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Dirichlet Process

For G ∼ DP (c, F0)

G(·) =

∞
∑

h=1

phδθh
(·)

θh
iid
∼ F0

wh
iid
∼ Beta(1, c) ph = wh

h−1
∏

i=1

(1 − wi)

∑

h ph = 1 with probability one

G is discrete with probability one
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Dirichlet Process Mixture

We say X is drawn from a DPM if:

X | θ ∼ Gθ

θ | P ∼ P

P | F0, c ∼ DP (c, F0)

or

X|P ∼

∫

Gθ(·)P (dθ) =
∞

∑

h=1

phGθh
(·)

θh
iid
∼ F0

– p. 3



Polya Trees

Split sample space Ω into two disjoint sets B0 and B1;
further split B0 into B00 etc:

B0 B1

B00 B01 B10 B11

Y0 = P (X ∈ B0), Y1 = P (X ∈ B1),

Y00 = P (X ∈ B00|X ∈ B0),

Y01 = P (X ∈ B01|X ∈ B0),

Y10 = P (X ∈ B10|X ∈ B1),

Y11 = P (X ∈ B11|X ∈ B1).

Then P (X ∈ Bij) = YiYij
– p. 4



Let ǫ = ǫ1 · · · ǫm be an arbitrary binary number of
dimension m

Split Bǫ → {Bǫ0, Bǫ1} ∀ǫ.

Then
Yǫ0 = P (X ∈ Bǫ0|X ∈ Bǫ)

Yǫ1 = P (X ∈ Bǫ1|X ∈ Bǫ)

}

⇒

P (X ∈ Bǫ1···ǫm) =
m
∏

j=1

Yǫ1···ǫj
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PT

Random PM for G:

(Yǫ0, Yǫ1) ∼ Beta(αǫ0, αǫ1)

Center on F0 by selecting the partition sets to be
appropriate quantiles of F0

Let αǫ = cm2 at level m,∀m (results in abs cont G w/
prob 1)

We say G|F0, c ∼ PT (c, F0), E(G(·)) = F0(·)

Finite Polya Tree is truncated at say level M

Large c results in a parametric analysis, and small c
results in a more non-parametric analysis
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Mixture of Finite PTs

Center on parametric family {Fθ, θ ∈ Θ}

Prior on θ, p(θ)

We say G|Fθ, c ∼ PT (c, Fθ), E(G(·)) = Fθ(·), or

G ∼

∫

PT (c, Fθ)p(dθ)

Truncated at level M results in an MFPT

Large c results in analysis based on the parametric
family
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Bayesian Nonparametric and
Semiparametric Inference for Disease Risk,

ROC Curves, and Prevalence
Adam Branscum

Wes Johnson
Tim Hanson
Ian Gardner

Statistics in Medicine, 2008
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Common Epidemiologic Problems

Quantify the discriminatory ability of diagnostic
screening test when applied to diseased and
non-diseased individuals

Obtain predictive probability of disease (PPD) for given
test outcomes

Estimate the prevalence of disease in a population

– p. 9



Setting

Random sample of n individuals from a population with
disease prevalence π

Apply a continuous diagnostic test to each sampled
individual

‘Serology scores’ measure concentration of serum
antibodies specific to an antigen or agent

Large values associated with diseased individuals

Let Y denote the transformed serology score Y = h(S)
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Setting

Let D+ and D− denote disease positive and negative

Distribution of serology scores

Y |D− ∼ G0, Y |D+ ∼ G1

True disease status is unknown

Referred to as no gold-standard data
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Standard Approach

Dichotomize the serology scores using a cutoff value k

40 50 60 k 70 80 90 100 110

G0

G1
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Standard Approach

If Yi ≥ k then classified as T+, else, T−

Se = Pr(T+|D+) = Pr(Y > k|D+) = 1 −G1(k)

Sp = Pr(T−|D−) = Pr(Y < k|D−) = G0(k)

– p. 13



Receiver Operating Characteristic Curves

Obtain sensitivity and specificity across all possible
cutoff values

The ROC curve plots ([1 − Sp(k)], Se(k)) for all cutoff
values k used to dichotomize the data

Then select k that gives some form of “optimal"
tradeoff between having high sensitivity and low false
positive rate

– p. 14



ROC Curve
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Modeling Serology Scores

Let Zi denote the latent binary indicator of disease
status where Zi = 1 if subject i is diseased

The general model is

Yi | G0 ∼ G0, Zi = 0

Yi | G1 ∼ G1, Zi = 1

Zi | π ∼ Bern(π)

How to specify flexible models for G0 and G1 when we
don’t know who is diseased and who is not?
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Modeling Issues

Serology scores for diseased individuals are generally
coming from a mixture distribution based on staging

30 60 90 120 150 180

Stage 1 
 and 2 Stage 3 

 and 4

G0

G1
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Nonparametric Model

Use mixtures of Finite Polya Trees for Gs (Hanson and
Johnson, 2002; Hanson, 2006)

Centered on a parametric family like log normal, so we
generalize the bi-normal

Model lacks identifiability

Solution
Incorporate subjective prior information
Incorporate covariates related to disease status
The latter may play role of “surrogate" gold
standard

– p. 18



Semi-parametric Extension

Yi | G0 ∼ G0, Zi = 0

Yi | G1 ∼ G1, Zi = 1

Nonparametric Semiparametric
π → πi

Zi|π
iid
∼ Bern(π) → Zi|πi

⊥
∼ Bern(πi)

πi = F (xiβ)

– p. 19



Extension

F (w) = ew

1+ew yields logistic regression

Get ROC curves

Get covariate-specific predictive inferences for the
probability of disease for a subject with serology score
y and covariate x:

Pr(Z = 1| y, x,data)

– p. 20



Illustration with NGS

Situation where distributions G0 and G1 have large
overlap

W/O additional information pertaining to true disease
status, a gold-standard analysis is required.

Suppose a binary covariate, x, that is associated with
disease status is available.

Believed that

π1 = Pr(D+|x = 1) = 0.95, π0 = 0.05.

Use indep beta priors where

Pr(π1 ≥ 0.90) = 0.95 = Pr(π0 ≤ 0.1) – p. 21



Illustration: Density estimates (solid lines)
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Further Extension

Covariates related to disease status and serology
score

For diseased individuals,

log(Yi) = x∗iα + ǫi

ǫi|G1 ∼ G1

G1|σ
2
1 ∼ FPT (N(0, σ2

1), c1)

BCJ prior on α

Model for non-diseased individuals not expected to
depend on covariates

– p. 23



Distns ofY : (non-D, x = 0 x = 1)
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Example: Johne’s Disease

ELISA scores used to screen for Johne’s

Sensitivity for standard cutoff is only around 0.30

599 cows tested

We have an additional test based on culturing the virus
(yes/no outcome); FC

– p. 26



Specificity of FC is believed to be one

Considered a range of beta priors on prevalence;
inferences were insensitive to the choice

Informative priors for baseline distributions based on
expert opinion

Estimated AUC = 0.71 (0.66, 0.76)

– p. 27



Johne’s density estimates
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Johne’s ROC curve estimates
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Simulation: n=300, 1-4; n=1000, 5-8

Bin test Se=Sp=0.95: 1-2, 5-6; Se =0.85, Sp= 1: 3-4, 7-8
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Semiparametric Models for Longitudinal
Data: Application to Joint Modeling of

Longitudinal Diagnostic Test Outcomes

Michelle Norris
Wes Johnson
Ian Gardner

Statistics and its Interface, 2009

– p. 31



Diagnostic Screening

Test individuals repeatedly over time to detect infectoin

Gold Standard test still unavailable

Less expensive diagnostic outcomes are available eg
serology, microscopy, polymerase chain reaction
(PCR)

Goals to estimate prevalence(s), diagnose individual
subjects, and most importantly, to estimate Sensitivity
as a function of time since infection

Historically data have been cross-sectional

Now consider models for longitudinal outcomes

– p. 32



The Data
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Figure: Latent Disease Status
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Figure: Serology Trajectory
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JD Data

365 cows, sampled approx every 6 months

Number of obs per cow has median=6 , min=2 and
max=23

Serology scores log transformed for (approximate?)
normality

– p. 36



Semiparametric Model

Parametric analysis used model with log-slopes as
normally distributed; may be too restrictive

The joint model specifies a DPM model for log-slopes:

logβ1i = γi | µi, τi
⊥
∼ N(µi, τi) for i : ki = 3

(µi, τi) | G
⊥
∼ G

G | α,G0 ∼ DP (α,G0)

Choose G0 to be normal/inverse gamma conjugate:
τi ∼ Γ( s2 ,

S
2 ) and µi | τi ∼ N(m, d

τi
).

– p. 37



JD: Posterior Distn of slopes
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JD: Serology Sensitivity
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Bayesian Semiparametric Methods
for Joint Modeling Longitudinal and

Survival Data
Tim Hanson

Adam Branscum
Wes Johnson

– p. 40



Joint modeling setting

Studies often involve an event/survival time of interest,
and measurements on longitudinal processes that
might be associated with patient prognosis

1. Blood pressure measurements in dialysis patients
→ death

2. Daily fertility counts in Mediteranean fruit flies →
death

Goals: Find trends in the time course of a longitudinal
process and assess association between
time-dependent processes and event prognosis

– p. 41



Fitted trajectory: Fly 1

Fitted trajectory for a “typical" medfly. Similar shapes
for PO, PH, CO, and longitudinal only analysis
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Fitted trajectory: Fly 2

Fitted trajectory for another medfly using PO, PH, CO,
and longitudinal only analysis

0 10 20 30 40 50
0

1

2

3

4

– p. 43



Alternatives to Joint Modeling

Ignore time dependent covariates (TDC)

Standard survival analysis with TDCs, eg. treat
longitudinal process as fixed

Two-stage procedures, conducted by

Modeling the observed (noisy) longitudinal
process, and then

Imputing the predicted process as if it were
observed in a TDC survival model

We compare joint analyses with alternative approaches

– p. 44



Longitudinal Component

A common approach involves using models of the
form:

yi(t) = xi(t) + ǫi(t)

xi(t) = f(t)γ + g(t)bi + Ui(t) + ziα

ǫi(t)
iid
∼ N(0, σ2)

f(t) and g(t) are vectors of known functions of time or
basis functions eg. splines, wavelets

γ is fixed; bi’s are random

Ui(t) is a mean-zero stochastic process, eg. an
Ornstein-Uhlenback process

– p. 45



Survival Models: “Raw"

Let Yt = {y(s) : s < t} denote the raw history

Previous approaches: Cox (1972)

h(t|Yt) = ey(t)βh0(t)

Prentice (1982) and Hanson et al (2009)

h(t|Yt) = ey(t)βh0(te
y(t)β)

Cox and Oakes (1984)

h(t|Yt) = ey(t)βh0(c̄(t)t), c̄(t) =
1

t

∫ t

0
ey(s)βds

Sundaram (2006) extended the Proportional Odds
model to TDCs – p. 46



Survival Models: Imputation

Classic assumption is that y(t) is constant between
observation times; problematic if time points are
irregularly spaced with long periods between them

May lead to biased estimates of regression coefficients

Modeling the longitudinal process allows for
incorporation of measurement error, and also allows
for imputation of values of the process between
observation times

Survival modeled as a function of predicted “true"
history, X̂t = {x̂(s) : s ≤ t}

– p. 47



Bayesian Semi-parametric Models

Parametric approaches specify baseline S0 as, eg.,
log-logistic, normal...

Hanson and Johnson (2002) modeled S0 with a MFPT:

S0 ∼

∫

PT (c,Gψ)p(dψ, dc)

c is weight parameter

Gψ is a standard parametric distribution (eg.
log-logistic)

– p. 48



Model choice

We compare PO, Cox and PO models using predictive
method of Geisser and Eddy (1979)

Cross-validatory (pseudo marginal likelihood (PML))
criterion:

PML =
∏

i

p(Ti|T−i, y1:n)

Ratios of these for distinct models mimic Bayes factors

Define

LPML =
n

∑

i=1

ln(PMLi)

Find model with maximum LPML

– p. 49



Illustration: Medfly Data

Data from a study of reproductive patterns of female
Mediterranean fruit flies. Recorded the number of eggs
produced each day throughout lifespans

Goal was to examine the association between egg
production patterns and lifetime

A frequentist approach was used by Tseng et al (2005)

Sample size of 251 flies with lifespans ranging from 22
to 99 days, and no censored observations

– p. 50



Illustration: Medfly Data

Longitudinal structure for egg production that Tseng et
al. used was based on ln(yi(t) + 1) with

xi(t|bi) = b1i ln(t) + b2i(t− 1)

Longitudinal correlation structure is not modeled.

For (raw) analyses that treated egg production as a
fixed TDC, we used a piecewise constant function

Used methods of Hanson, Johnson, and Laud (2009)

– p. 51



Model comparison

negative-LPML statistics (smaller is better) comparing
modeling approaches:

Model Method PO PH CO
parametric raw 867 870 937
MPT raw 865 866 938
MPT imputed 947 959 973
parametric joint 947 959 973
MPT joint 945 956 973

exp(difference in LPML) = pseudo Bayes factor

– p. 52



Fitted trajectory: Fly 1

Fitted trajectory for a “typical" medfly. Similar shapes
for PO, PH, CO, and longitudinal only analysis
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Predictive survival density: Fly 1

Solid is PO, dashed is PH, and dotted is CO
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Fitted trajectory: Fly 2

Fitted trajectory for another medfly using PO, PH, CO,
and longitudinal only analysis

0 10 20 30 40 50
0

1

2

3

4

– p. 55



Predictive survival density: Fly 2

Semiparametric PO (solid), PH (dashed) and CO
(dotted) analyses using raw trajectories.

20 40 60 80 100

0.02

0.04

0.06

0.08

0.1

– p. 56



Predictive survival density: Fly 2

Semiparametric PH analyses comparing raw
trajectories (dashed line) to joint analysis (solid line).
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Conclusion

We replaced x(t) with a penalized spline, but raw
analysis was still preferable

Joint modeling appears to not be necessary for these
data

– p. 58



Bayesian Nonparametric,
Non-Proportional Hazards Survival

Analysis
Maria De Iorio
Wes Johnson
Peter Müller

Gary L. Rosner

Biometrics, 2009

– p. 59



Survival Analysis

Use Dependent Dirichlet Process (MacEachern, 1999)

Illustration based on a cancer clinical trial

Survival probabilities for early times are est lower for
high dose treatment than for low dose

The reverse is true later for later times, possibly due to
toxic effect of the high dose for those less healthy at
beginning of study

– p. 60



DDP Regression

Model: T |x, β, τ ∼ LN(xβ, 1/τ)

(β, τ)|G ∼ G, G ∼ DP (c, F0)

Then the linear DDP model can be written as

f(t | x,G) =

∫

f(t | xβ, τ)dG(β, τ)

G ∼ DP (c, F0)

Let Gx denote the random CDF for T |x

– p. 61



Equivalence

Suppose Gx ∼ DP (c, Fx) for all x ∈ X , eg.

Gx =

∞
∑

h=1

phδλxh
(·), all x ∈ X

Model λh = {λxh, x ∈ X}
iid
∼ p(λ)

Define Fx to be the CDF corresponding to xβ, β ∼ F0

This induces p(λ)

Then Gx and Gx∗ are dependent by virtue of the
modeled relationship between the random pairs
{(λxh, λx∗h) : h = 1, 2, ...}

The resulting collection {Gx : x ∈ X} is said to have a
DDP distribution (MacEachern, 1999)

– p. 62



Cancer Clinical Trial

The data record the event-free survival time in months
for 761 women

53% censoring

Determine if high doses of the treatment are more
effective than lower doses

High doses of treatment are known to be associated
with a high risk of treatment related mortality

– p. 63



Cancer Clinical Trial

Clinicians hope initial risk offset by reduction in
mortality; justifying more aggressive therapy

Three categorical covariates plus an interaction:

Treatment dose (low/high)

Estrogen receptor (ER) status ( pos/neg )

Tumor Size (TS)

Dose by ER interaction

– p. 64



Post Surv: L vs H; Small/ER+

– p. 65
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Hazards: L vs H: Small/ER+
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Posterior of diff in Surv
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Simulation
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