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Objective Bayes and Nonparametric Bayes

The agenda for objective Bayes: let the data speak
The agenda for nonparametric Bayes: let the data speak

Hmm, surely there must be relationships, but thus far the research efforts
seem mainly detached

| certainly feel that I'm being more “objective” when | work with a
nonparametric prior than when | work with less flexible models

In my view, a deeper understanding depends in part on understanding how
these ideas interact with hierarchical modeling



Hierarchical Bayes

e The naturalness of hierarchies in the Bayesian formalism is the main reason
I'm a Bayesian

— provide both complexity and control

e Seemingly of particular relevance to nonparametric Bayesian work, where
the emphasis is complexity and the need for control is great

e Of great help in the development of subjective priors; what can objective
Bayes say about hierarchical priors?



Hierarchical Nonparametric Bayes

e Many nonparametric (or semiparametric) Bayesian models make use of
classical parametric hierarchies

— e.g., when using the Dirichlet process DP(ag, Gg), it's common to let G
lie in a parametric family, say Gog = N (g, 70)
e But in the spirit of nonparametric methods let's try to make fuller use of

stochastic processes

— e.g., in the Dirichlet process let GGy be a random measure

e Why? Because this construction allows us to solve a raft of practical
problems that involve multiple, coupled clustering problems



Protein Folding

e A protein is a folded chain of amino acids

e The backbone of the chain has two degrees of freedom per amino acid (phi
and psi angles)

e Empirical plots of phi and psi angles are called Ramachandran diagrams

raw ALA data

150

psl
-50 0 50

-150




Protein Folding (cont.)

e \We want to model the clustering in the Ramachandran diagram to provide
an energy term for protein folding algorithms

e We actually have a linked set of Ramachandran diagrams, one for each
amino acid neighborhood

e We thus have a linked set of clustering problems



Document and Image Modeling

Define a topic to be a probability distribution across words in some
vocabulary

Define a document to be a probability distribution across topics

Given a corpus of documents, find the topics and find the patterns of usage
of topics across documents

Each document is a clustering problem; we must link multiple clusterings
across a corpus

Note that a “"document” can be an image, where a “word"” is a local image
feature
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Haplotype Modeling

Consider M binary markers in a genomic region

There are 2™ possible haplotypes—i.e., states of a single chromosome

— but in fact, far fewer are seen in human populations

A genotype is a set of unordered pairs of markers (from one individual)

A B C
{A, a}
{C, c}

Given a set of genotypes (multiple individuals), estimate the underlying
haplotypes

This is a clustering problem
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Haplotype Modeling (cont.)

e A key problem is inference for the number of clusters

e Consider now the case of multiple groups of genotype data (e.g., ethnic
groups)

e Geneticists would like to find clusters within each group but they would also
like to share clusters between the groups
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Natural Language Parsing

e Given a corpus of sentences, some of which have been parsed by humans,
find a grammar that can be used to parse future sentences

S
NP VP
PP

o vado a Roma

e Much progress over the past decade; state-of-the-art methods are all
statistical
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Natural Language Parsing (cont.)

Key idea: lexicalization of context-free grammars

— the grammatical rules (S — NP VP) are conditioned on the specific
lexical items (words) that they derive

This leads to huge numbers of potential rules, and (adhoc) shrinkage
methods are used to control the counts

Need to control the numbers of clusters (model selection) in a setting in
which many tens of thousands of clusters are needed

Need to consider related groups of clustering problems (one group for each
grammatical context)
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Nonparametric Hidden Markov Models

Zl 22 ZT
Xy X2 X7
e An open problem—how to work with HMMs and state space models that

have an unknown and unbounded number of states?

e Each row of a transition matrix is a probability distribution across “next
states”

e \We need to estimation these transitions in a way that links them across rows
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Outline

Dirichlet Processes (clusters)
Hierarchical Dirichlet Processes (tied clusters)
Beta Processes (features)

Hierarchical Beta Processes (tied features)
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Clustering—How to Choose K7
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Clustering—How to Choose K7?

Adhoc approaches (e.g., hierarchical clustering)

— they do often yield a data-driven choice of K
— but there is little understanding of how good these choices are

Methods based on objective functions (M-estimators)

— e.g., K-means, spectral clustering

— do come with some frequentist guarantees
— but it's hard to turn these into data-driven choices of K

Parametric likelihood-based approaches

— finite mixture models, Bayesian variants thereof

— various model choice methods:

hypothesis testing, cross-validation,

bootstrap, AIC, BIC, DIC, Laplace, bridge sampling, reversible jump,

etc

— but do the assumptions underlying the method really apply to this setting?

(not often)
Let's try something different...
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Chinese Restaurant Process (CRP)

e A random process in which n customers sit down in a Chinese restaurant
with an infinite number of tables

— first customer sits at the first table
— mth subsequent customer sits at a table drawn from the following
distribution:

P(previously occupied table i | Fp,—1) o< ny (1)
P(the next unoccupied table | F,,_1) o« «q

where n; is the number of customers currently at table ¢ and where F,,, 1
denotes the state of the restaurant after m — 1 customers have been
seated

QO ODC
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The CRP and Clustering

e Data points are customers; tables are clusters

— the CRP defines a prior distribution on the partitioning of the data and
on the number of tables

e This prior can be completed with:

— a likelihood—e.g., associate a parameterized probability distribution with

each table
— a prior for the parameters—the first customer to sit at table k chooses

the parameter vector for that table (¢;) from a prior G

| | - | .
|
|
| - " u
e So we now have a distribution—or can obtain one—for any quantity that
we might care about in the clustering setting

21



CRP Prior, Gaussian Likelihood, Conjugate Prior

.:. o ;,C;
o = (b Zk) ~ N(a,b) @ IW (e, B)

x; ~ N(¢k) for a data point ¢ sitting at table k
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Inference for the CRP

e We've described how to generate data from the model; how do we go
backwards and generate a model from data?

e A wide variety of variational, combinatorial and MCMC algorithms have
been developed

e E.g., a Gibbs sampler is readily developed by using the (deep) fact that the
Chinese restaurant process is exchangeable

— to sample the table assignment for a given customer given the seating of
all other customers, simply treat that customer as the last customer to
arrive

— in which case, the assignment is made proportional to the number of
customers already at each table (cf. preferential attachment)

— parameters are sampled at each table based on the customers at that
table (cf. K means)

e (This isn’t the state of the art, but it's easy to explain on one slide)
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Exchangeability
As a prior on the partition of the data, the CRP is exchangeable

The prior on the parameter vectors associated with the tables is also
exchangeable

The latter probability model is generally called the Pélya urn model. Letting
6; denote the parameter vector associated with the ith data point, we have:

1—1

0;01,...,0i—1 ~ @0G0+Z59]~

g=1

From these conditionals, a short calculation shows that the joint distribution
for (61, ...,6,) is invariant to order (this is the exchangeability proof)

As a prior on the number of tables, the CRP is nonparametric—the number
of occupied tables grows (roughly) as O(logn)—we're in the world of
nonparametric Bayes
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The De Finetti Theorem

Exchangeability:  invariance to permutation of the joint probability
distribution of infinite sequences of random variables

Theorem (De Finetti, 1935). If (x1,x2,...) are infinitely exchangeable,
then the joint probability p(x1, x2, ..., xN) has a representation as a mixture:

N
p(x1,T9,...,TN) = / (Hp(ach)> dP(QG)

for some random element (.

The exchangeability of the CRP implies that there is an underlying
“parameter” (G and a distribution on that parameter. What are they?
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Directed Graphical Models

e Given a graph G = (V,€), where each node v € V is associated with a
random variable X, :

e The joint distribution on (X1, Xs,..., X ) factorizes according to the
“parent-of” relation defined by the edges &:

p(z1, T2, T3, T4, Ts, Te; 0) = p(x1;01) p(a2|21;02)

p(xs|x1;03) p(xa|x2;04) p(as|x3;05) p(as | x2, T5;66)
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Plates

e A plate is a "macro” that allows subgraphs to be replicated:

0 X

O—T@

e Shading denotes conditioning
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Dk

Tk

Finite Mixture Models

Go

Dir(ag/K, ..., a0/ K)
K

Zﬂ'k 5¢k

k=1

G
p(‘ | 9z‘)

e Note that (G is a random measure

0

|

Y
f

G
0
Xi
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Going Nonparametric—A First Attempt

e Define a countably infinite mixture model by taking K to infinity and hoping
that "G = Zzozl Tk 5¢k” means something, where

o~ Go
T ~ Dir(ag/K,...,a¢/K) as K — oo

e Several mathematical hurdles to overcome:

— What is the distribution of any given 7, as K — o0o? Does it stabilize at
some fixed distribution?

— Is Y7 | mr = 1 under some suitable notion of convergence?

— Do we get a few large mixing proportions, or are they all of similar “size”?

— Do we get any “clustering” at all?

e This seems hard; let's approach the problem from a different point of view
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Stick-Breaking

e Define an infinite sequence of Beta random variables:

B ~ Beta(1, ag) k=1,2,...

e And then define an infinite sequence of mixing proportions as:

7T1:51

Tk

k—1

5sz(1—5z) k=23,..
=1

e This can be viewed as breaking off portions of a stick:

By Bo (1-B9)
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Stick-Breaking (cont)

We now have an explicit formula for each m:

And now G = Y~ midys, has a clean definition as a random measure

The distribution of G is known as a Dirichlet process

k—1
Tk = Bk H(1 - B3)
=1

— it can be shown that for any finite partition (Ai,...,A,) of the
sample space, the random vector (G(A1),...,G(A,)) is distributed as a
finite-dimensional Dirichlet distribution

We write this as

G ~ DP(O&(), Go),

where o is known as the concentration parameter and G is known as the

base measure
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Stick-Breaking (cont)

e An advantage of the stick-breaking perspective is that it permits numerous
generalizations

— e.g., using Beta(aq,as) instead of Beta(1l, aq) yields the heavier-tailed
Pitman-Yor process
e Another advantage of the stick-breaking perspective is that it readily yields

Bayesian hierarchies

— as we'll see later
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Dirichlet Process Mixture Models

o S N\l

Ay G ..-‘I |‘ ‘|‘|...

SRV

G ~ DP(OéoGo)
9@|G ~ G iGl,...,n
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Marginal Probabilities

e To obtain the marginal probability of the parameters 64,65, ..., we need to
integrate out G

Yo G ‘I|“|‘|

Go
\
'
— o _’f 0,
0,
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Marginal Probabilities (cont)

e Dirichlet expectations:

OéOGo(A) + Zle nk5¢k (A)
g+ 1N

E[G(A)|04,...,0,] =
e This is just the Chinese restaurant process

e l.e., integrating over the random measure GG, where G ~ DP(ayGy), yields
the Chinese restaurant process
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Summary Thus Far

The Chinese restaurant process provides an elegant solution to the problem
of “how many clusters?”

The Chinese restaurant process yields an exchangeable distribution on data
points

De Finetti tells us that there must exist an underlying random measure
That random measure is the Dirichlet process

The Dirichlet process can be obtained explicitly via stick-breaking
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Inference for Dirichlet Process Mixtures

e MCMC

— based on the Chinese restaurant process or urn model
— based on the stick-breaking representation
— split-merge algorithms

e Variational inference

— based on the stick-breaking representation
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Truncated Dirichlet Processes
(e.g., Gelfand & Kottas; Ishawaran & James; Muliere & Tardella)

e Truncate the stick-breaking representation by fixing a value T' and letting
br=1

e This implies m, = 0 for k£ > T, and the distribution of

T
GT — Z 7Tk5¢k
k=1

is known as a truncated Dirichlet process

e Variational distance between distributions of marginals from a DP and from
its truncation ~ 4dnexp(—(T — 1)/ayp)

— T doesn’t have to be very large to get a good approximation
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Variational Inference

The setup for (mean-field) variational inference:

Given an intractable density P, consider a tractable family @, for variational

parameters (i

Define an optimization problem:

u* = arg min D(Q, || P)

Use (), to approximate the desired marginals of PP

Almost all applications of this approach have been for parametric models

(i.e., exponential family models)
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Variational Inference for DP Mixtures
(Blei & Jordan, 2005)

e The (@ distribution is a truncated stick-breaking representation (note that
P is not truncated)

e Variational inference equations for a conjugate DP mixture in the exponential
family:

Yit = 14+ bns

T
fY’I:,t = ot Z’n, Z]:t—f—l ¢TL,]
Tl = A+, OnitTn

T2 = Ao+, Ony
Gnt o exp(9),

where (v, T, ¢) are variational parameters and where:

S = Ellog Vi] + i1 Ellog(1 — V;)] + E[n;]" X, — Ela(n;)]
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Example: DP-Gaussian Mixture

S // e = |G =
Initial state 1st iteration 5th (and last) iteration

Figure 1: The approximate predictive distribution given by variational inference
at different stages of the algorithm. The data are 100 points generated by a
Gaussian DP mixture model with fixed diagonal covariance.
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Example: DP-Gaussian Mixture
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Figure 2: (Left) Convergence time per dimension across ten datasets for

variational inference (VDP), the TDP Gibbs sampler (TDP), and the collapsed
Gibbs sampler (CDP). Grey bars are standard error. (Right) Average held-out
log likelihood for the corresponding predictive distributions.
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DP-Based Haplotype Model

(Xing, Sharan, & Jordan, 2004)

Recall the setup: for each individual we have a genotype (underordered set

of genetic markers), and we want to recover the underlying chromosomes

In the Chinese restaurant representation, each table is associated with the

chromosome of a putative ancestral human
Intuitively, we want individuals to sit at the table of their ancestor

Comparative performance of model on the data of Gabriel, et al (2002):

region | length DP PHASE
16a 13 0.141 0.130
1b 16 0.160 0.180
2ba 14 0.115 0.212
7b 13 0.066 0.092
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Multiple Estimation Problems

e We often face multiple, related estimation problems

e E.g., multiple Gaussian means: x;; ~ N(6;,07)

o T
¢

X]_j X2j anj

L] - - 2 n'
e Maximum likelihood: 6; = %ij—l Lij
-2 =

e Maximum likelihood often doesn’t work very well

— want to “share statistical strength” (i.e., “smooth”)
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Hierarchical Bayesian Approach

e The Bayesian or empirical Bayesian solution is to view the parameters 6, as
random variables, sampled from an underlying variable 6

o, o6 - &

2] Xmi

e Given this overall model, posterior inference yields shrinkage—the posterior
mean for each 6, combines data from all of the groups
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Hierarchical Modeling

e Recall the plate notation:

e Equivalent to:

‘+

X
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Multiple Clustering Problems

e \What about the case in which we have multiple related clustering problems?

— what to share? how to share?

e Mixture models: p(x;;|m;,0;) = ngl p(Z; = 1|m) p(xiy | Z}; = 1,6;)

e What to share: m;?, 6,7 What if we don’t know the K;?

e Model selection ideas seem unhelpful; let's consider a nonparametric
Bayesian approach
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A Nonparametric Approach—A First Try

e |dea: Dirichlet processes for each group, linked by an underlying Gy:

G,
|

:

0.
X

ij

ij

e Problem: the atoms generated by the random measures G; will be distinct

— i.e., the atoms in one group will be distinct from the atoms in the other
groups—no sharing of clusters!

e Sometimes ideas that are fine in the parametric context fail (completely) in
the nonparametric context... :-(
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Hierarchical Dirichlet Processes
(Teh, Jordan, Beal & Blei, 2006)

e We need to have the base measure GGy be discrete

— but also need it to be flexible and random
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Hierarchical Dirichlet Processes
(Teh, Jordan, Beal & Blei, 2006)

We need to have the base measure GGy be discrete

— but also need it to be flexible and random
The fix: Let G itself be distributed according to a DP:

Then
Gj ‘ a, GO ~ DP(CYOGO)

has as its base measure a (random) atomic distribution—samples of G; will

resample from these atoms

|.e., just go to another level of the Bayesian hierarchy
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Hierarchical Dirichlet Process Mixtures

N

V%JQG(’ P
GOA¢G “ﬂl“u |||H|HI HHHH.

Golv,H ~ DP(vH)
Gi | «, Go ~ DP(CmGO)
zij | 0~ F(xij, 04)
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Chinese Restaurant Franchise (CRF)

e First integrate out the (G;, then integrate out G

I

52



Chinese Restaurant Franchise (CRF)
eef eef eu Q cos
ars) arw) o) o) oo
) 16 () (e

To each group there corresponds a restaurant, with an unbounded number
of tables in each restaurant

There is a global menu with an unbounded number of dishes on the menu

The first customer at a table selects a dish for that table from the global
menu

Reinforcement effects—customers prefer to sit at tables with many other
customers, and prefer to choose dishes that are chosen by many other
customers
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Haplotype Modeling (cont.)
(Xing, Zhu, Jordan & Teh, 2006)

e HapMap data: two populations of CEPH (Utah residents with ancestry from
northern and western Europe, CEU) and Yoruba in Ibadan, Nigeria (YRI)

— these data contain 30 trios of genotypes and thus allow us to infer most
of the true haplotypes
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Protein Folding (cont.)

e \We have a linked set of Ramachandran diagrams, one for each amino acid
neighborhood
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log prob
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Protein Folding (cont.)

Marginal improvement over finite mixture
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Nonparametric Hidden Markov models (cont.)

Z, Z, Z;
X1 X2 X1
e An open problem—how to work with HMMs that have an unknown and

unbounded number of states?

e A straightforward application of the HDP framework

— multiple mixture models—one for each value of the “current state”
— the DP creates new states, and the HDP approach links the transition
distributions

e Essentially the same idea can be used with hidden Markov trees
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Alice in Wonderland

45
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e Perplexity of test sentences taken from Lewis Carroll's Alice in Wonderland
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Parsing (cont.)
(Liang, Petrov, Jordan & Klein, 2007)

e Based on a training corpus, we build a lexicalized grammar in which the
rules are based on word clusters

e Each grammatical context defines a clustering problem, and we link the
clustering problems via the HDP

T PCFG HDP-PCFG

Fy Size Fy Size
1 60.4 2558 60.5 2557
4 76.0 3141 77.2 9710
8 74.3 4262 79.1 50629
16 669 19616 78.2 151377
20 64.4 27593 77.8 202767
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CRP-Based Hierarchical Topic Models
(Blei, et al., 2004)

e Each node in the tree is a Chinese restaurant

e Each table in every restaurant has an associated distribution on words (a
“topic”) drawn from a prior

e Sitting at a table in a given restaurant also selects an outgoing branch,
which provides access to further restaurants and further topics

— we obtain a measure on trees of unbounded depth and unbounded
branching factors
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Topic Hierarchy from Psychology Today
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Topic Hierarchy from JACM
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Beta Processes

The Dirichlet process yields a multinomial random variable (which table is
the customer sitting at?)

Problem: in many problem domains we have a very large (combinatorial)
number of possible tables
— it becomes difficult to control this with the Dirichlet process

What if instead we want to characterize objects as collections of attributes
(“sparse features”)?

Indeed, instead of working with the sample paths of the Dirichlet process,
which sum to one, let's instead consider a stochastic process—the beta

process—which removes this constraint

And then we will go on to consider hierarchical beta processes, which will
allow features to be shared among multiple related objects
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Lévy Processes

Stochastic processes with independent increments

— e.g., Gaussian increments (Brownian motion)
— e.g., gamma increments (gamma processes)
— in general, (limits of ) compound Poisson processes

The Dirichlet process is not a Lévy process

— but it's a normalized gamma process
The beta process assigns beta measure to small regions

Can then sample to yield (sparse) collections of Bernoulli variables
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Beta Processes
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Examples of Beta Process Sample Paths
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e Effect of the two parameters ¢ and v on samples from a beta process.



Beta Processes

e The marginals of the Dirichlet process are characterized by the Chinese
restaurant process

e \What about the beta process?
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Indian Buffet Process (IBP)
(Griffiths & Ghahramani, 2005; Thibaux & Jordan, 2007)

e Indian restaurant with infinitely many dishes in a buffet line

e /N customers serve themselves

— the first customer samples Poisson () dishes
the ith customer samples a previously sampled dish with probability T

then samples Poisson(%) new dishes
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Indian Buffet Process (IBP)
(Griffiths & Ghahramani, 2005; Thibaux & Jordan, 2007)

e Indian restaurant with infinitely many infinite dishes

e /N customers serve themselves

— the first customer samples Poisson(«) dishes
the ith customer samples a previously sampled dish with probability T

then samples Poisson(%) new dishes
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Indian Buffet Process (IBP)
(Griffiths & Ghahramani, 2005; Thibaux & Jordan, 2007)

e Indian restaurant with infinitely many infinite dishes

e /N customers serve themselves

— the first customer samples Poisson(«) dishes

— the 7th customer samples a previously sampled dish with probability ﬁ—’i

then samples Poisson(%) new dishes
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Indian Buffet Process (IBP)
(Griffiths & Ghahramani, 2005; Thibaux & Jordan, 2007)

e Indian restaurant with infinitely many infinite dishes

e /N customers serve themselves

— the first customer samples Poisson(«) dishes
— the ith customer samples a previously sampled dish with probability =%
then samples Poisson(%) new dishes
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Hierarchical Beta Process

B ~ BP(cp, Bg)
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e A hierarchical beta process is a beta process whose base measure is itself
random and drawn from a beta process.
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Applications

e Parsing

— describe nouns with features such as +animate, +transitive, +plural

e Text categorization

— describe a document by the words appearing in the document
— shrink between documents
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Conclusions

The underlying principle in this talk: exchangeability

Leads to nonparametric Bayesian models that can be fit with computationally
efficient algorithms

Leads to architectural and algorithmic building blocks that can be adapted
to many problems

For more details (including tutorial slides):

http://www.cs.berkeley.edu/~jordan
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