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Outline
• Assessing goodness of fit for ordinary 

linear regression.  Impact of estimating 
model parameters

• Correlated data models
– Motivating examples
– Proposed GOF methods
– Back to examples
– Some simulations
– Discussion
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Ordinary Linear Model

,y X β ε= + ( )n~ N , Iε γ 20
Many approaches to assessing goodness of fit.  
We focus here on residual-based methods, using .   

and examining Q-Q plots, or calculating functionals
of the residuals (Kolmogorov Smirnov or Cramer 
von Mises tests)
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Empirical CDF

• Empirical CDF:
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Quantile-Quantile Plot
Definitely Not Normal Possibly Normal?

Adding pointwise bands helps with visualization, but 
global bands needed for formal inference
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Tests based on the ECDF

• KS test – maximum 
departure from expected 
normal cdf

• Cramer-von Mises –
average squared 
departure

Properties of ECDF and tests based on it affected 
by the estimation of parameters
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Handling unknown model parameters

• Estimated residual
• Empirical CDF:

• Still asymptotically Gaussian,

• Changed variance (Ron Randles and others)
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General Linear Model

,y X β ε= + ( )( )γε VNn ,0~
• Growth curves
• Linear Mixed Effects Models
• Time Series Regression
• Spatial models
• Crossed random effects Models
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Goodness of fit?

• What does assessing model fit mean?
• How to generalize residual-based methods

Let’s look at a couple of examples….
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Pig Weights
Diggle, Heagerty et al.
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Mixed Effects Models
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What does it mean to assess fit?

• Are the error terms normal with mean zero?
• Are the random effects normal with mean zero? 
• Why important?

– Is the mean modeled properly?
– Good properties of random effects BLUPs depend on 

normality of random effects
– Fixed effects estimates can depend on normality 

assumptions (certainly efficiency, maybe even bias –
Ray’s talk?)
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Pollen Counts
Stark et al. (1997) and Brumback et al. (2000)
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Time Series Regression

( ) t
k
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βρβ

,y X β ε= + ( )( )kn RN ρρσε ,...,,0~ 1
2

Do we have the right error structure?   
Important for prediction.
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Volatile Organic Compounds 

Toxics Exposure Assessment: 
a Columbia Harvard Project

Benzene by time,   
two central monitors 
and multiple homes  
in Mexico City
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Crossed Effects Models
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Boston Harbor Data
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Dissolved Oxygen
(Bottom,1995-2000)

time (years)

D
.O

. (
m

g/
L)

1996 1997 1998 1999 2000

5
10

15
20

25
30 Station 44

Station 65
Station 77
Station 106
Station 135
Station 136
Station 141



10 January 2005 Longitudinal workshop, U Florida Gainesville 19

Total Dissolved Nitrogen 
(Surface, 1995-2002)
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Space/Time model? 

,y X β ε= +

( )( )kn RN ρρσε ,...,,0~ 1
2

Houseman treated location and time as random 
effects.  Data difficult (lots of zeros etc)
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How to assess GOF? 
• Pinheiro and Bates (2001) – residuals based on 

subject-specific means
• Hodges (1998) - complicated
• Jiang (2000) – complicated 
• Fraccaro et al. (2000) – residuals for a time 

series setting; heuristic approach
• Lange & Ryan (1989) –Q-Q plots of 

standardized random effect estimates (BLUPS) 

We generalize the Lange/Ryan approach.
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Lange/Ryan standardized BLUPS 
• Let

• Pointwise Asymptotics of ECDF of the Z’s:
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W = Covariance of estimated parameters, δ a gradient 
vector (more presently)
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Lots of gaps….

• Global Asymptotics?
• Non-clustered data?
• Other diagnostics?  
• General residuals?
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Cholesky Rotated Residuals

( ) ( )1,0~, 00 Nz
iid

i γβ

,y X β ε= +

( ) ( ) ( )TLLV γγγ =−1

( ) ( ) ( ), T
iz L y Xβ γ γ β= −

At true parameter values, 

Recall: 
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Using the rotated residuals

• Do probability plots of the residuals 
• Construct tests such as Kolmogorov or 

Cramer Von Mises
• Construct functionals of the residuals to 

target particular departures
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Functionals of Rotated Residuals

( ) ( )1,0~, 00 Nz
iid
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Lange/Ryan standardized BLUPs a special case

Choose an appropriate projection:
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Pointwise Asymptotics
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Pointwise Asymptotics (2)
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Closed form exists for δx estimate
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Global Asymptotics

( )( ) ( )1/ 2 2ˆˆ ; ( ) 0, ( , )NN F x x  G x yθ σ− Φ ⇒

Resampling technique similar to Lin et. al (2002):
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Resampling
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Untransformed Pollen Counts

P < 0.01
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√ -Transformed Pollen Counts

P = 0.06
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Simulation – time series
• 1000 simulations of AR(1) time series
• Each series with n=250
• Computed rejection rates (Nominal rate of 5%)

.79.68Heavy tailed (t, 3df)

.90.82Skewed (chisq,  3 df)

.04.05Normal
CVMKSError distributions
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Pig Weights:  Marginal Errors

P = 0.13
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Pig Weights:  Random Intercept

P = 0.11
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Pig Weights:  Random Slope

P = 0.02
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Simulations – random intercept & slope
• 500 simulations of random intercept and slope 

model, 50 subjects with 5 repeats
• Computed KS and CVM test for Cholesky

residuals, random intercept and random slopes
• Rejection rates under following models

1. Null (random effect and error terms normal)
2. Skewed random effects
3. Heavy tailed random effects
4. Binary random effects
5. Skewed errors
6. Heavy tailed errors
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Results
• CVM better than KS for type I error
• CVM had better power than KS to detect 

non-normality of random effects 
• Targeted tests more powerful for detecting 

skewed and heavy-tailed re distributions
• Easier to detect skewed rather than heavy 

tailed distributions
• Global test best for detecting non-

normality of error terms
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Log-Benzene

P = 0.03
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Log-Carbon Tetrachloride

P < 0.01
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Histogram of Log-Benzene
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Histogram of Log-Carbon 
Tetrachloride
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QQ Plots for DO
Marginal

P < 0.01 P < 0.01
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QQ Plots for DO
Random Intercept

P < 0.01 P < 0.01
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QQ Plots for TDN
Marginal

P < 0.01 P < 0.01
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QQ Plots for TDN
Random Intercept

P = 0.04 P = 0.56
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Discussion

• Quantifying power to detect specific 
departures.  E.g. how many repeats per 
subject needed to reliably assess 
normality of random effects?

• Extensions to GLMMs – use working 
residuals? Standarized BLUPS?

• Tests targeting particular types of model 
departures?  
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And George said …..


