Hierarchical Nonparametric Bayes

Michael I. Jordan
Department of Statistics
Department of Electrical Engineering and Computer Science University of California, Berkeley

http://www.cs.berkeley.edu/~jordan
Acknowledgments: Yee Whye Teh, Romain Thibaux

Objective Bayes and Nonparametric Bayes

- The agenda for objective Bayes: let the data speak

Objective Bayes and Nonparametric Bayes

- The agenda for objective Bayes: let the data speak
- The agenda for nonparametric Bayes:

Objective Bayes and Nonparametric Bayes

- The agenda for objective Bayes: let the data speak
- The agenda for nonparametric Bayes: let the data speak

Objective Bayes and Nonparametric Bayes

- The agenda for objective Bayes: let the data speak
- The agenda for nonparametric Bayes: let the data speak
- Hmm, surely there must be relationships, but thus far the research efforts seem mainly detached
- I certainly feel that I'm being more "objective" when I work with a nonparametric prior than when I work with less flexible models
- In my view, a deeper understanding depends in part on understanding how these ideas interact with hierarchical modeling

Hierarchical Bayes

- The naturalness of hierarchies in the Bayesian formalism is the main reason I'm a Bayesian
- provide both complexity and control
- Seemingly of particular relevance to nonparametric Bayesian work, where the emphasis is complexity and the need for control is great
- Of great help in the development of subjective priors; what can objective Bayes say about hierarchical priors?

Hierarchical Nonparametric Bayes

- Many nonparametric (or semiparametric) Bayesian models make use of classical parametric hierarchies
- e.g., when using the Dirichlet process $\operatorname{DP}\left(\alpha_{0}, G_{0}\right)$, it's common to let G_{0} lie in a parametric family, say $G_{0}=N\left(\mu_{0}, \tau_{0}\right)$
- But in the spirit of nonparametric methods let's try to make fuller use of stochastic processes
- e.g., in the Dirichlet process let G_{0} be a random measure
- Why? Because this construction allows us to solve a raft of practical problems that involve multiple, coupled clustering problems

Protein Folding

- A protein is a folded chain of amino acids
- The backbone of the chain has two degrees of freedom per amino acid (phi and psi angles)
- Empirical plots of phi and psi angles are called Ramachandran diagrams

Protein Folding (cont.)

- We want to model the clustering in the Ramachandran diagram to provide an energy term for protein folding algorithms
- We actually have a linked set of Ramachandran diagrams, one for each amino acid neighborhood
- We thus have a linked set of clustering problems

Document and Image Modeling

- Define a topic to be a probability distribution across words in some vocabulary
- Define a document to be a probability distribution across topics
- Given a corpus of documents, find the topics and find the patterns of usage of topics across documents
- Each document is a clustering problem; we must link multiple clusterings across a corpus
- Note that a "document" can be an image, where a "word" is a local image feature

Topic Hierarchies

regular; ; language; expression	
distance; s ; points	
colors; dgr ; coloring	
the; of; a n \quad; algorithm ; time	
pages; hierarchical; page	
building; block; whichclassification ; metric ; allocation	
classification; metric ; allocationset; optimal ; structure	
quantum ; part ; classical	
graphs ; planar; inference queries ; classes ; complexity	
data; access; overhead	
abstract; program; theory programs; language; rules	
sets; magic; predicates	
routing ; adaptive ; routers	
closed; queuing; asymptotic	
traffic; latency; total networks; network; rou	
inference ; task; optimization	
class; have ; property	
online ; task; decision	
availability; data; contention sy	
methods; parsing; retrieval circuit ; cache; verification	
zeroknowledge ; argument; round that ; time; problems proof;np;question	
nodes; binary; average trees;tree; search	
shared; waitfree; objects	
channel; transmission; cost n;procole	
networks; processors; those n;procilmore ; trees; derived	
database; dependencies; boolean	
recursion;query; optimal constraints ; constraint ; algebra	
subclass; satisfiability; by	
m ; parallel ; d	
show; oblivious; protection n; log ; function	
studied; makes; the	
temporal ; logic ; exponential	
known; large; very logic ;knowledge ; systems	
compilation ; queries; online	
automaton; states; global	automata ; lower ; bounded

Haplotype Modeling

- Consider M binary markers in a genomic region
- There are 2^{M} possible haplotypes-i.e., states of a single chromosome
- but in fact, far fewer are seen in human populations
- A genotype is a set of unordered pairs of markers (from one individual)

- Given a set of genotypes (multiple individuals), estimate the underlying haplotypes
- This is a clustering problem

Haplotype Modeling (cont.)

- A key problem is inference for the number of clusters
- Consider now the case of multiple groups of genotype data (e.g., ethnic groups)
- Geneticists would like to find clusters within each group but they would also like to share clusters between the groups

Natural Language Parsing

- Given a corpus of sentences, some of which have been parsed by humans, find a grammar that can be used to parse future sentences

- Much progress over the past decade; state-of-the-art methods are all statistical

Natural Language Parsing (cont.)

- Key idea: lexicalization of context-free grammars
- the grammatical rules ($\mathrm{S} \rightarrow \mathrm{NP} \mathrm{VP}$) are conditioned on the specific lexical items (words) that they derive
- This leads to huge numbers of potential rules, and (adhoc) shrinkage methods are used to control the counts
- Need to control the numbers of clusters (model selection) in a setting in which many tens of thousands of clusters are needed
- Need to consider related groups of clustering problems (one group for each grammatical context)

Nonparametric Hidden Markov Models

- An open problem-how to work with HMMs and state space models that have an unknown and unbounded number of states?
- Each row of a transition matrix is a probability distribution across "next states"
- We need to estimation these transitions in a way that links them across rows

Outline

- Dirichlet Processes (clusters)
- Hierarchical Dirichlet Processes (tied clusters)
- Beta Processes (features)
- Hierarchical Beta Processes (tied features)

Clustering-How to Choose K ?

Clustering—How to Choose K ?

- Adhoc approaches (e.g., hierarchical clustering)
- they do often yield a data-driven choice of K
- but there is little understanding of how good these choices are
- Methods based on objective functions (M-estimators)
- e.g., K-means, spectral clustering
- do come with some frequentist guarantees
- but it's hard to turn these into data-driven choices of K
- Parametric likelihood-based approaches
- finite mixture models, Bayesian variants thereof
- various model choice methods: hypothesis testing, cross-validation, bootstrap, AIC, BIC, DIC, Laplace, bridge sampling, reversible jump, etc
- but do the assumptions underlying the method really apply to this setting? (not often)
- Let's try something different...

Chinese Restaurant Process (CRP)

- A random process in which n customers sit down in a Chinese restaurant with an infinite number of tables
- first customer sits at the first table
- m th subsequent customer sits at a table drawn from the following distribution:

$$
\begin{array}{rlll}
P\left(\text { previously occupied table } i \mid \mathcal{F}_{m-1}\right) & \propto & n_{i} \tag{1}\\
P\left(\text { the next unoccupied table } \mid \mathcal{F}_{m-1}\right) & \propto & \alpha_{0}
\end{array}
$$

where n_{i} is the number of customers currently at table i and where \mathcal{F}_{m-1} denotes the state of the restaurant after $m-1$ customers have been seated

The CRP and Clustering

- Data points are customers; tables are clusters
- the CRP defines a prior distribution on the partitioning of the data and on the number of tables
- This prior can be completed with:
- a likelihood-e.g., associate a parameterized probability distribution with each table
- a prior for the parameters-the first customer to sit at table k chooses the parameter vector for that table $\left(\phi_{k}\right)$ from a prior G_{0}

- So we now have a distribution-or can obtain one-for any quantity that we might care about in the clustering setting

CRP Prior, Gaussian Likelihood, Conjugate Prior

$$
\phi_{k}=\left(\mu_{k}, \Sigma_{k}\right) \sim N(a, b) \otimes I W(\alpha, \beta)
$$

$x_{i} \sim N\left(\phi_{k}\right) \quad$ for a data point i sitting at table k

Inference for the CRP

- We've described how to generate data from the model; how do we go backwards and generate a model from data?
- A wide variety of variational, combinatorial and MCMC algorithms have been developed
- E.g., a Gibbs sampler is readily developed by using the (deep) fact that the Chinese restaurant process is exchangeable
- to sample the table assignment for a given customer given the seating of all other customers, simply treat that customer as the last customer to arrive
- in which case, the assignment is made proportional to the number of customers already at each table (cf. preferential attachment)
- parameters are sampled at each table based on the customers at that table (cf. K means)
- (This isn't the state of the art, but it's easy to explain on one slide)

Exchangeability

- As a prior on the partition of the data, the CRP is exchangeable
- The prior on the parameter vectors associated with the tables is also exchangeable
- The latter probability model is generally called the Pólya urn model. Letting θ_{i} denote the parameter vector associated with the i th data point, we have:

$$
\theta_{i} \mid \theta_{1}, \ldots, \theta_{i-1} \sim \alpha_{0} G_{0}+\sum_{j=1}^{i-1} \delta_{\theta_{j}}
$$

- From these conditionals, a short calculation shows that the joint distribution for $\left(\theta_{1}, \ldots, \theta_{n}\right)$ is invariant to order (this is the exchangeability proof)
- As a prior on the number of tables, the CRP is nonparametric-the number of occupied tables grows (roughly) as $O(\log n)$-we're in the world of nonparametric Bayes

The De Finetti Theorem

- Exchangeability: invariance to permutation of the joint probability distribution of infinite sequences of random variables

Theorem (De Finetti, 1935). If $\left(x_{1}, x_{2}, \ldots\right)$ are infinitely exchangeable, then the joint probability $p\left(x_{1}, x_{2}, \ldots, x_{N}\right)$ has a representation as a mixture:

$$
p\left(x_{1}, x_{2}, \ldots, x_{N}\right)=\int\left(\prod_{i=1}^{N} p\left(x_{i} \mid G\right)\right) d P(G)
$$

for some random element G.

- The exchangeability of the CRP implies that there is an underlying "parameter" G and a distribution on that parameter. What are they?

Directed Graphical Models

- Given a graph $\mathcal{G}=(\mathcal{V}, \mathcal{E})$, where each node $v \in \mathcal{V}$ is associated with a random variable X_{v} :

- The joint distribution on $\left(X_{1}, X_{2}, \ldots, X_{N}\right)$ factorizes according to the "parent-of" relation defined by the edges \mathcal{E} :

$$
\begin{aligned}
& p\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6} ; \theta\right)=p\left(x_{1} ; \theta_{1}\right) p\left(x_{2} \mid x_{1} ; \theta_{2}\right) \\
& \quad p\left(x_{3} \mid x_{1} ; \theta_{3}\right) p\left(x_{4} \mid x_{2} ; \theta_{4}\right) p\left(x_{5} \mid x_{3} ; \theta_{5}\right) p\left(x_{6} \mid x_{2}, x_{5} ; \theta_{6}\right)
\end{aligned}
$$

Plates

- A plate is a "macro" that allows subgraphs to be replicated:

- Shading denotes conditioning

Finite Mixture Models

$$
\begin{aligned}
\phi_{k} & \sim G_{0} \\
\pi_{k} & \sim \operatorname{Dir}\left(\alpha_{0} / K, \ldots, \alpha_{0} / K\right) \\
G & =\sum_{k=1}^{K} \pi_{k} \delta_{\phi_{k}} \\
\theta_{i} & \sim G \\
x_{i} & \sim p\left(\cdot \mid \theta_{i}\right)
\end{aligned}
$$

- Note that G is a random measure

Going Nonparametric-A First Attempt

- Define a countably infinite mixture model by taking K to infinity and hoping that " $G=\sum_{k=1}^{\infty} \pi_{k} \delta_{\phi_{k}}$ " means something, where

$$
\begin{aligned}
\phi_{k} & \sim G_{0} \\
\pi_{k} & \sim \operatorname{Dir}\left(\alpha_{0} / K, \ldots, \alpha_{0} / K\right) \text { as } K \rightarrow \infty
\end{aligned}
$$

- Several mathematical hurdles to overcome:
- What is the distribution of any given π_{k} as $K \rightarrow \infty$? Does it stabilize at some fixed distribution?
- Is $\sum_{k=1}^{\infty} \pi_{k}=1$ under some suitable notion of convergence?
- Do we get a few large mixing proportions, or are they all of similar "size"?
- Do we get any "clustering" at all?
- This seems hard; let's approach the problem from a different point of view

Stick-Breaking

- Define an infinite sequence of Beta random variables:

$$
\beta_{k} \sim \operatorname{Beta}\left(1, \alpha_{0}\right) \quad k=1,2, \ldots
$$

- And then define an infinite sequence of mixing proportions as:

$$
\begin{aligned}
& \pi_{1}=\beta_{1} \\
& \pi_{k}=\beta_{k} \prod_{l=1}^{k-1}\left(1-\beta_{l}\right) \quad k=2,3, \ldots
\end{aligned}
$$

- This can be viewed as breaking off portions of a stick:

Stick-Breaking (cont)

- We now have an explicit formula for each π_{k} :

$$
\pi_{k}=\beta_{k} \prod_{l=1}^{k-1}\left(1-\beta_{l}\right)
$$

- And now $G=\sum_{k=1}^{\infty} \pi_{k} \delta_{\phi_{k}}$ has a clean definition as a random measure
- The distribution of G is known as a Dirichlet process
- it can be shown that for any finite partition $\left(A_{1}, \ldots, A_{r}\right)$ of the sample space, the random vector $\left(G\left(A_{1}\right), \ldots, G\left(A_{r}\right)\right)$ is distributed as a finite-dimensional Dirichlet distribution
- We write this as

$$
G \sim \mathrm{DP}\left(\alpha_{0}, G_{0}\right)
$$

where α_{0} is known as the concentration parameter and G_{0} is known as the base measure

Stick-Breaking (cont)

- An advantage of the stick-breaking perspective is that it permits numerous generalizations
- e.g., using $\operatorname{Beta}\left(\alpha_{1}, \alpha_{2}\right)$ instead of $\operatorname{Beta}\left(1, \alpha_{0}\right)$ yields the heavier-tailed Pitman-Yor process
- Another advantage of the stick-breaking perspective is that it readily yields Bayesian hierarchies
- as we'll see later

Dirichlet Process Mixture Models

$$
\begin{array}{rlrl}
G & \sim \operatorname{DP}\left(\alpha_{0} G_{0}\right) & \\
\theta_{i} \mid G & \sim G & i \in 1, \ldots, n \\
x_{i} \mid \theta_{i} & \sim F\left(x_{i} \mid \theta_{i}\right) & i \in 1, \ldots, n
\end{array}
$$

Marginal Probabilities

- To obtain the marginal probability of the parameters $\theta_{1}, \theta_{2}, \ldots$, we need to integrate out G

Marginal Probabilities (cont)

- Dirichlet expectations:

$$
\mathrm{E}\left[G(A) \mid \theta_{1}, \ldots, \theta_{n}\right]=\frac{\alpha_{0} G_{0}(A)+\sum_{k=1}^{K} n_{k} \delta_{\phi_{k}}(A)}{\alpha_{0}+n}
$$

- This is just the Chinese restaurant process
- I.e., integrating over the random measure G, where $G \sim \operatorname{DP}\left(\alpha_{0} G_{0}\right)$, yields the Chinese restaurant process

Summary Thus Far

- The Chinese restaurant process provides an elegant solution to the problem of "how many clusters?"
- The Chinese restaurant process yields an exchangeable distribution on data points
- De Finetti tells us that there must exist an underlying random measure
- That random measure is the Dirichlet process
- The Dirichlet process can be obtained explicitly via stick-breaking

Inference for Dirichlet Process Mixtures

- MCMC
- based on the Chinese restaurant process or urn model
- based on the stick-breaking representation
- split-merge algorithms
- Variational inference
- based on the stick-breaking representation

Truncated Dirichlet Processes

(e.g., Gelfand \& Kottas; Ishawaran \& James; Muliere \& Tardella)

- Truncate the stick-breaking representation by fixing a value T and letting $\beta_{T}=1$
- This implies $\pi_{k}=0$ for $k>T$, and the distribution of

$$
G_{T}=\sum_{k=1}^{T} \pi_{k} \delta_{\phi_{k}}
$$

is known as a truncated Dirichlet process

- Variational distance between distributions of marginals from a DP and from its truncation $\sim 4 n \exp \left(-(T-1) / \alpha_{0}\right)$
- T doesn't have to be very large to get a good approximation

Variational Inference

- The setup for (mean-field) variational inference:
- Given an intractable density P, consider a tractable family Q_{μ}, for variational parameters μ
- Define an optimization problem:

$$
\mu^{*}=\arg \min D\left(Q_{\mu} \| P\right)
$$

- Use $Q_{\mu^{*}}$ to approximate the desired marginals of P
- Almost all applications of this approach have been for parametric models (i.e., exponential family models)

Variational Inference for DP Mixtures

(Blei \& Jordan, 2005)

- The Q distribution is a truncated stick-breaking representation (note that P is not truncated)
- Variational inference equations for a conjugate DP mixture in the exponential family:

$$
\begin{aligned}
\gamma_{i, t} & =1+\sum_{n} \phi_{n, t} \\
\gamma_{i, t} & =\alpha+\sum_{n} \sum_{j=t+1}^{T} \phi_{n, j} \\
\tau_{t, 1} & =\lambda_{1}+\sum_{n} \phi_{n, t} x_{n} \\
\tau_{t, 2} & =\lambda_{2}+\sum_{n} \phi_{n, t} \\
\phi_{n, t} & \propto \exp (S)
\end{aligned}
$$

where (γ, τ, ϕ) are variational parameters and where:

$$
S=E\left[\log V_{t}\right]+\sum_{i=1}^{t-1} E\left[\log \left(1-V_{i}\right)\right]+E\left[\eta_{t}^{*}\right]^{T} X_{n}-E\left[a\left(\eta_{t}^{*}\right)\right]
$$

Example: DP-Gaussian Mixture

Initial state

1st iteration

5th (and last) iteration

Figure 1: The approximate predictive distribution given by variational inference at different stages of the algorithm. The data are 100 points generated by a Gaussian DP mixture model with fixed diagonal covariance.

Example: DP-Gaussian Mixture

Figure 2: (Left) Convergence time per dimension across ten datasets for variational inference (VDP), the TDP Gibbs sampler (TDP), and the collapsed Gibbs sampler (CDP). Grey bars are standard error. (Right) Average held-out log likelihood for the corresponding predictive distributions.

DP-Based Haplotype Model

(Xing, Sharan, \& Jordan, 2004)

- Recall the setup: for each individual we have a genotype (underordered set of genetic markers), and we want to recover the underlying chromosomes
- In the Chinese restaurant representation, each table is associated with the chromosome of a putative ancestral human
- Intuitively, we want individuals to sit at the table of their ancestor
- Comparative performance of model on the data of Gabriel, et al (2002):

region	length	DP	PHASE
16 a	13	0.141	0.130
1b	16	0.160	0.180
25 a	14	0.115	0.212
7 b	13	0.066	0.092

Multiple Estimation Problems

- We often face multiple, related estimation problems
- E.g., multiple Gaussian means: $x_{i j} \sim N\left(\theta_{i}, \sigma_{i}^{2}\right)$

- Maximum likelihood: $\hat{\theta}_{i}=\frac{1}{n_{i}} \sum_{j=1}^{n_{i}} x_{i j}$
- Maximum likelihood often doesn't work very well
- want to "share statistical strength" (i.e., "smooth")

Hierarchical Bayesian Approach

- The Bayesian or empirical Bayesian solution is to view the parameters θ_{i} as random variables, sampled from an underlying variable θ

- Given this overall model, posterior inference yields shrinkage—the posterior mean for each θ_{k} combines data from all of the groups

Hierarchical Modeling

- Recall the plate notation:

- Equivalent to:

Multiple Clustering Problems

- What about the case in which we have multiple related clustering problems?
- what to share? how to share?
- Mixture models: $p\left(x_{i j} \mid \pi_{i}, \theta_{i}\right)=\sum_{l=1}^{K_{i}} p\left(Z_{i j}^{l}=1 \mid \pi_{i}\right) p\left(x_{i j} \mid Z_{i j}^{l}=1, \theta_{i}\right)$

- What to share: π_{i} ?, θ_{i} ? What if we don't know the K_{i} ?
- Model selection ideas seem unhelpful; let's consider a nonparametric Bayesian approach

A Nonparametric Approach-A First Try

- Idea: Dirichlet processes for each group, linked by an underlying G_{0} :

- Problem: the atoms generated by the random measures G_{i} will be distinct
- i.e., the atoms in one group will be distinct from the atoms in the other groups-no sharing of clusters!
- Sometimes ideas that are fine in the parametric context fail (completely) in the nonparametric context... :-(

Hierarchical Dirichlet Processes

(Teh, Jordan, Beal \& Blei, 2006)

- We need to have the base measure G_{0} be discrete
- but also need it to be flexible and random

Hierarchical Dirichlet Processes

(Teh, Jordan, Beal \& Blei, 2006)

- We need to have the base measure G_{0} be discrete
- but also need it to be flexible and random
- The fix: Let G_{0} itself be distributed according to a DP:

$$
G_{0} \mid \gamma, H \sim \operatorname{DP}(\gamma H)
$$

- Then

$$
G_{j} \mid \alpha, G_{0} \sim \operatorname{DP}\left(\alpha_{0} G_{0}\right)
$$

has as its base measure a (random) atomic distribution-samples of G_{j} will resample from these atoms

- I.e., just go to another level of the Bayesian hierarchy

Hierarchical Dirichlet Process Mixtures

$$
\begin{aligned}
G_{0} \mid \gamma, H & \sim \operatorname{DP}(\gamma H) \\
G_{i} \mid \alpha, G_{0} & \sim \operatorname{DP}\left(\alpha_{0} G_{0}\right) \\
\theta_{i j} \mid G_{i} & \sim G_{i} \\
x_{i j} \mid \theta_{i j} & \sim F\left(x_{i j}, \theta_{i j}\right)
\end{aligned}
$$

Chinese Restaurant Franchise (CRF)

- First integrate out the G_{i}, then integrate out G_{0}

Chinese Restaurant Franchise (CRF)

- To each group there corresponds a restaurant, with an unbounded number of tables in each restaurant
- There is a global menu with an unbounded number of dishes on the menu
- The first customer at a table selects a dish for that table from the global menu
- Reinforcement effects-customers prefer to sit at tables with many other customers, and prefer to choose dishes that are chosen by many other customers

Haplotype Modeling (cont.)

(Xing, Zhu, Jordan \& Teh, 2006)

- HapMap data: two populations of CEPH (Utah residents with ancestry from northern and western Europe, CEU) and Yoruba in Ibadan, Nigeria (YRI)
- these data contain 30 trios of genotypes and thus allow us to infer most of the true haplotypes

—HDP ——DP --*PHASE $\quad *-H A P L O T Y P E R$

Protein Folding (cont.)

- We have a linked set of Ramachandran diagrams, one for each amino acid neighborhood

Protein Folding (cont.)

Marginal improvement over finite mixture

Nonparametric Hidden Markov models (cont.)

- An open problem-how to work with HMMs that have an unknown and unbounded number of states?
- A straightforward application of the HDP framework
- multiple mixture models-one for each value of the "current state"
- the DP creates new states, and the HDP approach links the transition distributions
- Essentially the same idea can be used with hidden Markov trees

Alice in Wonderland

- Perplexity of test sentences taken from Lewis Carroll's Alice in Wonderland

Parsing (cont.)

(Liang, Petrov, Jordan \& Klein, 2007)

- Based on a training corpus, we build a lexicalized grammar in which the rules are based on word clusters
- Each grammatical context defines a clustering problem, and we link the clustering problems via the HDP

T	PCFG	HDP-PCFG		
	F_{1}	Size	F_{1}	Size
1	60.4	2558	60.5	2557
4	76.0	3141	77.2	9710
8	74.3	4262	79.1	50629
16	66.9	19616	78.2	151377
20	64.4	27593	77.8	202767

CRP-Based Hierarchical Topic Models

(Blei, et al., 2004)

- Each node in the tree is a Chinese restaurant
- Each table in every restaurant has an associated distribution on words (a "topic") drawn from a prior
- Sitting at a table in a given restaurant also selects an outgoing branch, which provides access to further restaurants and further topics
- we obtain a measure on trees of unbounded depth and unbounded branching factors

Topic Hierarchy from Psychology Today

Topic Hierarchy from JACM

Beta Processes

- The Dirichlet process yields a multinomial random variable (which table is the customer sitting at?)
- Problem: in many problem domains we have a very large (combinatorial) number of possible tables
- it becomes difficult to control this with the Dirichlet process
- What if instead we want to characterize objects as collections of attributes ("sparse features")?
- Indeed, instead of working with the sample paths of the Dirichlet process, which sum to one, let's instead consider a stochastic process-the beta process-which removes this constraint
- And then we will go on to consider hierarchical beta processes, which will allow features to be shared among multiple related objects

Lévy Processes

- Stochastic processes with independent increments
- e.g., Gaussian increments (Brownian motion)
- e.g., gamma increments (gamma processes)
- in general, (limits of) compound Poisson processes
- The Dirichlet process is not a Lévy process
- but it's a normalized gamma process
- The beta process assigns beta measure to small regions
- Can then sample to yield (sparse) collections of Bernoulli variables

Beta Processes

Examples of Beta Process Sample Paths

- Effect of the two parameters c and γ on samples from a beta process.

Beta Processes

- The marginals of the Dirichlet process are characterized by the Chinese restaurant process
- What about the beta process?

Indian Buffet Process (IBP)

(Griffiths \& Ghahramani, 2005; Thibaux \& Jordan, 2007)

- Indian restaurant with infinitely many dishes in a buffet line
- N customers serve themselves
- the first customer samples Poisson (α) dishes
- the i th customer samples a previously sampled dish with probability $\frac{m_{k}}{i+1}$ then samples Poisson $\left(\frac{\alpha}{i}\right)$ new dishes

Indian Buffet Process (IBP)

(Griffiths \& Ghahramani, 2005; Thibaux \& Jordan, 2007)

- Indian restaurant with infinitely many infinite dishes
- N customers serve themselves
- the first customer samples Poisson (α) dishes
- the i th customer samples a previously sampled dish with probability $\frac{m_{k}}{i+1}$ then samples Poisson $\left(\frac{\alpha}{i}\right)$ new dishes

Indian Buffet Process (IBP)

(Griffiths \& Ghahramani, 2005; Thibaux \& Jordan, 2007)

- Indian restaurant with infinitely many infinite dishes
- N customers serve themselves
- the first customer samples Poisson (α) dishes
- the i th customer samples a previously sampled dish with probability $\frac{m_{k}}{i+1}$ then samples Poisson $\left(\frac{\alpha}{i}\right)$ new dishes

Indian Buffet Process (IBP)

(Griffiths \& Ghahramani, 2005; Thibaux \& Jordan, 2007)

- Indian restaurant with infinitely many infinite dishes
- N customers serve themselves
- the first customer samples Poisson (α) dishes
- the i th customer samples a previously sampled dish with probability $\frac{m_{k}}{i+1}$ then samples Poisson $\left(\frac{\alpha}{i}\right)$ new dishes

Hierarchical Beta Process

- A hierarchical beta process is a beta process whose base measure is itself random and drawn from a beta process.

Applications

- Parsing
- describe nouns with features such as +animate, +transitive, +plural
- Text categorization
- describe a document by the words appearing in the document
- shrink between documents

Conclusions

- The underlying principle in this talk: exchangeability
- Leads to nonparametric Bayesian models that can be fit with computationally efficient algorithms
- Leads to architectural and algorithmic building blocks that can be adapted to many problems
- For more details (including tutorial slides):
http://www.cs.berkeley.edu/~jordan

