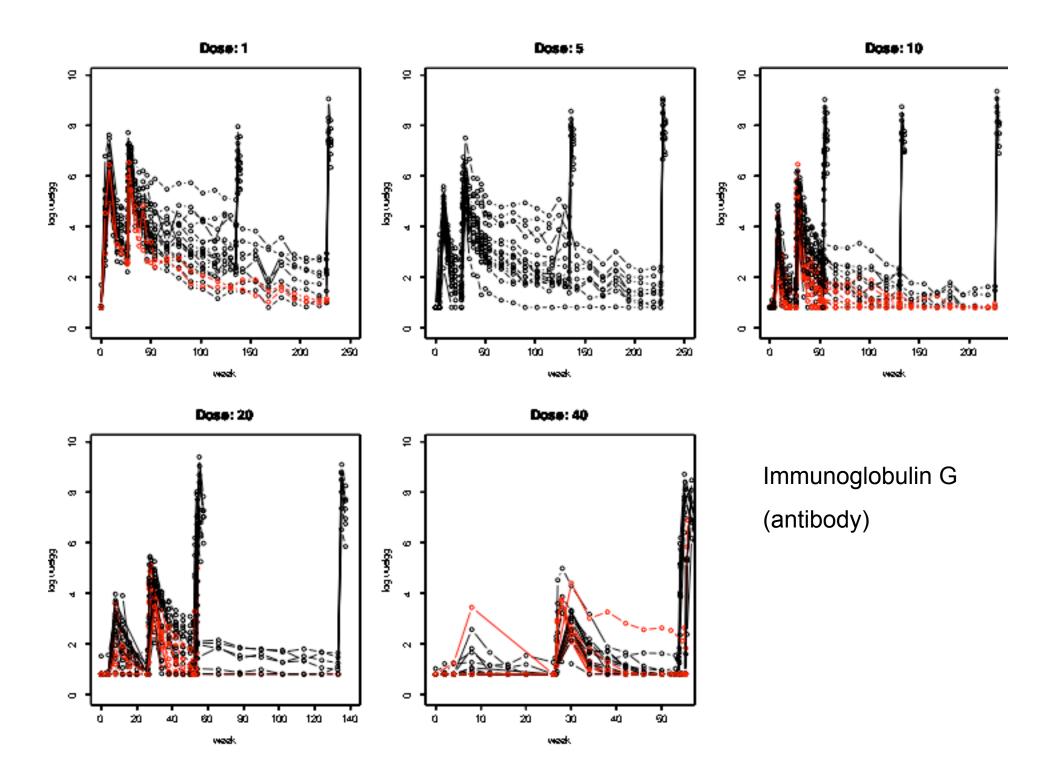

regular lasso:

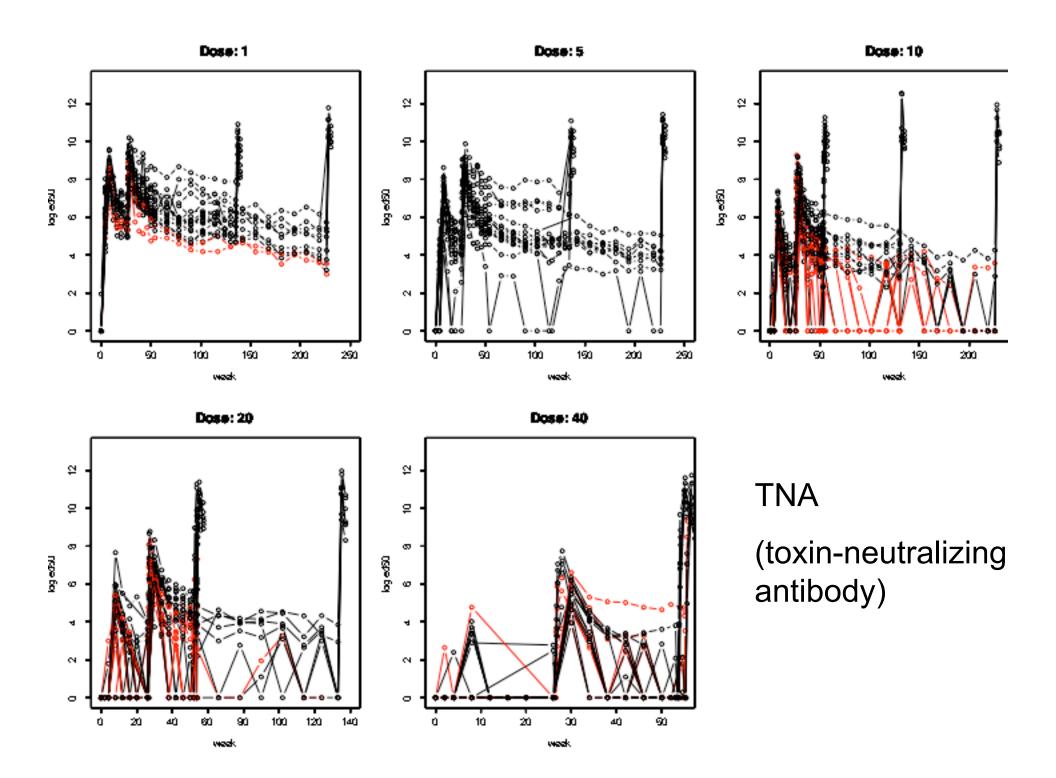
$$\widehat{\boldsymbol{\beta}}_{\lambda} = \underset{\boldsymbol{\beta}}{\operatorname{arg\,min}} \|\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta}\|_{2}^{2} + \lambda \sum_{i=1}^{p} |\beta_{i}|$$

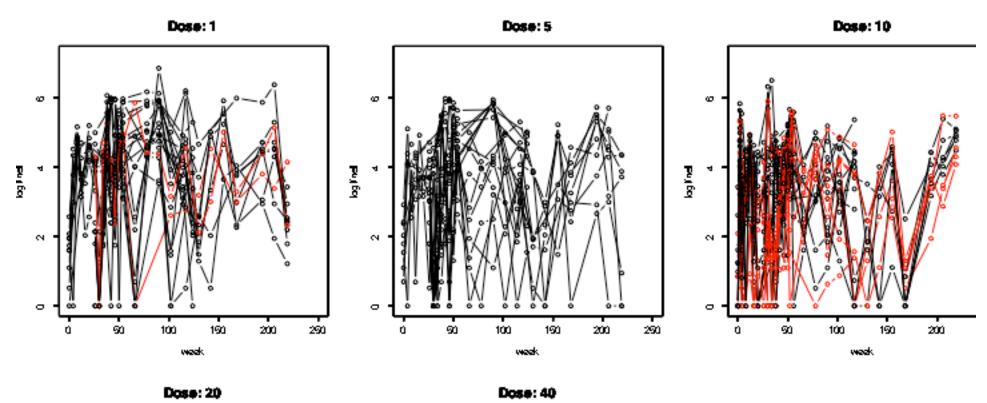
group lasso: $\widehat{\boldsymbol{\beta}}_{\lambda} = \underset{\boldsymbol{\beta}}{\arg\min} \|Y - X\boldsymbol{\beta}\|_{2}^{2} + \lambda \sum_{g=1}^{G} \|\boldsymbol{\beta}_{\mathcal{I}_{g}}\|_{2}$

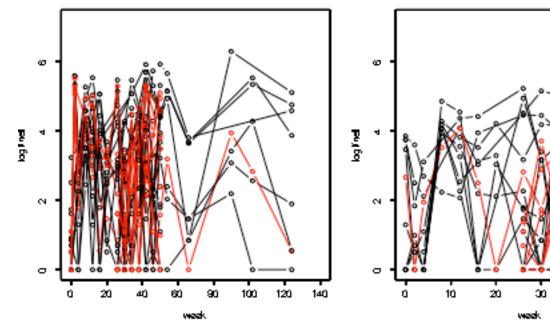



Anthrax Vaccine Study in Macaques


- Vaccinate macaques with varying doses; subsequently "challenge" with anthrax spores
- Are measurable aspects of the state of the immune system predictive of survival?
- Immunoglobulin G (IgG) expected to be important
- Problem: hundreds of different assay timepoints but fewer than one hundred macaques


Vaccine		Outcome		
Dilution	Count	Died	Death Rate	
1:1	20	2	10%	
1:5	17	0	0%	
1:10	29	9	31%	
1:20	28	10	36%	
1:40	20	7	35%	
control	23	16	70%	
Total	137	44	32%	




Group 1 1:1 logigG (no controls)

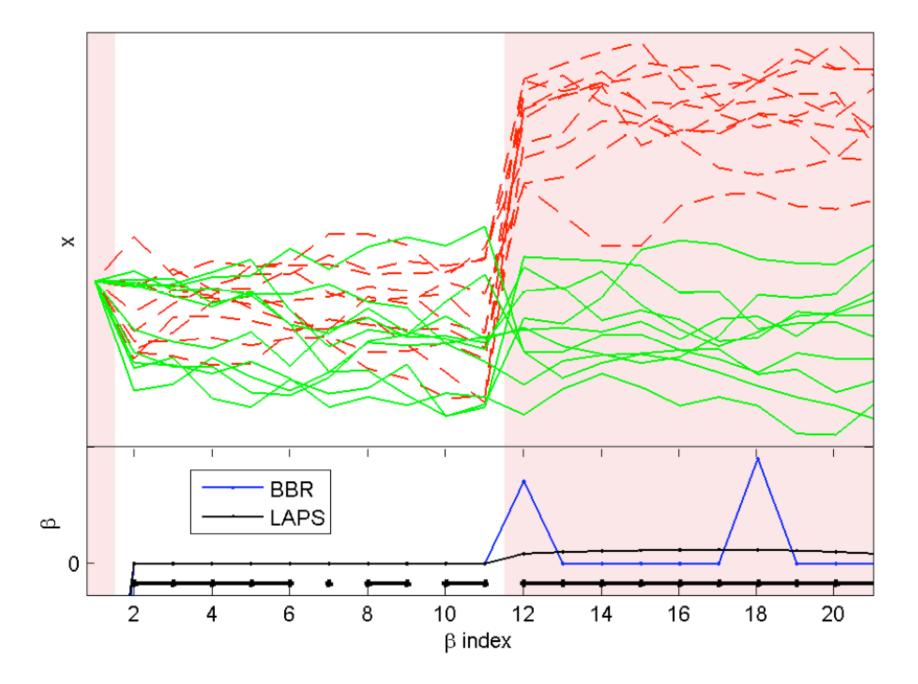
IFNeli

ŵ

аŋ

(interferon - proteins produced by the immune system)

L1 Logistic Regression

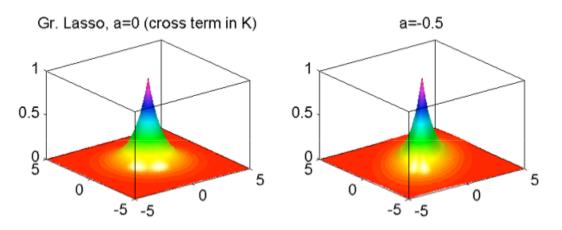

-imputation

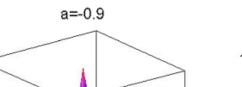
-common weeks only (0,4,8,26,30,38,42,46,50)

-no interactions

IGG_38	ED50_30	SI_8
IFNeli_8	ED50_38	ED50_42
IFNeli_26	IL4/IFNeli_0	

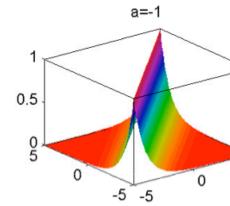
group+fusion combined?



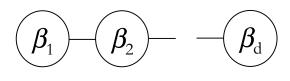

Group Lasso, Non-Identity

$$\frac{1}{2} \left\| Y - \sum_{j=1}^{J} X_j \beta_j \right\|^2 + \lambda \sum_{j=1}^{J} \left\| \beta_j \right\|_{K_j}$$
$$\|\eta\|_{K} = (\eta' K \eta)^{1/2}$$

multivariate power exponential prior


•KKT conditions lead to an efficient and straightforward block coordinate descent algorithm, similar to Tseng and Yun (2006).

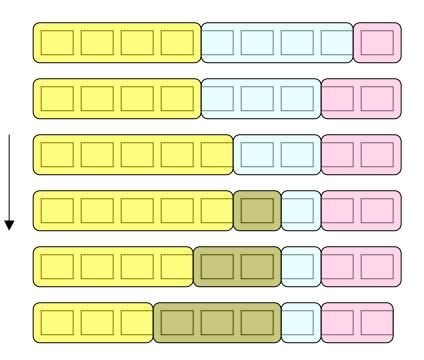
0.5

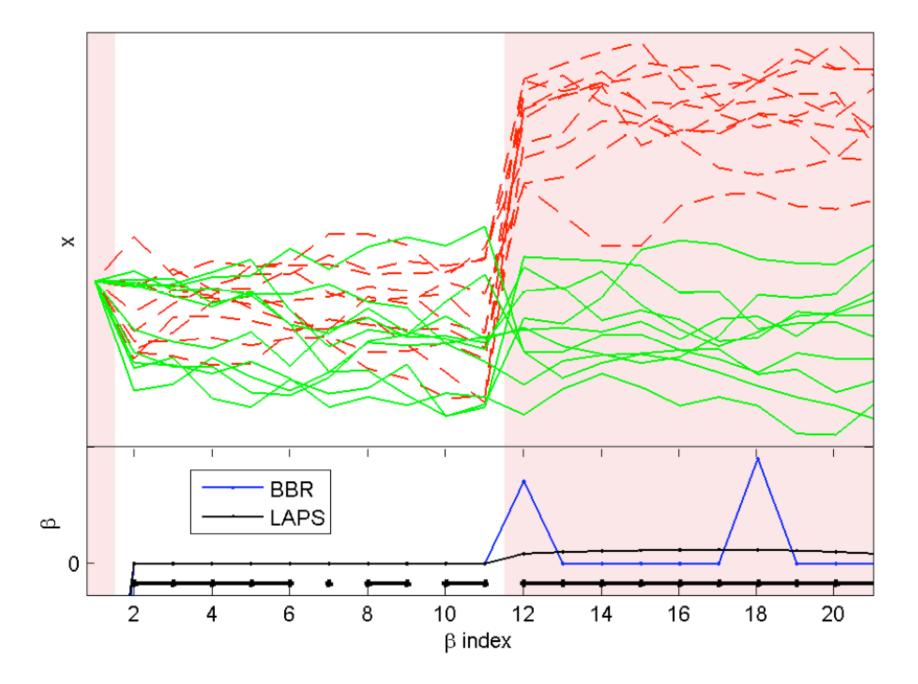

-5 -5

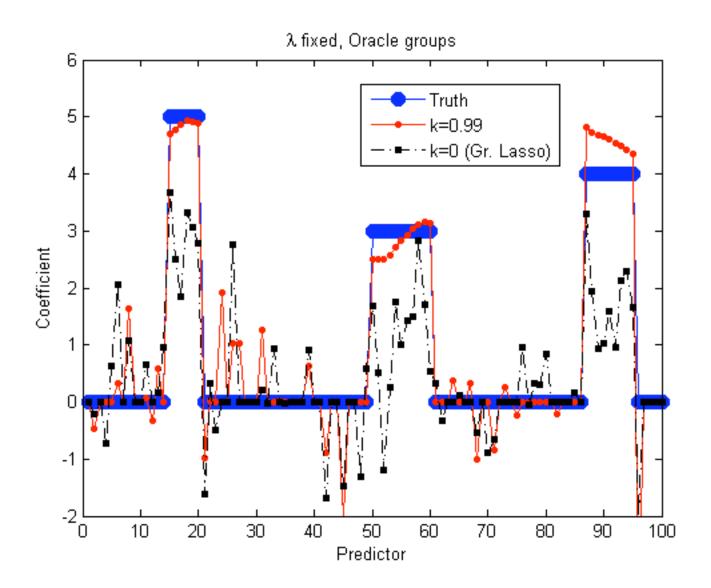
"soft fusion"

LAPS: Lasso with Attribute Partition Search

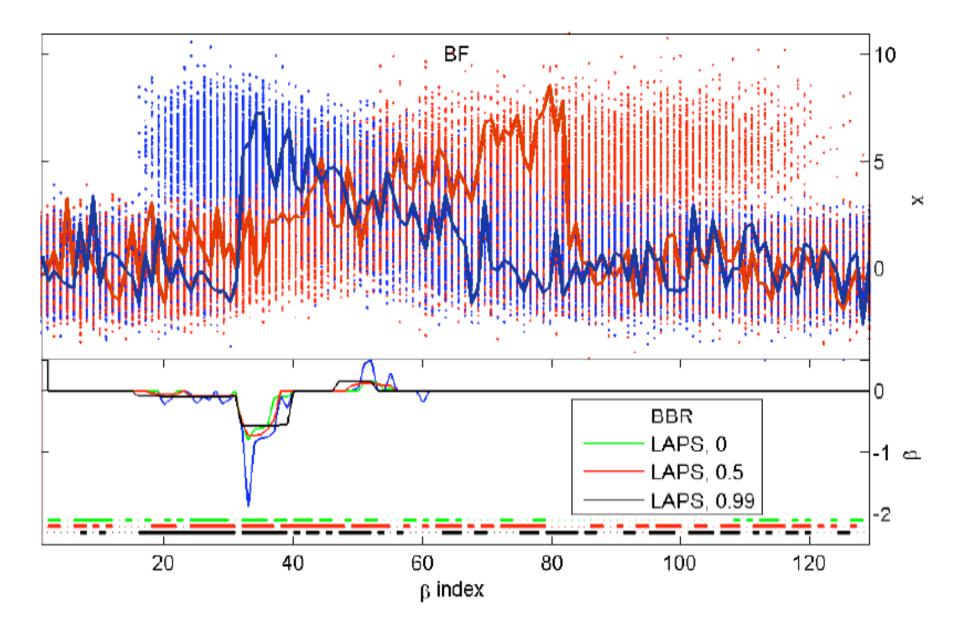
- Group lasso
- Non-diagonal K to incorporate, e.g., serial dependence
- Within group have:

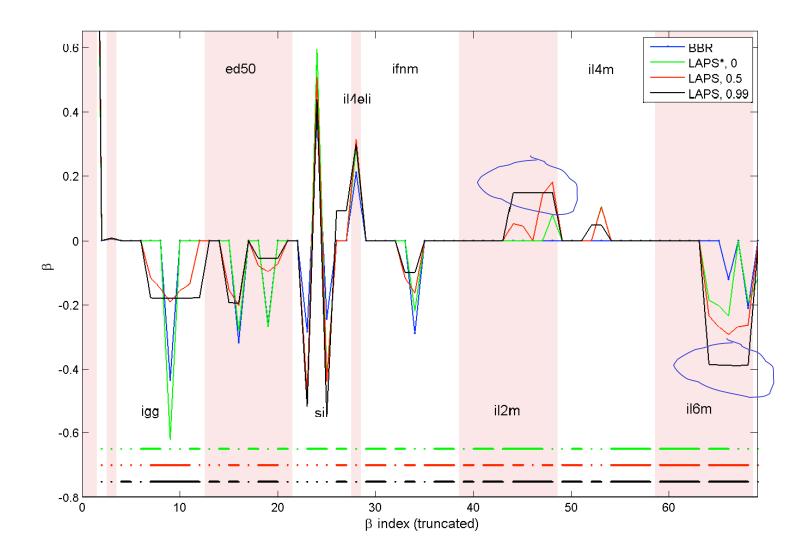


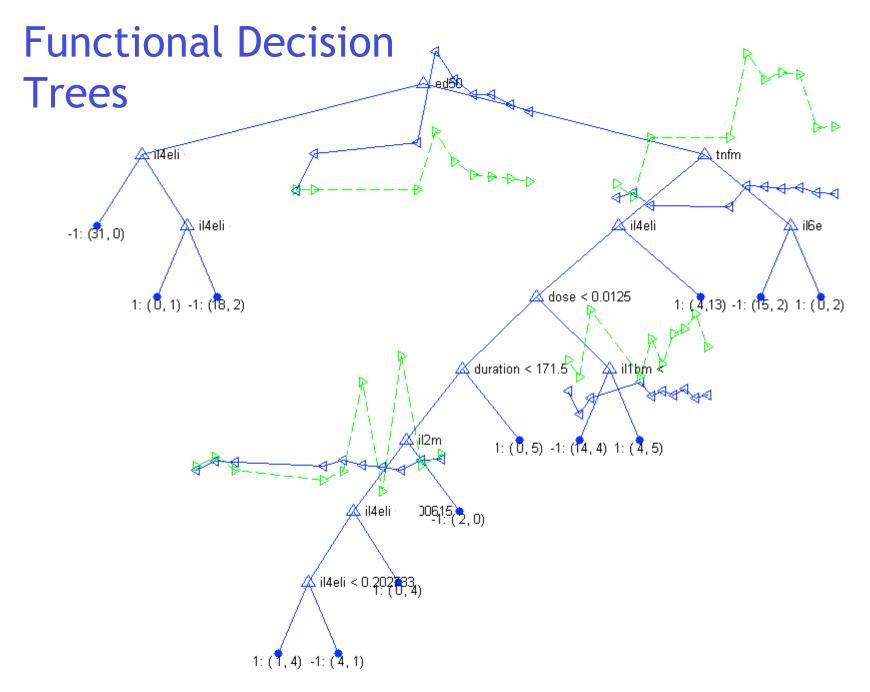

(block diagonal K)


• Search for partitions that maximize a model score/average over partitions

LAPS: Lasso with Attribute Partition Search

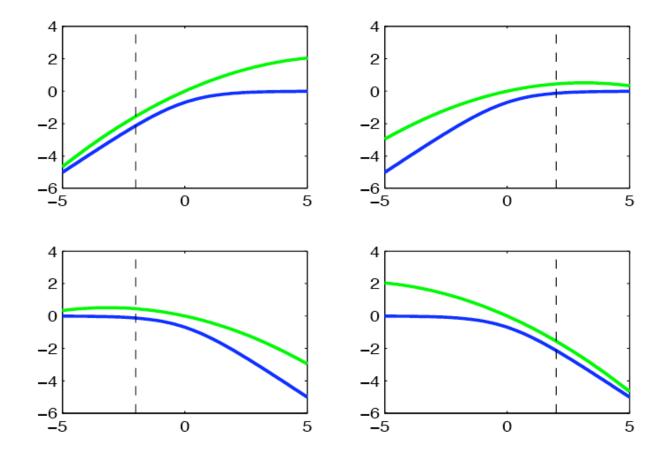

- Currently use a BIC-like score and/or test accuracy
- Hill-climbing vs. MCMC/BMA
- Uniform prior on partition space
- Consonni & Veronese (1995)
- Nonparametric



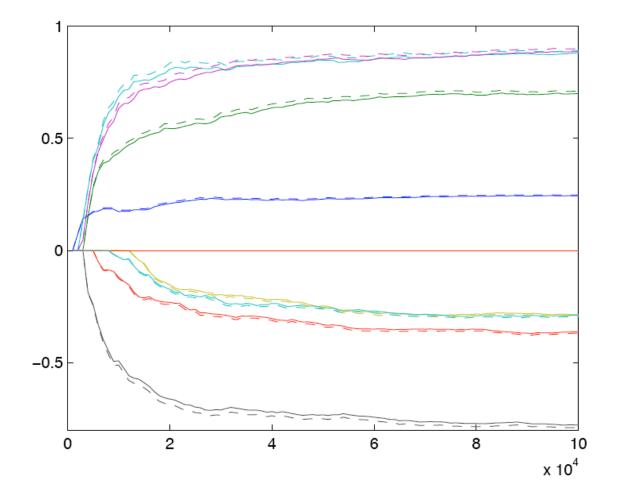

LAPS: Bell-Cylinder example

Data	\mathbf{Lasso}		LAF	\mathbf{PS}	
	$\% \ { m Err}$	V^*	% Err	V^*	k^*
SM1	25.43	0.45	27.52	0.28	0
SM2	30.83	0.15	34.38	0.54	0.99
SM3	35.98	0.15	30.62	0.37	0.99
LG1	22.31	0.15	22.09	0.54	0.74
LG2	21.14	0.5	21.09	0.63	0
LG3	21.86	0.35	21.68	0.19	0.99
BF	0.1887 ± 0.6	200	0.1887 ± 0.6	0.45	0
NHP	30.81 ± 11.97	0.2	28.02 ± 10.27	0.46	0

Predictive performance—estimated error rates⁹

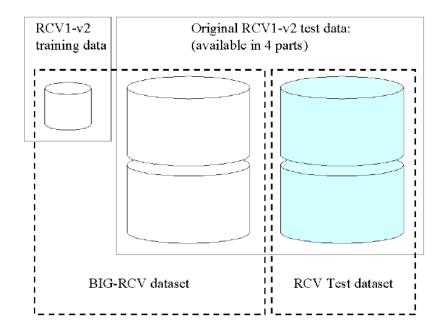

Balakrishnan and Madigan (2006)

Computational Landscape


	Full Bayes $p(Y_{t+1} = 1 \bar{Y}_t) =$ $\int p(Y_{t+1} \beta) p(\beta \bar{Y}_t) d\beta$	$MAP Bayes$ $p(Y_{t+1} = 1 \bar{Y}_t) \approx$ $p(Y_{t+1} \hat{\beta}(\bar{Y}_t))$
Batch	Variational (Jordan & Jaakola) MCMC	Gauss-Seidel (BXR) Interior Point (Boyd)
Online	online variational Sequential MC (Chopin, 2002; Ridgeway & Madigan, 2003)	Online EM, Quasi-Bayes (Titterington, 1984; Smith & Makov, 1978)

Quadratic Approximation for Log-Likelihood Terms

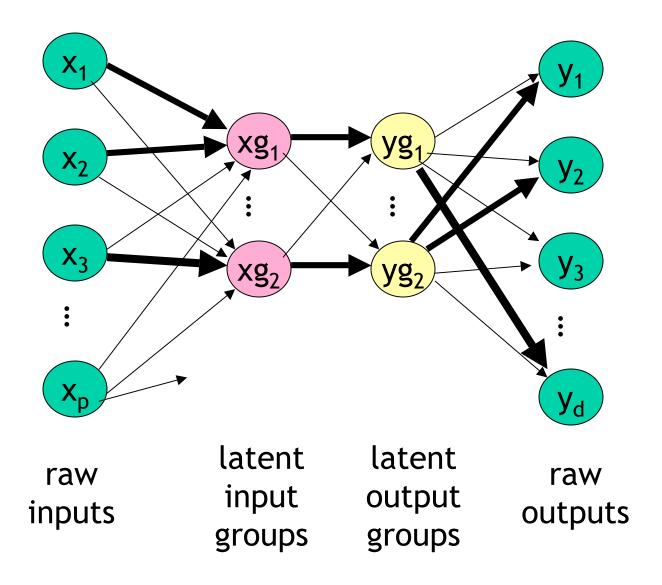
 $\log \left(y_i \Phi(\boldsymbol{\beta}^T \mathbf{x}_i) + (1 - y_i)(1 - \Phi(\boldsymbol{\beta}^T \mathbf{x}_i)) \right) \approx a_i (\boldsymbol{\beta}^T \mathbf{x}_i)^2 + b_i (\boldsymbol{\beta}^T \mathbf{x}_i) + c_i$


Excellent Performance with Small d

Big-d

- Multi-pass, limited memory algorithm
- Highly scaleable
- Example: RCV-1, *n*=420K, *d*=288K

RCV-1 Results



	"Optimized" eta trained		"Naive" eta trained		
	on RCV1-	on RCV1-v2 training data		on BIG-RCV	
	Relevant	Not Relevant	Relevant	Not Relevant	
Retr.	38,821	7,415	40,655	6,017	
Not R.	16,368	319,994	14,534	321,392	
Pr.	83.96%		87.11%		
Re.	70.34%		73.67%		

d = 47,236, t = 23,149 d = 288,062, t = 421,816

Back to drug safety...

- Real question: which classes of drugs cause which groups of adverse events
- Example: COX-2 inhibitors cause cardiovascular thrombotic events

•idea: groups of x's (e.g. drugs) cause groups of y's (e.g. adverse events)

- •all nodes binary; logistic regression for each node given parents
- •need prior on number of hidden units, etc.

Latent Space Model

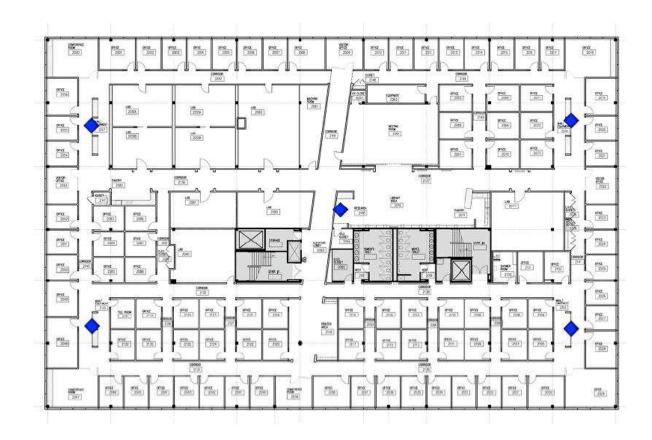
logit(Pr(
$$Y_{i,j} = 1 | Z, X, \beta$$
)) = $\sum_{k=1}^{p} \beta_k X_{k,i,j} - ||Z_i - Z_j||$

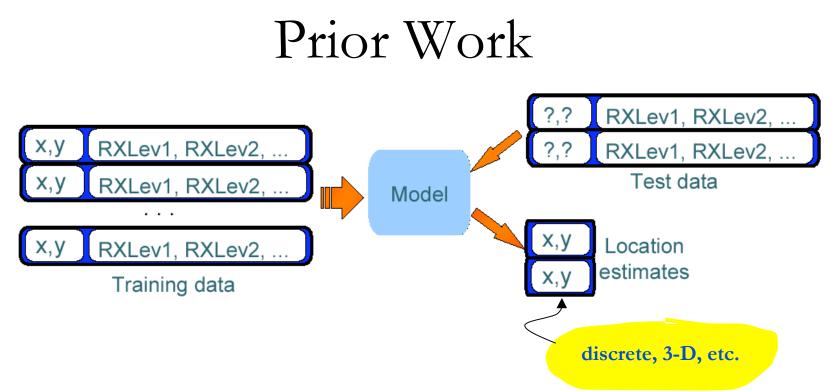
Hoff, Raftery, and Handcock (2002), Krivitsky, Handcock, Raftery, and Hoff (2007)

• generalize to two classes of actors and groups bigger than two:

$$\operatorname{logit}\left[\operatorname{Pr}(X_{I}, Y_{J} \mid Z)\right] = \sum_{\substack{i:X_{i} \in X_{I} \\ j:X_{j} \in X_{J}}} \left\{ \sum_{k=1}^{K} \beta_{k} X_{k,i,j} - \left\| Z_{Xi} - Z_{Yj} \right\| \right\}$$

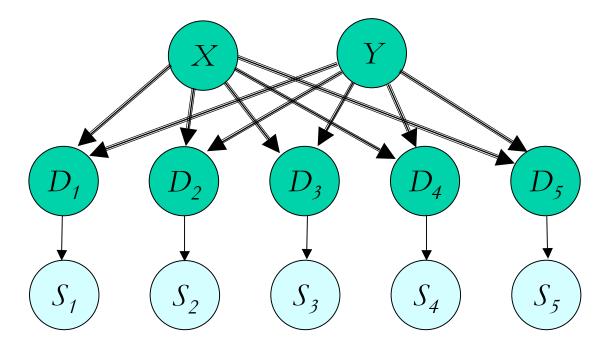
Gormley and Murphy (2006)


Final Comments

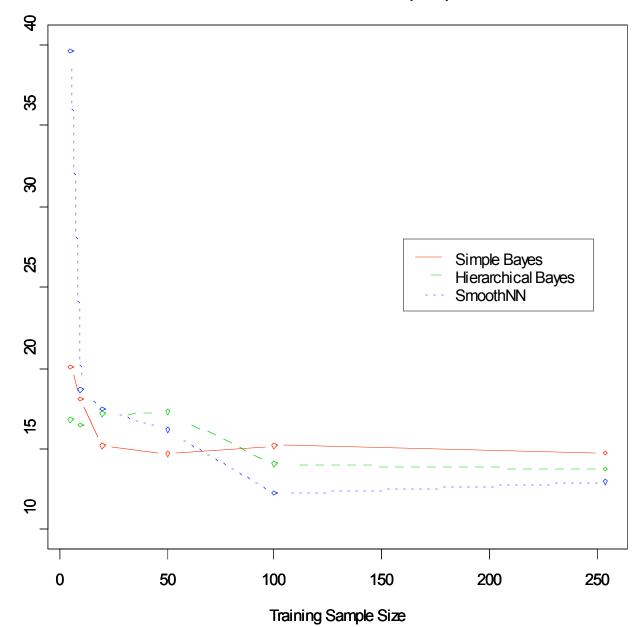

- Predictive modeling with 10⁵-10⁷ predictor variables is feasible and sometimes useful
- Google builds ad placement models with 10⁸ predictor variables
- Computation is a central problem in Statistics

The Problem

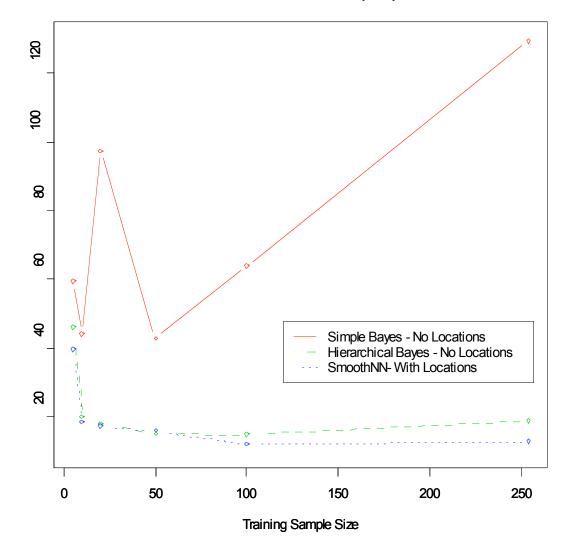
• Estimate the physical location of a wireless terminal/user in an enterprise


- Radio wireless communication network, specifically, 802.11-based

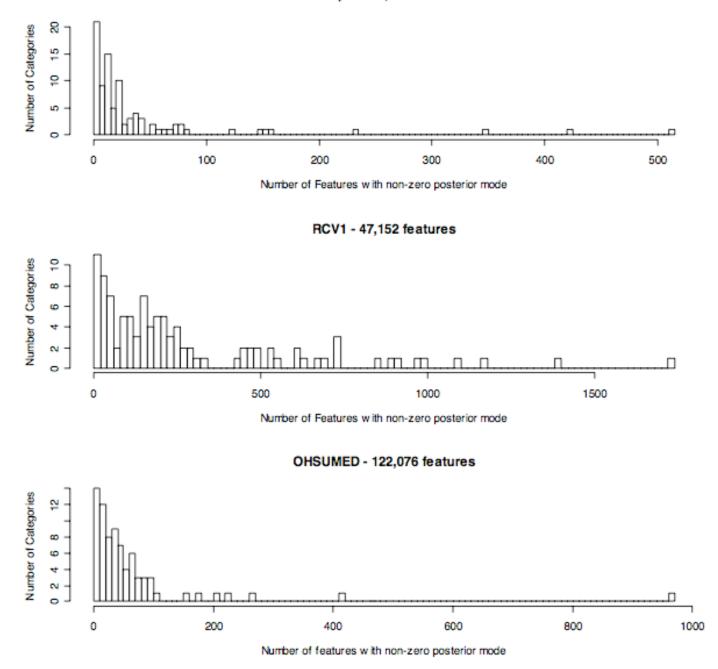
- Take signal strength measures at many points in the site and do a closest match to these points in signal strength vector space. [e.g. Microsoft's RADAR system]
- Take signal strength measures at many points in the site and build a multivariate regression model to predict location (e.g., Tirri's group in Finland)
- -Some work has utilized wall thickness and materials


Bayesian Graphical Model Approach

 $X, Y \sim unif$ $D_i(X, Y) = \text{distance to the ith access point}$ $S_i \sim N(b_{i0} + b_{i1} \log D_i, \sigma_i^2), \ i = 1, \dots, 5$ average


Hierarchical Model Y_i X_i D_{ij} S_{ij} *i*=1,...,*n* b_{1j} b_{0j} *j*=1,...,5 au_0 μ_0 μ_1 au_1

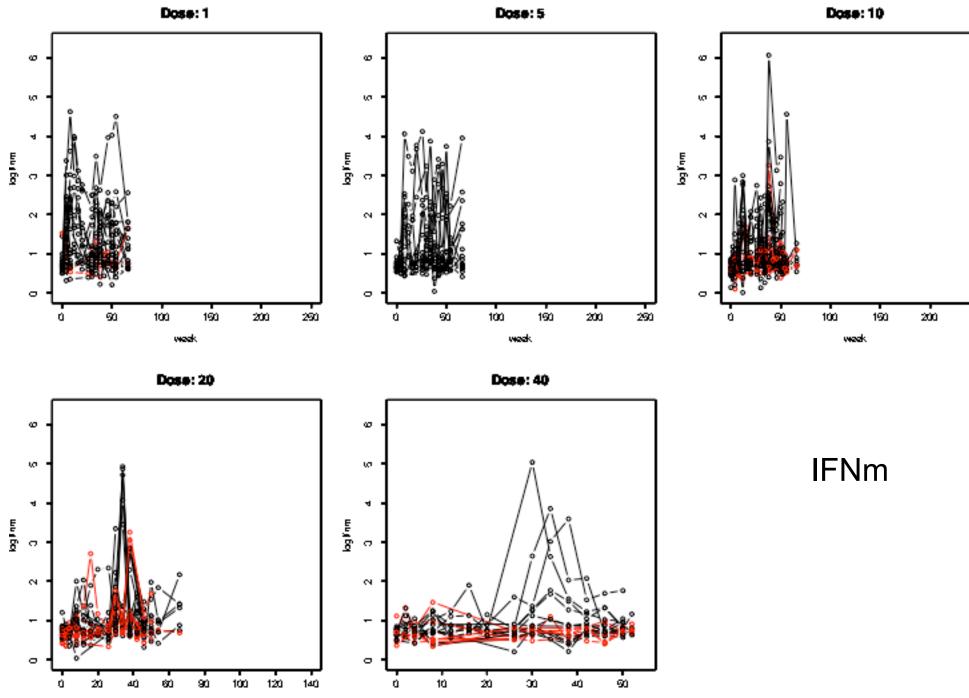
Leave-one-out error (feet)


What if we had no locations in the training data?

Leave-one-out error (feet)

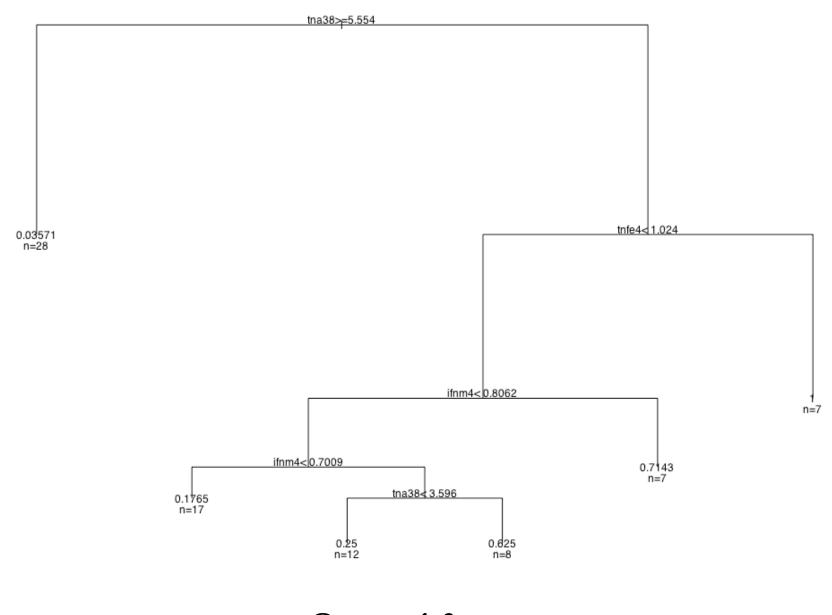
Future Work

- Rigorous derivation of BIC and df
- Prior on partitions
- Better search strategies for partition space
- Out of sample predictive accuracy
- LAPS C++ implementation
- Fully Bayesian alternative

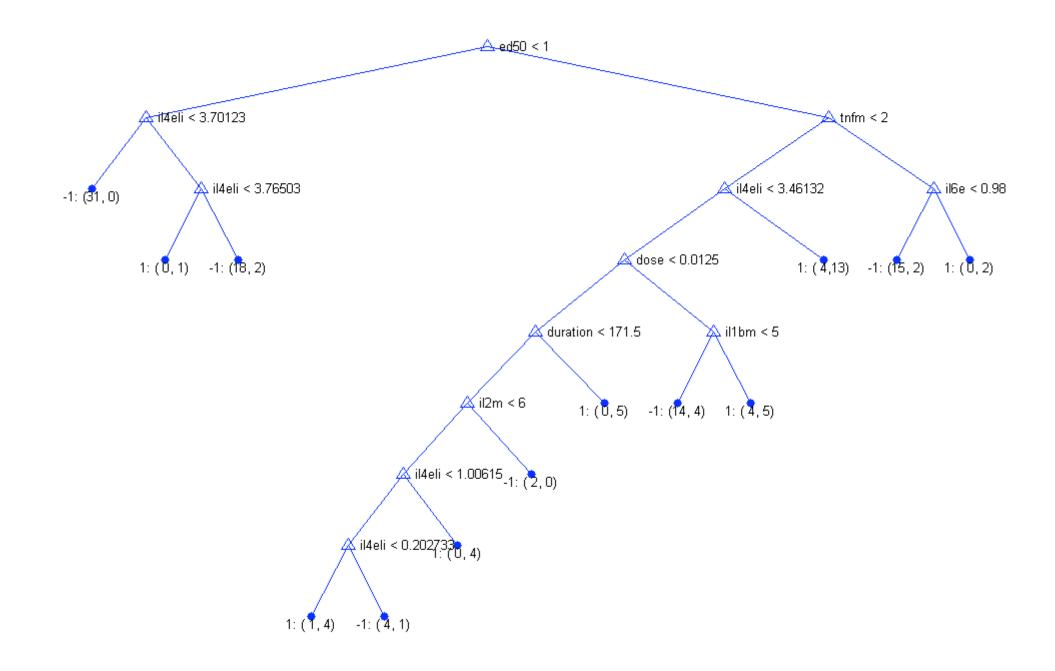


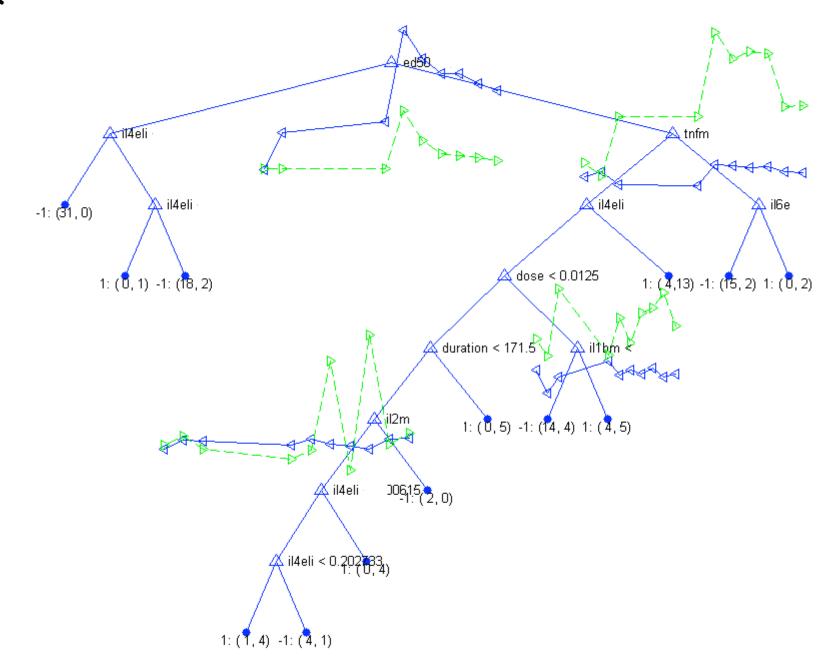
Genkin et al. (2004)

ModApte: Bayesian Perspective Can Help


(training: 100 random samples)

	Macro F1	ROC
Laplace	37.2	76.2
Laplace & DK- based variance	65.3	87.1
Laplace & DK- based mode	72.0	93.5




week

week.

Groups 1-3

Balakrishnan and Madigan (2006)

L1 Logistic Regression

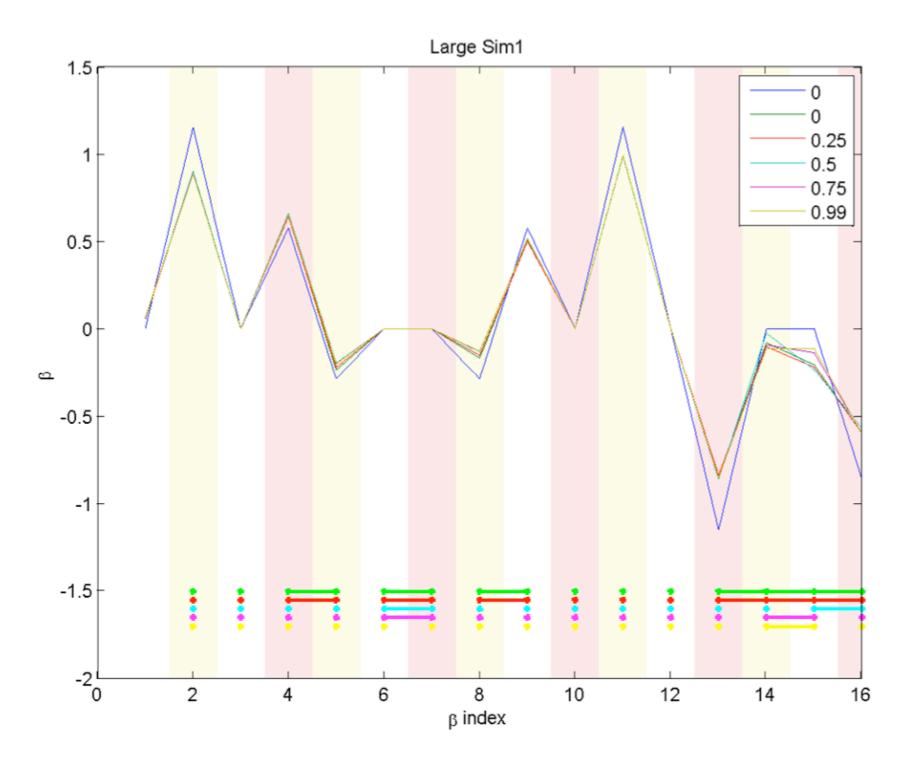
-imputation

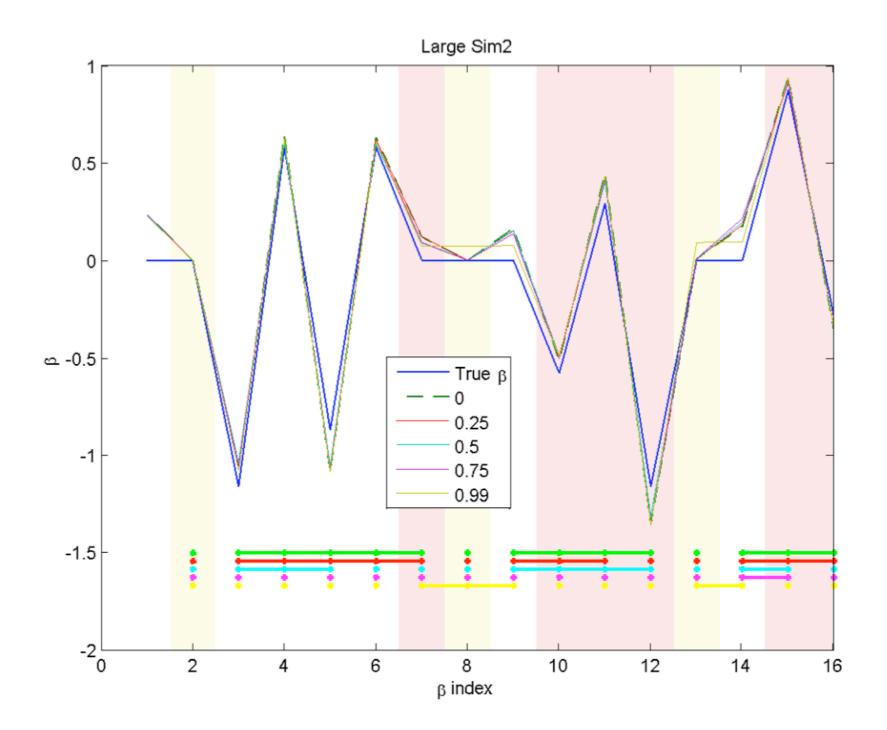
-common weeks only (0,4,8,26,30,38,42,46,50)

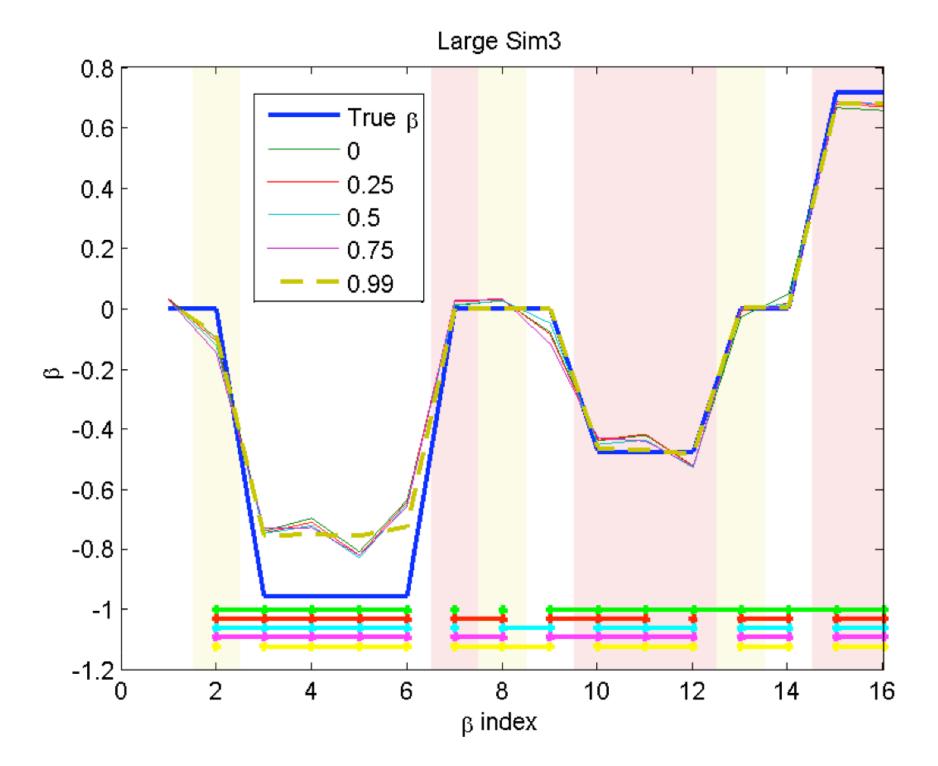
-no interactions

IGG_38	-0.16 (0.17)
ED50_30	-0.11 (0.14)
SI_8	-0.09 (0.30)
IFNeli_8	-0.07 (0.24)
ED50_38	-0.03 (0.35)
ED50_42	-0.03 (0.36)
IFNeli_26	-0.02 (0.26)
IL4/IFNeli_0	+0.04 (0.36)

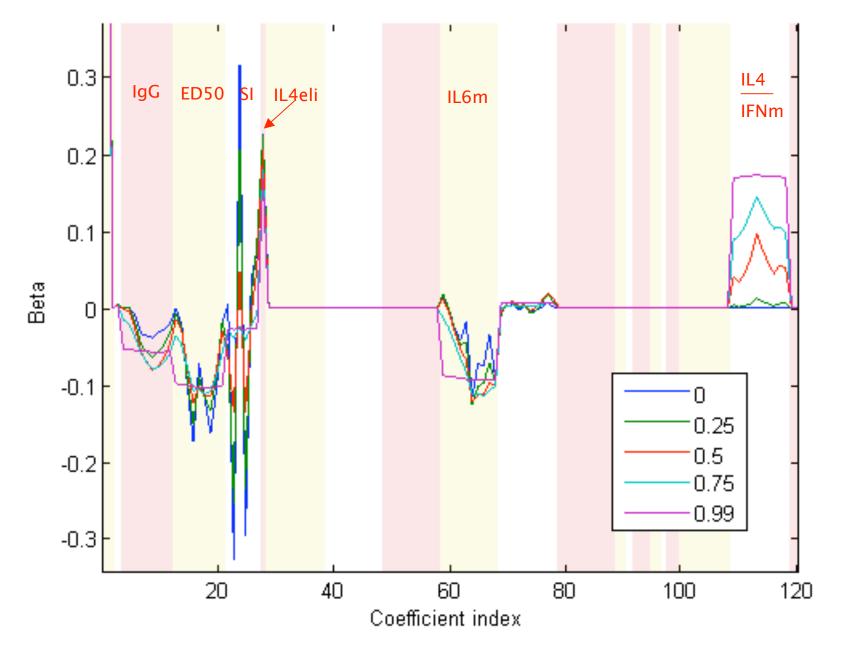
bbrtrain -p 1 -s --autosearch --accurate commonBBR.txt commonBBR.mod

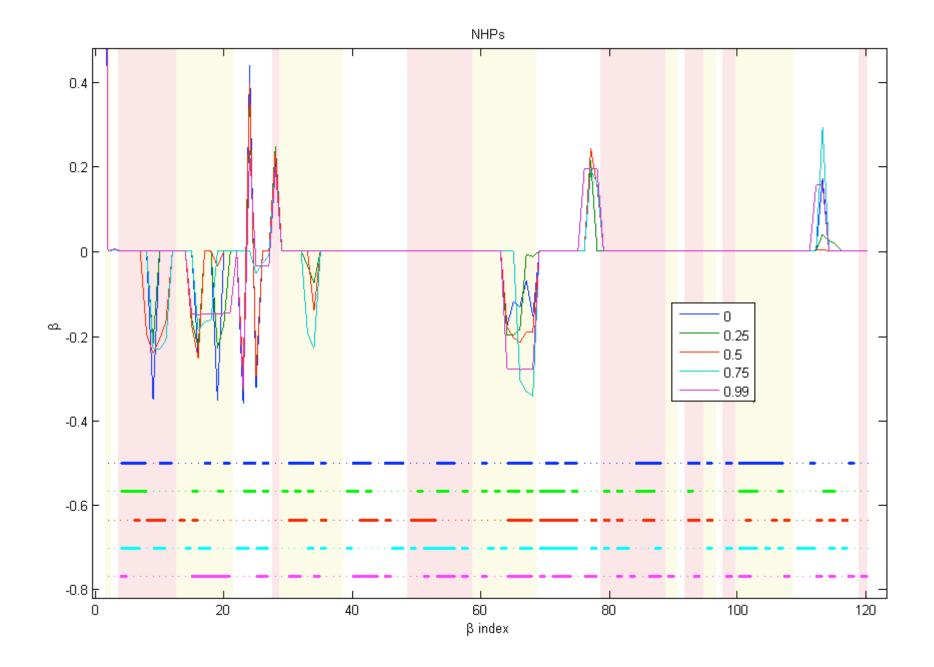

LAPS Simulation Study

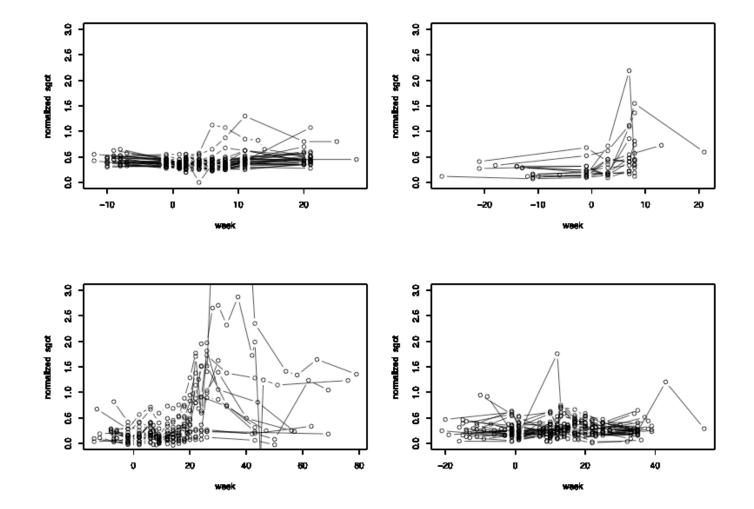

 $X \sim N(0,1)^{15}$ (iid, uncorrelated attributes) Beta = one of three conditions (corresponding to Sim1, Sim2 and Sim3)


Small (or SM) => small sample = 50 observations Large (or LG) => large sample = 500 observations

True betas (used to simulate data) Adjusted so that Bayes error (on a large dataset) ~=0.20


SIM1	SIM2	SIM3
(favors BBR)	(fv GR. Lasso, kij=0)	(fv Fused Gr Lasso, kij->1)
1.1500	0	0
0	-1.1609	-0.9540
0.5750	0.5804	-0.9540
-0.2875	-0.8706	-0.9540
0	0.5804	-0.9540
0	0	0
-0.2875	0	0
0.5750	0	0
0	-0.5804	-0.4770
1.1500	0.2902	-0.4770
0	-1.1609	-0.4770
-1.1500	0	0
0	0	0
0	0.8706	0.7155
-0.8625	-0.2902	0.7155





Group Lasso with Soft Fusion

Drug Safety: Early Detection of Toxicity

Future Work

- Rigorous derivation of BIC and df
- Prior on partitions
- Better search strategies for partition space
- Out of sample predictive accuracy
- LAPS C++ implementation

Domain Knowledge in Text Classification

- Certain words are positively or negatively associated with category
- **Domain Knowledge:** textual descriptions for categories
- Prior mean quantifies the strength of positive or negative association
- Prior variance quantifies our confidence in the domain knowledge

An Example Model

(category "grain")

Word	Beta	Word	Beta
corn	29.78	formal	-1.15
wheat	20.56	holder	-1.43
rice	11.33	hungarian	-6.15
sindt	10.56	rubber	-7.12
madagascar	6.83	special	-7.25
import	6.79	• • •	•••
grain	6.77	beet	-13.24
contract	3.08	rockwood	-13.61

Using Domain Knowledge (DK)

- Give domain words higher mean or variance
- **Two methods:** For each DK term *t* and category *Q*, and manually chosen *C*,
 - First method sets **DK-based variance**:

variance
$$(t, Q) = C \cdot \text{significance}(t, Q) \cdot \sigma^2$$

- Second method sets **DK-based mode**:
- $mode(t,Q) = C \cdot significance(t,Q) \cdot \sigma$ Here σ^2 is variance for all other words chosen by 5-fold CV on training data
- Used TFxIDF weighting on the prior knoweldge documents to compute *significance(t, Q)*

Experiments

- Data sets
 - 1) TREC 2004 Genomics data:
 - **Categories:** 32 MeSH categories under "Cells" hierarchy
 - **Documents:** 3742 training and 4175 test
 - **Prior Knowledge:** MeSH category descriptions
 - 2) ModApte subset of Reuters-21578
 - **Categories:** 10 most frequent categories
 - **Documents:** 9603 training and 3299 test
 - **Prior Knowledge:** keywords selected by hand (Wu & Srihari, 2004)
- Big (all training examples) and small size training data
- Limited, biased data often the case in applications

MeSH Prior Knowledge Example

- MeSH Heading: Neurons
- Scope Note: The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the nervous system.
- Entry Term: Nerve Cells
- See Also: Neural Conduction

MeSH Results (Big training data)

	Macro F1	ROC
Laplace	50.2	88.7
Laplace & DK- based variance	53.7	89.2
Laplace & DK- based mode	52.8	89.4

MeSH Results

(training: 500 random examples)

	Macro F1	ROC
Laplace	35.1	78.3
Laplace & DK- based variance	49.7	83.8
Laplace & DK- based mode	44.4	84.2

MeSH Results

(training: 5 positive and 5 random examples for each category)

	Macro F1	ROC
Laplace	29.3	65.9
Laplace & DK- based variance	43.7	77.6
Laplace & DK- based mode	35.8	83.3

Prior Knowledge for ModApte

Category	Prior Knowledge
earn	cents cts net profit quarter qtr revenue rev share shr
acq	acquire acquisition company merger stake
money-fx	bank currency dollar money
grain	agriculture corn crop grain wheat usda
crude	barrel crude oil opec petroleum
trade	deficit import surplus tariff trade
interest	bank money lend rate
wheat	wheat
ship	port ship tanker vessel warship
corn	corn

ModApte Results

(training: 100 random samples)

	Macro F1	ROC
Laplace	37.2	76.2
Laplace & DK- based variance	65.3	87.1
Laplace & DK- based mode	72.0	93.5

ModApte Results

(training: 5 positive + 5 random samples for each category)

	Macro F1	ROC
Laplace	42.7	77.8
Laplace & DK- based variance	63.8	88.1
Laplace & DK- based mode	66.5	94.4