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Outline
• Develop robust missing data methods based on 

models, multiple imputation
• Univariate missing data:

– Penalized Spline Prediction -- robust modeling based 
on penalized splines

– Handling the curse of dimensionality -- propensity 
penalized spline prediction

– Variance estimation, simulation studies 

• Extensions of propensity spline prediction to 
general patterns
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Missing data methods
• Likelihood-based

– Maximum likelihood, Bayes
– Multiple imputation (approximate Bayes) -- good for 

multiple analyses

• Other
– “approximate” (pseudo) likelihood
– Weighting approaches 
– Estimating equations other than likelihood
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Why I like models and MI
• Every method effectively predicts the missing 

values (including GEE, methods that drop the 
incomplete cases).

• Most direct approach is to build a predictive 
distribution of the missing values, that 
incorporates plausible assumptions

• ML,  Bayes, MI all involve prediction of missing 
data

• Models make assumptions, but every method 
makes assumptions; seek robust models (e.g. 
splines; see below)
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Multiple imputation
• MI -- Unlinks imputation model from analysis model

– Simple models suffice if missing information is small
– Imputation model can condition on variables not 

included in the analysis model (e.g. Marie’s 
intermediate variables in her talk)

– Uniform treatment of missing data across analyses
– Allows implicit as well as explicit imputation models 

(e.g. hot deck, predictive mean matching)
– But, retains asymptotic optimality of ML if imputation 

and analysis model are same
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Notation
• A random sample of missing data
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Introduction
• Assumptions

– Missing at random (MAR)
– Univariate pattern missing data
– Later, I discuss extensions to a 

general pattern.
– Independence over subjects
– continuous - focus on estimating 

its mean
• Data

– X1, …, XK are fully observed
– Y1 has missing values.
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Model-based prediction

• Under MAR, 
E(Y1 | X) = E(Y1 | X, R1=1)=E(Y1 | X, R1=0)

• One can estimate E(Y1 | X) using complete 
cases and predict the Y for each incomplete 
case by substituting the X for that case into the 
regression formula.
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Prediction Method
• If the prediction model is a linear regression, 

then 

• This linear regression prediction estimator is the 
maximum likelihood (ML) estimator of µ1 if we 
assume the data are from a multivariate normal 
distribution.

• Bayes/MI  replaces means by draws from 
predictive distribution
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Prediction Method
• The prediction method is sensitive to model 

misspecification, particularly if data are not 
MCAR

True regression

Linear fit to observed data

X

Y
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Relaxing Linearity: one X
• A simple way is to categorize      and predict 

within classes -- link with weighting methods
• For continuous     and sufficient sample size, a  

spline provides one useful alternative (Cheng 
1994 JASA). We use a P-Spline approach:
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More than one covariate
• When we model the relationship with many 

covariates by smoothing, we have to deal with the 
“curse of dimensionality”. 
– One approach is to “calibrate” the model by adding 

weighted residuals (e.g. Scharfstein and Izzarry 2004).
– Our goal is to achieve both robustness and dimension 

reduction with many covariates, using the conceptually 
simple model-based approach.
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Propensity P-spline Prediction
• Focus on a particular function of the covariates 

most sensitive to model misspecification, the 
response propensity score.

• Important to get relationship between Y and 
response propensity correct, since 
misspecification of this leads to bias

• Other X’s balanced over respondents and 
nonrespondents, conditional on propensity 
scores; so misspecification of regression of 
these is less important (loss of precision, not 
bias).
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Propensity P-spline Prediction Model
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Double Robustness Property
The proposed method yields consistency if

(a) Overall model relating Y1 to (X1,…,XK) is correct,
or

(b1) X1
* = logit(Pr(R1=1|X1, …, XK))  is correctly 

specified and
(b2) Regressions of Y1,X2,…,XK on X1

* are correctly 
specified

Calibration approach yields consistency under (a) 
or (b1), without needing (b2)
But the additional condition (b2) is mild since these 
regressions are univariate and are modeled 
“nonparametrically” using splines.
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Variance Estimation
• PPSP estimator is obtained based on 

predictions or imputations.

• Valid estimates of variance of the PPSP 
estimator need to incorporate
– added uncertainty due to nonresponse,
– and added variability due to propensity estimation
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Asymptotic Variance

• Ignoring sampling error in estimating the 
propensity scores, and using the asymptotic 
variance for the PPSP estimator.

• Variance tends to be underestimated since the 
additional variability from estimating the 
propensity scores is ignored.
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Bootstrap Variance Estimation
1. Generate a bootstrap sample by sampling with 

replacement from the complete and incomplete 
cases.

2. Apply the PPSP method to each bootstrap 
sample

3. Estimate variance from bootstrap distribution 
of parameter estimates.
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Multiple Imputation
Bayesian Hierarchical Representation of PPSP
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Multiple Imputation
• Impute M sets of imputed data using the 

Gibbs’ sampler for Bayes version of model.
• Apply Rubin’s (1987) rule to the multiply 

imputed data sets to estimate the mean of Y1
and its associated variance.

• Not quite fully Bayes, but close
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Multiple Imputation by Bootstrap

1. Bootstrap the samples M times
2. For each bootstrapped samples,

1. Estimate relevant parameters for PPSP
2. Predict the missing values using the estimated 

parameters from the bootstrap data and fully observed 
variables for incomplete cases. 

3. Using the multiply imputed data sets, estimate the 
mean of Y and its associated standard error by the 
MI combining rules.
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Simulation
• Objective:  To evaluate and compare the 

proposed variance estimation methods.
• X1, X2 ~ind. N(0, 1)
• Y1|X1,X2 ~

– Linear mean:  N(10+3X1+3X2, 3)
– Additive mean: N(1+(X1+2)2+(X2+1)2, 3)
– Non-additive mean: N(10+5X1+5X2+5X1X2, 5)

• E(Y1) = 10 for all three mean structures.
• Response propensity: E(R1)=0.5

– logit(Pr(R1=1|X1,X2)) = X1+X2

• 500 data sets with sample size 100 and 1000 are 
generated for each mean structure.
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Simulation
• Prediction methods

– BD: Before deletion estimator
– CC: Complete case estimator
– LP: Linear prediction estimator
– APSP: Additive P-spline prediction estimator
– PPSP: Propensity P-spline prediction estimator

• Variance estimation methods
– SI: Variance estimate based on single imputation
– AV: Asymptotic variance estimate ignoring sampling error in the 

estimated propensity scores
– BOOT: Bootstrap variance estimate
– MI-Boot: Multiple imputation by bootstrap 
– MI-Bayes: Multiple imputation estimate from the Bayesian joint 

posterior distribution using the Gibbs’ sampler.
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Simulation
• For P-splines, 

– 20 equal percentile knots
– linear truncated spline basis

• For multiple imputation
– Flat priors on parameters
– 10 sets of imputed data

• For each method over 500 simulated data sets,
– BIAS: empirical bias
– Emp.SE: empirical standard error
– Est.SE: mean of the estimated standard errors
– Ave.CI: average length of confidence intervals (95%)
– COV: coverage rate (95%)



Simulation: Linear mean structure (n = 1000)

94.00.6670.1680.176-0.009(MI-Bayes)

95.00.6690.1690.1710.000(MI-BOOT)

94.20.6530.1670.170-0.002(BOOT)

92.00.5990.1530.170-0.002(AV)

89.80.5470.1400.170-0.002(SI)PPSP

94.40.6610.1670.176-0.004(MI-Bayes)

93.80.6530.1650.170-0.004(MI-BOOT)

92.20.6400.1630.169-0.002(BOOT)

91.20.5970.1520.169-0.002(AV)

88.40.5470.1400.169-0.002(SI)APSP

96.40.6760.1710.168-0.001(MI-Bayes)

93.80.6420.1630.169-0.001(MI-BOOT)

93.00.6290.1600.168-0.001(BOOT)

92.60.5960.1520.168-0.001(AV)

90.00.5470.1390.168-0.001(SI)LP

0.00.7060.1800.1852.173CC

94.80.5670.1450.1510.000BD

CoverageAve. CIEst. SEEmp. SEBIASMethod



Simulation: Additive mean structure (n=1000)

96.81.6500.4090.367-0.026(MI-Bayes)

96.41.5080.3780.337-0.041(MI-BOOT)

93.21.3240.3380.332-0.041(BOOT)

95.81.4090.3600.332-0.041(AV)

89.81.1000.2810.332-0.041(SI)PPSP

95.81.2020.3060.296-0.032(MI-Bayes)

97.61.4270.3570.303-0.015(MI-BOOT)

96.01.1800.3100.293-0.022(BOOT)

94.41.1470.2930.293-0.022(AV)

92.41.1050.2720.293-0.022(SI)APSP

13.81.7340.4350.368-1.248(MI-Bayes)

17.21.8260.4560.379-1.254(MI-BOOT)

6.81.4040.3580.361-1.246(BOOT)

4.61.2850.3280.361-1.246(AV)

4.81.2980.3310.361-1.246(SI)LP

0.01.7940.4580.4573.539CC

95.01.1190.2850.280-0.022BD

CoverageAve. CIEst. SEEmp. SEBIASMethod



94.61.4120.3540.356-0.075(MI-Bayes)

96.41.6440.4040.359-0.058(MI-BOOT)

94.61.4350.3660.351-0.063(BOOT)

93.41.2840.3280.351-0.063(AV)

86.81.0550.2690.351-0.063(SI)PPSP

2.81.7280.4360.500-1.785(MI-Bayes)

27.62.9850.6000.514-1.735(MI-BOOT)

5.21.4970.4710.471-1.731(BOOT)

0.81.3240.3380.471-1.731(AV)

1.01.3810.3520.471-1.731(SI)APSP

6.01.7190.4310.366-1.372(MI-Bayes)

9.01.7180.4300.369-1.370(MI-BOOT)

3.61.4740.3760.362-1.370(BOOT)

1.61.2370.3160.362-1.370(AV)

2.21.2860.3280.362-1.370(SI)LP

0.01.7110.4360.4333.636CC

95.81.1080.2830.2640.007BD

CoverageAve. CIEst. SEEmp. SEBIASMethod

Simulation: Non-additive mean structure (n=1000)
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General Pattern Missing Data
• Bayes/Gibbs based on model for joint 

distribution
– Principled, but requirement of a coherent 

joint distribution imposes limitations.
• Raghunathan et al. (2001) proposed a sequential 

regression multivariate imputation. 
– Approximate relevant conditional distributions for 

Gibbs’ sampler by a sequence of regressions of one 
variable on all the others.

– Another advantage is  the SRMI can create multiply 
imputed data sets.

– Inference can be made by Rubin’s (1987) rule.
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Sequential regression MI
• Fill in each missing values of each variable by 

draws from predictive distribution given observed 
or imputed values of other variables (as in a 
Gibbs’ sampler)

• Prediction by drawing from posterior distribution 
of parameters of regression, and then missing 
values given drawn values of parameters

• Cycles through variables one at a time, 
conditioning on latest draws of missing values for 
other variables
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Sequential Regression MI
• When the regression model is linear additive, the 

draws of missing values from SRMI procedures 
are equivalent to the draws from joint predictive 
distribution under a multivariate normal 
distribution with an improper prior on the mean 
and the covariance.

• For more robust prediction, we incorporate PPSP  
regressions into the  SRMI approach.
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PPSP in sequential MI method 
• For the missing values of each variable:
• Condition on imputed values of other variables –

reduces problem to univariate missing data
• Compute propensity to respond for that variable 

given the other variables
• Apply the PPSP method to create draws of 

missing values for that variable
• Cycle through all the variable until “convergence”
• Details in Hyonggin An’s thesis
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Simulation1
• logit(Pr(R1=0|X1,X2,Y2) and 

logit(Pr(R2=0|X1,X2,Y1) are not exactly linear but 
approximately linear.

• The propensity model specified in the PPSP 
method is relatively correct.

• Linear Additive, Non-linear additive and nonlinear 
nonadditive mean structures are simulated

• 200 simulated data sets with sample size 500 for 
each mean model.
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Simulation1
• X1, X2 ~ind. N(0, 1)
• Linear mean model:

– Y1|X1,X2 ~ N(X1+X2, 5)
– Y2|X1,X2,Y1 ~ N(X1+X2+2Y1, 5)

• Additive mean model
– Y1|X1,X2 ~ N(-4 +X1+X2+2X1

2+2X2
2, 5)

– Y2|X1,X2,Y1 ~ N(-25+X1+X2+Y1+X1
2+X2

2+Y1
2, 5)

• Non-additive mean model
– Y1|X1,X2 ~ N(X1+X2+5X1X2, 5)
– Y2|X1,X2,Y1 ~ N(-10+X1+X2+Y1+5X1Y1+5X2Y1, 5)

• E(Y1)=E(Y2)=0
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Simulation1
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• Generating missing data
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Simulation1
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Simulation1
% of observed values

251315476062
Non-

additive

251115496064Additive

251314486162Linear

R1=0, 
R2=0

R1=0, 
R2=1

R1=1, 
R2=0

R1=1, 
R2=1R2=1R1 = 1

Mean 
Model
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Simulation1 Results
Linear mean model when propensities are correctly specified

96.00.3620.3380.3400.03994.00.1490.1460.147-0.021PPSP

98.50.5450.4130.431-0.12298.50.2340.1790.187-0.055APSP

97.00.4560.3320.3320.00797.50.1940.1450.145-0.001LP

15.50.3730.3651.1741.11585.50.1520.1480.2000.135CC

97.00.2940.2930.2930.00996.00.1190.1190.1190.001BD

Cov.
Est. 
SE

Emp. 
SE

RMSEBIASCov.
Est. 
SE

Emp. 
SE

RMSEBIAS

µ2µ1

Method
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Simulation1 Results
Additive mean model when propensities are correctly specified

93.03.1082.8552.855-0.23897.00.2490.2530.2530.012PPSP

94.02.7602.6162.616-0.02895.00.2330.2260.227-0.025APSP

97.56.0222.9204.604-3.56098.50.4150.2830.285-0.033LP

88.53.8703.9066.0014.55679.00.2860.3020.4520.336CC

90.52.5552.5382.541-0.12195.00.2140.2150.215-0.007BD

Cov.
Est. 
SE

Emp. 
SE

RMSEBIASCov.
Est. 
SE

Emp. 
SE

RMSEBIAS

µ2µ1

Method
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Simulation1 Results
Non-additive mean model when propensities are correctly specified

91.03.2993.6323.653-0.39291.00.2990.3200.3310.084PPSP

51.09.00718.87128.92521.92125.50.6311.0402.1561.889APSP

90.06.5433.7657.430-6.40599.00.5210.3550.3710.108LP

55.54.4404.4449.0077.83466.00.3370.3230.6250.535CC

94.52.9603.0353.0360.09693.00.2510.2530.2550.037BD

Cov.
Est. 
SE

Emp. 
SE

RMSEBIASCov.
Est. 
SE

Emp. 
SE

RMSEBIAS

µ2µ1

Method
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Simulation2
• logit(Pr(R1=0|X1,X2,Y2)=logit(P01+P00) and 

logit(Pr(R2=0|X1,X2,Y1)=logit(P10+P00) are clearly 
not linear.

• The propensity model is not correctly specified the 
PPSP method.

• Linear Additive, Non-linear additive and nonlinear 
nonadditive mean structures are simulated

• 200 simulated data sets with sample size 500 for 
each mean model.
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Simulation2
• Generating missing data
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Simulation2
% of observed values

181519486367
Non-

additive

181124475817Additive

182019436262Linear

R1=0, 
R2=0

R1=0, 
R2=1

R1=1, 
R2=0

R1=1, 
R2=1R2=1R1 = 1

Mean 
Model
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Simulation2 Results
Linear mean model when propensities are incorrectly specified

97.00.3240.3220.3220.00097.00.1320.1330.1330.001PPSP

96.00.5540.4720.5000.16798.00.2390.2010.2150.077APSP

98.00.4680.3400.3400.01498.00.1880.1410.1410.002LP

0.00.3550.3491.821-1.7876.50.1460.1430.530-0.511CC

95.00.2930.2880.288-0.00797.50.1180.1110.111-0.003BD

Cov.
Est. 
SE

Emp. 
SE

RMSEBIASCov.
Est. 
SE

Emp. 
SE

RMSEBIAS

µ2µ1

Method
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Simulation2 Results
Additive mean model when propensities are incorrectly specified

60.010.9632.3965.007-4.39673.00.2490.2460.416-0.335PPSP

93.511.4623.2093.2600.57394.50.2440.2560.2570.031APSP

54.018.2832.3328.371-8.04076.00.3400.2630.557-0.490LP

79.011.0252.9153.512-1.96054.50.2420.2520.517-0.451CC

96.59.9582.4582.461-0.12095.00.2140.2190.2190.004BD

Cov.
Est. 
SE

Emp. 
SE

RMSEBIASCov.
Est. 
SE

Emp. 
SE

RMSEBIAS

µ2µ1

Method
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Simulation2 Results
Non-additive mean model when propensities are incorrectly specified

74.02.7143.4274.661-3.15889.50.3140.3710.3920.125PPSP

35.53.9827.19612.450-10.15950.00.3970.5160.902-0.739APSP

80.03.4533.2965.697-4.64756.00.3800.3390.842-0.770LP

2.52.3562.1359.409-9.61438.50.2700.2780.682-0.623CC

92.02.9653.1583.159-0.07892.50.2530.2670.267-0.005BD

Cov.
Est. 
SE

Emp. 
SE

RMSEBIASCov.Est. SE
Emp. 

SE
RMSEBIAS

µ2µ1

Method
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Conclusions
• Models, multiple imputation: direct, flexible
• Make model more flexible and robust to avoid 

model misspecification
• A key idea is to single out the response propensity 

scores for the robust form of modeling to achieve 
dimension reduction and robustness.

• Simulation studies show that the PPSP works well 
over wide range of population with different mean 
structures when the propensity is correctly 
specified under the MAR assumption.
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Future work
• Comparing the PPSP method with the calibration 

method when missing data pattern is general. –
comparing double robustness.

• Extend the PPSP method to non-continuous 
missing variables such as binary, categorical, and 
counting data.

• Generalize the method to estimate other functions 
rather than means, such as covariance of missing 
variables and density estimation.

• Extend the method to non-ignorable missing data. 
Bayesian sensitivity analysis is my prefered
approach


