# An extension of the Wilcoxon Rank-Sum test for complex sample survey data 

Stuart Lipsitz<br>Brigham and Women's Hospital Boston, MA

## Outline

- Background for Complex Sample survey
- Extension of Wilcoxon Rank-Sum for Complex Survey Data
- Example


## Complex Sample Surveys

- Complex survey sampling is often used to sample a fraction of a large finite population.
- In general, each sampling unit has a different probability of being selected into the sample.
- For generalizability to popultion, both design and the probability of being must be incorporated into the analysis.
- analyses of ready availability of public-use data from large population-based complex sample surveys has led to: newly discovered important associations between risk factors and disease
- Many seminal papers published in leading medical journals have used such complex sample survey data.
- Paper: Epidemic of obesity in UK children

Journal: The Lancet (Reilly and Dorosty, 1999) Survey: Health Survey for England (HSE)

- Paper: Adolescent Overweight and Future Adult Coronary Heart Disease
Journal: New England Journal of Medicine (BibbinsDomingo et al., 2007)
Survey: US National Health and Nutrition Examination Surveys (NHANES)
- A search of PubMed (National Library of Medicine) abstracts using the word "NHANES" yielded 7699 articles in the last 5 years
- And NHANES is just one of at least 100 complex surveys.
- Usually, reporting of regression analyses is the main goal, but initial summaries in terms of bivariate analyses are regularly reported in 'Table 1 ' in a medical paper.
- Wilcoxon rank-sum test is one of the most frequently used statistical tests for comparing an ordinal outcomes between two groups, and are often used in 'Table 1'.
- Unfortunately, no simple extension of the Wilcoxon rank sum test has been proposed for complex survey data.
- The mutli-stage sampling design with different probabilities of selection has been the roadblock in developing a general extension of the Wilcoxon test procedure to complex surveys.
- Extensions of the rank-sum tests have been proposed for clustered data (Jung and Kang, 2001; Rosner, Glynn, and Lee, 2003), without stratification or unequal selection probabilities.
- With independent subjects,

Wilcoxon rank-sum test statistic=score test statistic for a group effect from a proportional-odds cumulative logistic regression model (McCullagh, 1989; Agresti, 2002)

- Using this framework, for complex survey data,

1. we propose formulating a similar proportional-odds cumulative logistic regression model for the ordinal variable
2. using an estimating equations score statistic for no group effect as an extension of the Wilcoxon test.

## MEPS DATA

- Example: Medical Expenditure Panel Survey (MEPS; Cohen, 2003) for the year 2002, conducted by the United States National Center for Health Statistics, Centers for Disease Control and Prevention.
- Designed to produce national estimates of the health care use, expenditures, sources of payment, and insurance coverage of the United States civilian noninstitutionalized population.
- MEPS is a stratified, multistage probability cluster sample.
- 203 geographical regions form the strata .
- Two or three clusters (area segments) were sampled within each stratum.
- By design, each subject in the population has a known probability $\pi_{i}$ of being sampled
- Over-sampled
-Hispanics, African-Americans,
-adults with functional impairments,
-children with limitations in activities
-individuals predicted to incur high levels of medical expenditures
-low income individuals.
- Each subject in sample has known weight ' $w_{i}=1 / \pi_{i}$ '
- Because of the complex sampling frame utilized in these surveys, must use design-based analyses that incorporate the weighting, stratification, and clustering variables.
- We analyze data from 25,388 subjects who participated in the Household Component of the MEPS.
- Goal: See if people with and without health insurance differ in the ordinal variables
- Eduction ( $1=$ no degree, $2=$ ged, $3=$ high school diploma, $4=$ bachelor's degree, $5=$ master's degree, $6=$ doctorate degree)
- Income ( $1=$ Poor, $2=$ Near-poor, $3=$ Low income, $4=$ Middle income, $5=$ High income)
- Perceived health status ( $1=$ Excellent, $2=$ Very Good, $3=$ Good, $4=$ Fair, $5=$ Poor )
- BMI
$-1=$ underweight, $\mathrm{BMI}<18.5 \mathrm{~kg} / \mathrm{m}^{2}$
$-2=$ normal, BMI: 18.5 to $24.9 \mathrm{~kg} / \mathrm{m}^{2}$
$-3=$ overweight, $\mathrm{BMI}=25.0$ to $29.9 \mathrm{~kg} / \mathrm{m}^{2}$
$-4=$ obese, $\mathrm{BMI}>30.0 \mathrm{~kg} / \mathrm{m}^{2}$
- Want to use Wilcoxon test, but incorporate the weighting, stratification, and clustering variables.
- Table 1 show fake data from 25 typical subjects, including strata, cluster, and weights

Table 1. Example (Fake) Data on 25 subjects from MEPS study

| Subject | Strata | Cluster | Weight | Health <br> Insurance | Eduction | Income | perceived <br> health <br> status | BMI |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 1 | 7080.48 | yes | Bachelor's | Middle | Good | normal |
| 2 | 1 | 2 | 4714.22 | yes | No Degree | High | Good | normal |
| 3 | 2 | 2 | 6925.06 | yes | High School | High | Excellent | obese |
| 4 | 3 | 2 | 9358.85 | yes | No Degree | High | Very Good | over |
| 5 | 4 | 1 | 6081.79 | no | No Degree | Middle | Good | normal |
| 6 | 4 | 2 | 3728.20 | no | High School | Poor | Very Good | normal |
| 7 | 5 | 1 | 4056.79 | no | High School | Middle | Good | over |
| 8 | 6 | 1 | 5936.66 | yes | Master's | High | Excellent | over |
| 9 | 7 | 2 | 2871.62 | no | Bachelor's | High | Good | normal |
| 10 | 8 | 2 | 2671.22 | yes | Doctorate | High | Very Good | obese |
| 11 | 9 | 1 | 5101.48 | yes | High School | Middle | Very Good | normal |
| 12 | 10 | 1 | 3569.07 | yes | High School | Poor | Poor | over |
| 13 | 11 | 1 | 4751.75 | yes | High School | Poor | Excellent | over |
| 14 | 12 | 1 | 9790.85 | yes | GED | Middle | Very Good | over |
| 15 | 13 | 1 | 7168.04 | yes | GED | High | Excellent | over |
| 16 | 14 | 2 | 5762.49 | yes | No Degree | High | Excellent | over |
| 17 | 15 | 1 | 7382.55 | yes | High School | Middle | Excellent | normal |
| 18 | 15 | 1 | 10140.54 | no | No Degree | Middle | Excellent | under |
| 19 | 16 | 1 | 4952.08 | yes | High School | High | Good | normal |
| 20 | 17 | 1 | 6989.89 | no | No Degree | High | Excellent | over |
| 21 | 18 | 1 | 2649.72 | yes | GED | High | Very Good | obese |
| 22 | 19 | 2 | 3363.35 | yes | High School | High | Very Good | under |
| 23 | 20 | 2 | 5425.54 | yes | High School | Middle | Fair | normal |
| 24 | 21 | 2 | 9417.92 | no | High School | Low | Excellent | over |
| 25 | 22 | 1 | 2017.34 | no | No Degree | Middle | Very Good | obese |

Weights rescaled so that their sum=population $=226,043,351$
Weight for indiviudal $=$ \# of people in popultation one person represents.

Table 1 Example (Column Percent, Ignoring Design)

| Variable | Levels | Health Insurance |  | Wilcoxon $\mathrm{X}^{2}$ (P-value) |
| :---: | :---: | :---: | :---: | :---: |
|  |  | No | Yes |  |
| Education |  |  |  | $959.81(<.0001)$ |
|  | No Degree | 31.3 | 17.9 |  |
|  | GED | 7.3 | 4.2 |  |
|  | High School | 49.3 | 49.5 |  |
|  | Bachelor's | 9.7 | 18.8 |  |
|  | Master's | 2.0 | 7.7 |  |
|  | Doctorate | 0.5 | 2.0 |  |
| Income |  |  |  | 1933.38(<.0001) |
|  | Poor | 21.0 | 7.8 |  |
|  | Near-poor | 7.4 | 3.1 |  |
|  | Low | 22.5 | 10.7 |  |
|  | Middle | 30.8 | 31.0 |  |
|  | High | 18.3 | 47.5 |  |
| Perceived |  |  |  | 0.03(0.864) |
| Health | Excellent | 26.0 | 25.8 |  |
| Status | Very Good | 31.4 | 34.6 |  |
|  | Good | 30.6 | 26.6 |  |
|  | Fair | 9.4 | 9.5 |  |
|  | Poor | 2.6 | 3.5 |  |
| BMI |  |  |  | 0.52 (0.472) |
|  | Under | 2.7 | 2.0 |  |
|  | Normal | 38.7 | 37.7 |  |
|  | Over | 34.8 | 35.7 |  |
|  | Obese | 23.8 | 24.6 |  |

Aside: Estimated 38, 929, 595/226, 043, $351=17.2 \%$ US Citizen's without health insurance in 2002.
$95 \% C I:(16.4 \%, 18.0 \%)$

## Wilcoxon Rank-Sum Test $=$ Score test from Proportional odds model

- First, consider typical sampling scheme of $n$ indedendent subjects $(i=1, \ldots, n)$
- Ordinal discrete random variable, $Y_{i}$
- Without loss of generality, assume $Y_{i}$ takes on positive integer values $j=1,2, \ldots, J$.
- Form $J$ indicator random variables $Y_{i j}$, where
$Y_{i j}=1$ if subject $i$ has response $j$
$Y_{i j}=0$ if otherwise.
- Goal; Determine if this ordinal outcome differs across two groups
- dichotomous covariate $x_{i}$, where $x_{i}=1$ if subject $i$ is in group 1 and $x_{i}=0$ if subject $i$ is in group 2 .
- Denote the probability of response $j$ given $x_{i}$ as

$$
p_{i j}=\operatorname{pr}\left(Y_{i}=j \mid x_{i}\right)=\operatorname{pr}\left(Y_{i j}=1 \mid x_{i}\right),
$$

- Multinomial probability mass function for subject $i$ equals

$$
f\left(y_{i 1}, y_{i 2}, \ldots, y_{i J}\right)=\prod_{j=1}^{J} p_{i j}^{y_{i j}}
$$

- Proportional odds model can be written as

$$
\gamma_{i j}=\operatorname{pr}\left(Y_{i} \leq j \mid x_{i}, \boldsymbol{\theta}, \beta\right)=\frac{\exp \left(\theta_{j}-x_{i} \beta\right)}{1+\exp \left(\theta_{j}-x_{i} \beta\right)}
$$

- $\gamma_{i j}$ is a 'cumulative probability'.
- Since

$$
\begin{align*}
p_{i j} & =\operatorname{pr}\left(Y_{i}=j \mid x_{i}\right) \\
& =\operatorname{pr}\left(Y_{i} \leq j \mid x_{i}, \boldsymbol{\theta}, \beta\right)-\operatorname{pr}\left(Y_{i} \leq j-1 \mid x_{i}, \boldsymbol{\theta}, \beta\right) \\
& =\gamma_{i j}-\gamma_{i, j-1} \tag{1}
\end{align*}
$$

- Likelihood for subject $i$ can be rewritten as

$$
L_{i}(\boldsymbol{\theta}, \beta)=\prod_{j=1}^{J}\left[\gamma_{i j}-\gamma_{i, j-1}\right]^{y_{i j}}
$$

- Our main interest is in testing for no group effect, i.e.,

$$
\mathrm{H}_{\mathrm{O}}: \beta=0 .
$$

- Under this null hypothesis the distribution of the ordinal variable is identical in the two groups.
- The Wilcoxon rank-sum test statistic can be shown to equals score test statistic for testing $\beta=0$. (McCullagh, 1980)
- Briefly discuss score test


## General Score test

- General form of a score test statistic for testing $\beta=0$.

$$
X^{2}=\mathbf{U}\left(\widehat{\boldsymbol{\theta}}_{0}, 0\right)^{\prime}\{\operatorname{Var}[\mathbf{U}(\boldsymbol{\theta}, \beta)]\}_{\boldsymbol{\theta}=\boldsymbol{\theta}_{0}, \beta=0}^{-1} \mathbf{U}\left(\widehat{\boldsymbol{\theta}}_{0}, 0\right)
$$

where

- $\mathbf{U}(\widehat{\boldsymbol{\theta}}, \beta)$ is the score vector
- $\widehat{\boldsymbol{\theta}}_{0}$ is MLE of $\boldsymbol{\theta}$ under $H_{0}: \beta=0$
- $\mathbf{U}\left(\widehat{\boldsymbol{\theta}}_{0}, 0\right)$ is the score vector evaluated at $\left(\boldsymbol{\theta}=\widehat{\boldsymbol{\theta}}_{0}, \beta=0\right)$
- $\{\operatorname{Var}[\mathbf{U}(\boldsymbol{\theta}, \beta)]\}_{\boldsymbol{\theta}=\widehat{\boldsymbol{\theta}}_{0, \beta=0}}$ is the variance of $\mathbf{U}(\boldsymbol{\theta}, \beta)$ evaluated at $\boldsymbol{\theta}=\widehat{\boldsymbol{\theta}}_{0}, \beta=0$.
- Under the null hypothesis, $X^{2}$ has an asymptotic chi-square distribution with 1 degree-of-freedom.


## Proportional Odds Model

- For the proportional odds model (McCullagh, 1980), the only non-zero component of $\mathbf{U}\left(\widehat{\boldsymbol{\theta}}_{0}, 0\right)$ is

$$
U_{0}=\sum_{i=1}^{n} x_{i} \sum_{j=1}^{J} S_{j}\left(Y_{i j}-\hat{p}_{j}\right)
$$

where

$$
\hat{p}_{j}=n^{-1} \sum_{i=1}^{n} Y_{i j}
$$

is the proportion of subject with response level $j$, regardless of group, and

$$
S_{j}=\hat{p}_{j} / 2+\sum_{k=1}^{j-1} \hat{p}_{k}
$$

which is the 'ridit' score.

- Note that $n \cdot S_{j}$ equals the average rank for a subject with response level $j$,
- This test statistic is identical to the Wilcoxon rank-sum statistic, which sums, for group $x_{i}=1$
(average rank in category $j \times$ the number of subjects in category $j$ )
across all categories
- By formulating the Wilcoxon test statistic in terms of a score test statistic from the proportional odds model,
- one can apply theory developed for estimating equations score tests to proportional odds models in the complex sample survey setting,
- without having to develop new theory for ranks in complex survey data.


## Extension of the Wilcoxon Rank-Sum Test for complex survey data

- First, we discuss weighted estimating equations (WEE) for estimating $(\widehat{\boldsymbol{\theta}}, \widehat{\boldsymbol{\beta}})$ in complex surveys.
- In complex sample surveys, target popultation is usually thought to be of finite size $N$, where $N$ is often so large that for practical purposes the population is infinite.
- Assume the sample is still of size $n$ (out of population $N$ )
- To indicate which $n$ subjects are sampled from population of $N$ subjects, we define the indicator random variable

$$
\delta_{i}=\left\{\begin{array}{l}
1 \text { if subject } i \text { is selected into sample } \\
0 \text { if subject } i \text { is not selected into sample }
\end{array},\right.
$$

for $i=1, \ldots, N$,

- with $\sum_{i=1}^{N} \delta_{i}=n$.
- Depending on the sampling design, some of the $\delta_{i}$ could be correlated (e.g., for two subjects within the same cluster).
- As before, let $\pi_{i}$ equal the (known by design) probability of being selected into the survey.
- Depending on the sampling design, $\pi_{i}$ may depend on the outcome of interest, the independent variables, or additional variables (screening variables, for example) not in the model of interest.
- For a simple random sample (SRS), $\pi_{i}=n / N$ is a constant.
- Assume that the proportional odds model holds for all subjects in the population
- To obtain a consistent estimate of $(\boldsymbol{\theta}, \beta)$, one can use a weighted estimating equation, which is the solution to

$$
\mathbf{U}_{w e e}(\widehat{\boldsymbol{\theta}}, \widehat{\boldsymbol{\beta}})=\mathbf{0}
$$

where

$$
\mathbf{U}_{w e e}(\widehat{\boldsymbol{\theta}}, \widehat{\boldsymbol{\beta}})=\sum_{i=1}^{N} \frac{\delta_{i}}{\pi_{i}} \sum_{j=1}^{J} \frac{d}{d(\boldsymbol{\theta}, \beta)}\left[y_{i j} \log \left(\gamma_{i j}-\gamma_{i, j-1}\right)\right]
$$

- Here, the 'weights' are $w_{i}=\frac{\delta_{i}}{\pi_{i}}$. ( $w_{i}=\frac{1}{\pi_{i}}$ if sampled $\delta_{i}=1$ ).
- weighted likelihood score equations under (GEE) working 'independence' of subjects.


## Properties of WEE

- $(\widehat{\boldsymbol{\theta}}, \widehat{\boldsymbol{\beta}})$ has an asymptotic multivariate normal distribution with mean $(\boldsymbol{\theta}, \beta)$ and sandwich covariance matrix

$$
\operatorname{Var}[(\hat{\boldsymbol{\theta}}, \widehat{\boldsymbol{\beta}})]=\left[E\left(\frac{d \mathbf{U}_{\text {wee }}(\boldsymbol{\theta}, \beta)}{d(\boldsymbol{\theta}, \beta)}\right)\right]^{-1}\left\{\operatorname{Var}\left[\mathbf{U}_{\text {wee }}(\boldsymbol{\theta}, \beta)\right]\right\}\left[E\left(\frac{d \mathbf{U}_{\text {wee }}(\boldsymbol{\theta}, \beta)}{d(\boldsymbol{\theta}, \beta)}\right)\right]^{-1},
$$

- Note, $\left\{\operatorname{Var}\left[\mathbf{U}_{w e e}(\boldsymbol{\theta}, \beta)\right]\right\}$ depends on the sample design (stratification and clustering).
- Empirically, $\operatorname{Var}[(\widehat{\boldsymbol{\theta}}, \widehat{\boldsymbol{\beta}})]$ is estimated via 'sandwich variance estimator' found in sample survey programs in SAS, Sudaan, R, and Stata.


## Estimating Equations Score test

- We apply an estimating equations score test statistic (Rotnitzky and Jewell, 1990) for the null hypothesis of $\mathrm{H}_{0}: \beta=0$, in the proportional odds model.
- Here, let $\widehat{\boldsymbol{\theta}}_{0}$ denote the WEE estimate of $\boldsymbol{\theta}$ under the null hypothesis that $\beta=0$.
- Similar to the usual score test, the estimating equations score test statistic for $\mathrm{H}_{0}: \beta=0$ is
$X^{2}=\mathbf{U}_{w e e}\left(\widehat{\boldsymbol{\theta}}_{0}, 0\right)^{\prime}\left\{\operatorname{Var}\left[\mathbf{U}_{w e e}(\boldsymbol{\theta}, \beta)\right]\right\}_{\boldsymbol{\theta}=\widehat{\boldsymbol{\theta}}_{0}, \beta=0}^{-1} \mathbf{U}_{\text {wee }}\left(\widehat{\boldsymbol{\theta}}_{0}, 0\right)$, where the form of $\mathbf{U}_{\text {wee }}\left(\widehat{\boldsymbol{\theta}}_{0}, 0\right)$ and $\left\{\operatorname{Var}\left[\mathbf{U}_{\text {wee }}(\boldsymbol{\theta}, \beta)\right]\right\} \boldsymbol{\theta}=\widehat{\boldsymbol{\theta}}_{0, \beta=0}$ are both dervied under the alternative, but evaluated at $\left(\boldsymbol{\theta}=\widehat{\boldsymbol{\theta}}_{0}, \beta=0\right)$.
- In particular, sandwich
$\left.\operatorname{Var}\left[\mathbf{U}_{\text {wee }}(\boldsymbol{\theta}, \beta)\right]\right\} \boldsymbol{\theta}_{\boldsymbol{\theta}=\widehat{\boldsymbol{\theta}}_{0, \beta=0}}=$

$$
\left[E\left(\frac{d \mathbf{U}_{\text {wee }}(\boldsymbol{\theta}, \beta)}{d(\boldsymbol{\theta}, \beta)}\right)\right]_{\boldsymbol{\theta}=\widehat{\boldsymbol{\theta}}_{0}, \beta=0}\{\operatorname{Var}[(\hat{\boldsymbol{\theta}}, \widehat{\boldsymbol{\beta}})]\}_{\boldsymbol{\theta}=\widehat{\boldsymbol{\theta}}_{0}, \beta=0}\left[E\left(\frac{d \mathbf{U}_{\text {wee }}(\boldsymbol{\theta}, \beta)}{d(\boldsymbol{\theta}, \beta)}\right)\right]_{\boldsymbol{\theta}=\widehat{\boldsymbol{\theta}}_{0}, \beta=0},
$$

- Using central limit theorem for complex surveys (Binder, 1983), $X^{2}$ asymptotically chi-square distribution 1 degree-of-freedom under null
- although the definition of 'asymptotic' is sometimes nonstandard if the finite population size $N$ is small.
- Similar to the score test for non-complex survey data, the only non-zero component of $\mathbf{U}\left(\widehat{\boldsymbol{\theta}}_{0}, 0\right)$ is

$$
U_{0}=\sum_{i=1}^{N} w_{i} \sum_{j=1}^{J} x_{i} S_{j}\left(Y_{i j}-\hat{p}_{j}\right),
$$

where

$$
\hat{p}_{j}=\frac{\sum_{i=1}^{N} w_{i} Y_{i j}}{\sum_{i=1}^{N} w_{i}}
$$

is the weighted proportion of subject with response level $j$, regardless of group, and

$$
S_{j}=\hat{p}_{j} / 2+\sum_{k=1}^{j-1} \hat{p}_{k} .
$$

which is a weighted 'ridit' score.

- Most sample survey programs allow fitting of the proportional odds model for ordinal data from complex sample surveys.
- However, the estimating equations score statistic is not directly printed out, and requires a simple two step procedure.


## Application: MEPS study

- Goal: See if people with and without health insurance differ in the ordinal variables
- Eduction ( $1=$ no degree, $2=$ ged, $3=$ high school diploma, $4=$ bachelor's degree, $5=$ master's degree, $6=$ doctorate degree)
- Income ( $1=$ Poor, $2=$ Near-poor, $3=$ Low income, $4=$ Middle income, $5=$ High income)
- Perceived health status ( $1=$ Excellent, $2=$ Very Good, $3=$ Good, $4=$ Fair, $5=$ Poor)
- BMI
$-1=$ underweight, $\mathrm{BMI}<18.5 \mathrm{~kg} / \mathrm{m}^{2}$
$-2=$ normal, BMI: 18.5 to $24.9 \mathrm{~kg} / \mathrm{m}^{2}$
- 3=overweight, BMI: 25.0 to $29.9 \mathrm{~kg} / \mathrm{m}^{2}$
$-4=$ obese, BMI $>30.0 \mathrm{~kg} / \mathrm{m}^{2}$


## Results (weighted proportions)

| Variable | Levels | Health Insurance |  | Ignoring Design Wilcoxon (Propotional-odds) | Complex-survey Propotional-odds |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | No | Yes | $\mathrm{X}^{2}$ (P-value) | $\mathrm{X}^{2}$ (P-value) |
| Education |  |  |  | $959.81(<.0001)$ | 448.41 ( < .0001) |
|  | No Degree | 31.3 | 17.9 |  |  |
|  | GED | 7.3 | 4.2 |  |  |
|  | High School | 49.3 | 49.5 |  |  |
|  | Bachelor's | 9.7 | 18.8 |  |  |
|  | Master's | 2.0 | 7.7 |  |  |
|  | Doctorate | 0.5 | 2.0 |  |  |
| Income |  |  |  | 1933.38(<.0001) | $982.84(<.0001)$ |
|  | Poor | 21.0 | 7.8 |  |  |
|  | Near-poor | 7.4 | 3.1 |  |  |
|  | Low | 22.5 | 10.7 |  |  |
|  | Middle | 30.8 | 31.0 |  |  |
|  | High | 18.3 | 47.5 |  |  |
| Perceived |  |  |  | 0.03 (0.864) | 1.03(0.31) |
| Health | Excellent | 26.0 | 25.8 |  |  |
| Status | Very Good | 31.4 | 34.6 |  |  |
|  | Good | 30.6 | 26.6 |  |  |
|  | Fair | 9.4 | 9.5 |  |  |
|  | Poor | 2.6 | 3.5 |  |  |
| BMI |  |  |  | 0.52(0.472) | 3.36 (0.067) |
|  | Normal | 2.7 38.7 | 2.0 37.7 |  |  |
|  | Over | 34.8 | 35.7 |  |  |
|  | Obese | 23.8 | 24.6 |  |  |

## Results

- $X^{2}$ quite different depending whether design taken into account
- For education and income, $X^{2}$ taking the design into account almost half the size, albeit all are very significant.
- On the other hand, for Perceived Health Status and BMI, we see that the opposite is true, taking the design into account gives much larger $X^{2}$.
- for BMI, $X^{2}$ is borderline significant $(\mathrm{P}=0.067)$ using design, whereas not close to significance without design $(\mathrm{p}=0.472)$.
- The results of the analyses of the MEPS data indicate that failure to incorporate the design in the analysis can potentially yield misleading inferences about the associations.


## Conclusion

- In summary, we have proposed an extension of the Wilcoxon Rank-Sum test to complex survey data.
- The approach is not ad hoc, but is based on the connection betwen the Wilcoxon rank-Sum test and the Proportional odds score test for a group effect.
- Based on estimating equations score statistic, no need to develop complicated probabiliy theory for ranks.
- Could 'extend' in other directions like adjusting for covariates, missing data.
- Will it work for continuous outcomes (instead ordinal) ?
- I think you can go through the theory to show that the test will be chi-square 1 under null, except it might test the edge of computing power.
- If BMI was continuous for example, with no ties, we have 25,000 intercepts in the proportional odds model, and, at least in sas, you run out of 'computer memory'

