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Complex Sample Surveys

• Complex survey sampling is often used to sample a

fraction of a large finite population.

• In general, each sampling unit has a different probability

of being selected into the sample.

• For generalizability to popultion, both design and the prob-

ability of being must be incorporated into the analysis.

• analyses of ready availability of public-use data from large

population-based complex sample surveys has led to:

newly discovered important associations between

risk factors and disease
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• Many seminal papers published in leading medical journals

have used such complex sample survey data.

• Paper: Epidemic of obesity in UK children

Journal: The Lancet (Reilly and Dorosty, 1999)

Survey: Health Survey for England (HSE)

• Paper: Adolescent Overweight and Future Adult

Coronary Heart Disease

Journal: New England Journal of Medicine (Bibbins-

Domingo et al., 2007)

Survey: US National Health and Nutrition Examination

Surveys (NHANES)

• A search of PubMed (National Library of Medicine)

abstracts using the word ”NHANES” yielded 7699 articles

in the last 5 years

• And NHANES is just one of at least 100 complex

surveys.
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• Usually, reporting of regression analyses is the main goal,

but initial summaries in terms of bivariate analyses are

regularly reported in ‘Table 1’ in a medical paper.

• Wilcoxon rank-sum test is one of the most frequently used

statistical tests for comparing an ordinal outcomes between

two groups, and are often used in ‘Table 1’.

• Unfortunately, no simple extension of the Wilcoxon rank

sum test has been proposed for complex survey data.

• The mutli-stage sampling design with different

probabilities of selection has been the roadblock in

developing a general extension of the Wilcoxon test

procedure to complex surveys.

• Extensions of the rank-sum tests have been proposed for

clustered data (Jung and Kang, 2001; Rosner, Glynn, and

Lee, 2003), without stratification or unequal selection prob-

abilities.
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• With independent subjects,

Wilcoxon rank-sum test statistic=score test statistic

for a group effect from a proportional-odds cumulative

logistic regression model (McCullagh, 1989; Agresti, 2002)

• Using this framework, for complex survey data,

1. we propose formulating a similar proportional-odds

cumulative logistic regression model for the ordinal

variable

2. using an estimating equations score statistic for no

group effect as an extension of the Wilcoxon test.
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MEPS DATA

• Example: Medical Expenditure Panel Survey (MEPS; Co-

hen, 2003) for the year 2002,

conducted by the United States National Center for Health

Statistics, Centers for Disease Control and Prevention.

• Designed to produce national estimates of the health care

use, expenditures, sources of payment, and insurance

coverage of the United States civilian noninstitutionalized

population.

• MEPS is a stratified, multistage probability cluster sample.

• 203 geographical regions form the strata .

• Two or three clusters (area segments) were sampled within

each stratum.
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• By design, each subject in the population has a known

probability πi of being sampled

• Over-sampled

-Hispanics, African-Americans,

-adults with functional impairments,

-children with limitations in activities

-individuals predicted to incur high levels of medical

expenditures

-low income individuals.

• Each subject in sample has known weight ‘wi = 1/πi’

• Because of the complex sampling frame utilized in these

surveys, must use design-based analyses that incorporate

the weighting, stratification, and clustering variables.
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• We analyze data from 25,388 subjects who participated in

the Household Component of the MEPS.

• Goal: See if people with and without health insurance

differ in the ordinal variables

• Eduction (1=no degree, 2=ged, 3=high school diploma,4=bachelor’s

degree, 5=master’s degree, 6=doctorate degree)

• Income (1=Poor, 2=Near-poor, 3=Low income, 4=Middle

income, 5=High income)

• Perceived health status (1=Excellent, 2=Very Good, 3=Good,

4=Fair, 5=Poor)

• BMI

– 1=underweight, BMI < 18.5 kg/m2

– 2=normal, BMI: 18.5 to 24.9 kg/m2

– 3=overweight, BMI = 25.0 to 29.9 kg/m2

– 4= obese, BMI > 30.0 kg/m2

• Want to use Wilcoxon test, but incorporate the weighting,

stratification, and clustering variables.

• Table 1 show fake data from 25 typical subjects, including

strata, cluster, and weights
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Table 1. Example (Fake) Data on 25 subjects from MEPS study

perceived
Health health

Subject Strata Cluster Weight Insurance Eduction Income status BMI

1 1 1 7080.48 yes Bachelor’s Middle Good normal
2 1 2 4714.22 yes No Degree High Good normal
3 2 2 6925.06 yes High School High Excellent obese
4 3 2 9358.85 yes No Degree High Very Good over
5 4 1 6081.79 no No Degree Middle Good normal
6 4 2 3728.20 no High School Poor Very Good normal
7 5 1 4056.79 no High School Middle Good over
8 6 1 5936.66 yes Master’s High Excellent over
9 7 2 2871.62 no Bachelor’s High Good normal
10 8 2 2671.22 yes Doctorate High Very Good obese
11 9 1 5101.48 yes High School Middle Very Good normal
12 10 1 3569.07 yes High School Poor Poor over
13 11 1 4751.75 yes High School Poor Excellent over
14 12 1 9790.85 yes GED Middle Very Good over
15 13 1 7168.04 yes GED High Excellent over
16 14 2 5762.49 yes No Degree High Excellent over
17 15 1 7382.55 yes High School Middle Excellent normal
18 15 1 10140.54 no No Degree Middle Excellent under
19 16 1 4952.08 yes High School High Good normal
20 17 1 6989.89 no No Degree High Excellent over
21 18 1 2649.72 yes GED High Very Good obese
22 19 2 3363.35 yes High School High Very Good under
23 20 2 5425.54 yes High School Middle Fair normal
24 21 2 9417.92 no High School Low Excellent over
25 22 1 2017.34 no No Degree Middle Very Good obese

Weights rescaled so that their sum=population=226,043,351
Weight for indiviudal= # of people in popultation one person represents.

9



Table 1 Example (Column Percent, Ignoring Design)

Health Insurance Wilcoxon
Variable Levels No Yes X2(P-value)

Education 959.81(< .0001)
No Degree 31.3 17.9
GED 7.3 4.2
High School 49.3 49.5
Bachelor’s 9.7 18.8
Master’s 2.0 7.7
Doctorate 0.5 2.0

Income 1933.38(< .0001)
Poor 21.0 7.8
Near-poor 7.4 3.1
Low 22.5 10.7
Middle 30.8 31.0
High 18.3 47.5

Perceived 0.03(0.864)
Health Excellent 26.0 25.8
Status Very Good 31.4 34.6

Good 30.6 26.6
Fair 9.4 9.5
Poor 2.6 3.5

BMI 0.52(0.472)
Under 2.7 2.0
Normal 38.7 37.7
Over 34.8 35.7
Obese 23.8 24.6

Aside: Estimated 38, 929, 595/226, 043, 351 = 17.2% US Citizen’s
without health insurance in 2002.

95%CI : (16.4%, 18.0%)
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Wilcoxon Rank-Sum Test = Score test from Proportional
odds model

• First, consider typical sampling scheme of n indedendent

subjects (i = 1, ..., n)

• Ordinal discrete random variable, Yi

• Without loss of generality, assume Yi takes on positive

integer values j = 1, 2, , ..., J.

• Form J indicator random variables Yij, where

Yij = 1 if subject i has response j

Yij = 0 if otherwise.

• Goal; Determine if this ordinal outcome differs across two

groups

• dichotomous covariate xi, where xi = 1 if subject i is in

group 1 and xi = 0 if subject i is in group 2.
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• Denote the probability of response j given xi as

pij = pr(Yi = j|xi) = pr(Yij = 1|xi),

• Multinomial probability mass function for subject i equals

f (yi1, yi2, ..., yiJ) =
J∏
j=1

p
yij
ij .

• Proportional odds model can be written as

γij = pr(Yi ≤ j|xi,θ, β) =
exp(θj − xiβ)

1 + exp(θj − xiβ)
.

• γij is a ‘cumulative probability’.

• Since

pij = pr(Yi = j|xi)
= pr(Yi ≤ j|xi,θ, β)− pr(Yi ≤ j − 1|xi,θ, β)

= γij − γi,j−1 ,
(1)

• Likelihood for subject i can be rewritten as

Li(θ, β) =
J∏
j=1

[γij − γi,j−1]yij ,
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• Our main interest is in testing for no group effect, i.e.,

H0:β = 0 .

• Under this null hypothesis the distribution of the ordinal

variable is identical in the two groups.

• The Wilcoxon rank-sum test statistic can be shown to

equals score test statistic for testing β = 0. (McCullagh,

1980)

• Briefly discuss score test
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General Score test

• General form of a score test statistic for testing β = 0.

X2 = U(θ̂0, 0)′{Var[U(θ, β)]}−1
θ=θ̂0,β=0

U(θ̂0, 0),

where

• U(θ̂, β) is the score vector

• θ̂0 is MLE of θ under H0 : β = 0

• U(θ̂0, 0) is the score vector evaluated at (θ = θ̂0, β = 0)

• {V ar[U(θ, β)]}
θ=θ̂0,β=0

is the variance of U(θ, β) evalu-

ated at θ = θ̂0, β = 0.

• Under the null hypothesis, X2 has an asymptotic

chi-square distribution with 1 degree-of-freedom.
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Proportional Odds Model

• For the proportional odds model (McCullagh, 1980), the

only non-zero component of U(θ̂0, 0) is

U0 =
n∑
i=1
xi

J∑
j=1

Sj(Yij − p̂j),

where

p̂j = n−1
n∑
i=1
Yij

is the proportion of subject with response level j, regardless

of group, and

Sj = p̂j/2 +
j−1∑
k=1

p̂k

which is the ’ridit’ score.

• Note that n ·Sj equals the average rank for a subject with

response level j,

• This test statistic is identical to the Wilcoxon rank-sum

statistic, which sums, for group xi = 1

(average rank in category j × the number of subjects in

category j)

across all categories
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• By formulating the Wilcoxon test statistic in terms of a

score test statistic from the proportional odds model,

• one can apply theory developed for estimating equations

score tests to proportional odds models in the complex

sample survey setting,

• without having to develop new theory for ranks in complex

survey data.
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Extension of the Wilcoxon Rank-Sum Test for

complex survey data

• First, we discuss weighted estimating equations (WEE) for

estimating (θ̂, β̂) in complex surveys.

• In complex sample surveys, target popultation is usually

thought to be of finite size N, where N is often so large

that for practical purposes the population is infinite.

• Assume the sample is still of size n (out of population N)

• To indicate which n subjects are sampled from population

of N subjects, we define the indicator random variable

δi =

 1 if subject i is selected into sample

0 if subject i is not selected into sample
,

for i = 1, ..., N,

• with
∑N
i=1 δi = n.

• Depending on the sampling design, some of the δi could be

correlated (e.g., for two subjects within the same cluster).
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• As before, let πi equal the (known by design) probability

of being selected into the survey.

• Depending on the sampling design,

πi may depend on the outcome of interest, the independent

variables, or additional variables (screening variables, for

example) not in the model of interest.

• For a simple random sample (SRS), πi = n/N is

a constant.

• Assume that the proportional odds model holds for all

subjects in the population

• To obtain a consistent estimate of (θ, β), one can use a

weighted estimating equation, which is the solution to

Uwee(θ̂, β̂) = 0

where

Uwee(θ̂, β̂) =
N∑
i=1

δi
πi

J∑
j=1

d

d(θ, β)
[yij log(γij − γi,j−1)]

• Here, the ‘weights’ are wi = δi
πi
.

(wi = 1
πi

if sampled δi = 1).

• weighted likelihood score equations under (GEE) working

‘independence’ of subjects.
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Properties of WEE

• (θ̂, β̂) has an asymptotic multivariate normal distribution

with mean (θ, β) and sandwich covariance matrix

Var[(θ̂, β̂)] =

[
E

(
dUwee(θ, β)

d(θ, β)

)]−1

{Var[Uwee(θ, β)]}
[
E

(
dUwee(θ, β)

d(θ, β)

)]−1

,

• Note, {Var[Uwee(θ, β)]} depends on the sample design

(stratification and clustering).

• Empirically, Var[(θ̂, β̂)] is estimated via ‘sandwich

variance estimator’ found in sample survey programs in

SAS, Sudaan, R, and Stata.
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Estimating Equations Score test

• We apply an estimating equations score test statistic (Rot-

nitzky and Jewell, 1990) for the null hypothesis of

H0:β = 0, in the proportional odds model.

• Here, let θ̂0 denote the WEE estimate of θ under the null

hypothesis that β = 0.

• Similar to the usual score test, the estimating equations

score test statistic for H0:β = 0 is

X2 = Uwee(θ̂0, 0)′{Var[Uwee(θ, β)]}−1
θ=θ̂0,β=0

Uwee(θ̂0, 0),

where the form of Uwee(θ̂0, 0) and {Var[Uwee(θ, β)]}
θ=θ̂0,β=0

are both dervied under the alternative, but evaluated at

(θ = θ̂0, β = 0).

• In particular, sandwich

Var[Uwee(θ, β)]}θ=θ̂0,β=0
=

[
E

(
dUwee(θ, β)

d(θ, β)

)]
θ=θ̂0,β=0

{Var[(θ̂, β̂)]}
θ=θ̂0,β=0

[
E

(
dUwee(θ, β)

d(θ, β)

)]
θ=θ̂0,β=0

,
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• Using central limit theorem for complex surveys (Binder,

1983), X2 asymptotically chi-square distribution 1 degree-

of-freedom under null

• although the definition of ‘asymptotic’ is sometimes non-

standard if the finite population size N is small.

• Similar to the score test for non-complex survey data, the

only non-zero component of U(θ̂0, 0) is

U0 =
N∑
i=1
wi

J∑
j=1

xiSj(Yij − p̂j),

where

p̂j =
∑N
i=1wiYij∑N
i=1wi

is the weighted proportion of subject with response level

j, regardless of group, and

Sj = p̂j/2 +
j−1∑
k=1

p̂k .

which is a weighted ’ridit’ score.

• Most sample survey programs allow fitting of the propor-

tional odds model for ordinal data from complex sample

surveys.

• However, the estimating equations score statistic is not

directly printed out, and requires a simple two step

procedure.
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Application: MEPS study

• Goal: See if people with and without health insurance

differ in the ordinal variables

• Eduction (1=no degree, 2=ged, 3=high school diploma,4=bachelor’s

degree, 5=master’s degree, 6=doctorate degree)

• Income (1=Poor, 2=Near-poor, 3=Low income, 4=Middle

income, 5=High income)

• Perceived health status (1=Excellent, 2=Very Good, 3=Good,

4=Fair, 5=Poor)

• BMI

– 1=underweight, BMI < 18.5 kg/m2

– 2=normal, BMI: 18.5 to 24.9 kg/m2

– 3=overweight, BMI: 25.0 to 29.9 kg/m2

– 4= obese, BMI > 30.0 kg/m2
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Results (weighted proportions)

Ignoring Design
Wilcoxon Complex-survey

Health Insurance (Propotional-odds) Propotional-odds
Variable Levels No Yes X2(P-value) X2(P-value)

Education 959.81(< .0001) 448.41(< .0001)
No Degree 31.3 17.9
GED 7.3 4.2
High School 49.3 49.5
Bachelor’s 9.7 18.8
Master’s 2.0 7.7
Doctorate 0.5 2.0

Income 1933.38(< .0001) 982.84(< .0001)
Poor 21.0 7.8
Near-poor 7.4 3.1
Low 22.5 10.7
Middle 30.8 31.0
High 18.3 47.5

Perceived 0.03(0.864) 1.03(0.31)
Health Excellent 26.0 25.8
Status Very Good 31.4 34.6

Good 30.6 26.6
Fair 9.4 9.5
Poor 2.6 3.5

BMI 0.52(0.472) 3.36(0.067)
Under 2.7 2.0
Normal 38.7 37.7
Over 34.8 35.7
Obese 23.8 24.6

23



Results

• X2 quite different depending whether design taken into

account

• For education and income, X2 taking the design into

account almost half the size, albeit all are very significant.

• On the other hand, for Perceived Health Status and BMI,

we see that the opposite is true, taking the design into

account gives much larger X2.

• for BMI, X2 is borderline significant (P=0.067) using de-

sign, whereas not close to significance without design (p=0.472).

• The results of the analyses of the MEPS data indicate that

failure to incorporate the design in the analysis can poten-

tially yield misleading inferences about the associations.
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Conclusion

• In summary, we have proposed an extension of the Wilcoxon

Rank-Sum test to complex survey data.

• The approach is not ad hoc, but is based on the connection

betwen the Wilcoxon rank-Sum test and the Proportional

odds score test for a group effect.

• Based on estimating equations score statistic, no need to

develop complicated probabiliy theory for ranks.

• Could ‘extend’ in other directions like adjusting for

covariates, missing data.

• Will it work for continuous outcomes (instead ordinal) ?

• I think you can go through the theory to show that the

test will be chi-square 1 under null, except it might test

the edge of computing power.

• If BMI was continuous for example, with no ties, we have

25,000 intercepts in the proportional odds model, and, at

least in sas, you run out of ’computer memory’
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