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Marginal likelihood

Y ~ p(yl|0,)

e 0 is the parameter of interest
e 1) is the nuisance parameter, possibly high dimensional

Suppose we have a statistic t() such that

p(t(y)10,v) = p(t(y)]0)
Then

p(yl0,v) = p(t(y),yl0,)

Marginal set likelihood
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Marginal likelihood

Y ~ p(yl|0,)

e 0 is the parameter of interest
e 1) is the nuisance parameter, possibly high dimensional

Suppose we have a statistic t() such that
p(t(y)10, ) = p(t(y)0)
Then

pUIO D) = p(E(x):y16,0)
= p(t(y)I0,v) x p(y[t(y), 0, )
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Marginal likelihood

Y ~ p(yl|0,)

e 0 is the parameter of interest
e 1) is the nuisance parameter, possibly high dimensional

Suppose we have a statistic t() such that

p(t(y)16,¥) = p(t(y)[0)
Then
p(y10,v) = p(t(y), yl6,7)

p(t(y)|9,u) X p(y|t(y)’9’w)
— p(t(y)|9) X p(y‘t(y)79’u)

A marginal likelihood estimate of 6 can be obtained from p(t(y)|6).
Specification or estimation of v is not necessary.

In this talk | will discuss a generalization of marginal likelihood.
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Mixed multivariate data

Multivariate data

Survey data often yield multivariate data of varied types.
Hypothetical survey data: A vector of responses y; = (vi1,.-.,Yip) for each
person i in a sample of survey respondents, i € {1,...,n}.

e y;1= income

e y; >= education level

e y; 3= number of children

* yia= age

e y; 5= attitude (Likert scale)

A mix of continuous and discrete ordinal data.
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Measures of association

Often of interest are the potential associations among these variables.

“Pearson’s p": Measures the linear association between two data vectors, or
more precisely, the angle between the data vectors:

> in = y1)ie —¥.2)
Vi =712 (io — 7.2)?

“Spearman’s p": Let r;j be the rank of y;; among responses {y1j,...,¥nj}
i={1,...,n},j€{1,2}.

p=Cor[(r,1,.. 1), (r2,...,m2)l

p=

“Kendall's 7" (yi,1, yi.2) and (yj,1,).2) are a concordant pair if
(vii—y1) X (vio — yj2) > 0, otherwise they are discordant.

1

n

(3)
All are between -1 and +1. The latter two are invariant to monotone
transformations, and so are “scale free”. The moment correlation is not.

7/=:

(c—d)
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Conditional models

Interest is typically in the conditional relationship between pairs of variables,
accounting for heterogeneity in other variables of less interest. Standard
bivariate rank-based methods are inappropriate.

Model 1
INC; = By + 1CHILD; + 3. DEG; + 33AGE; + B4PCHILD; 4+ 3sPINC; + BsPDEG; + ¢;

p-value for 3 is 0.11: “not strong evidence” that 3; # 0
Model 2
CHILD; ~ P()is(exp{ﬁo+ﬁ11NC,‘+52DEG,‘+ﬁ3AGE;+B4PCHILD;+ﬁ5PINC/‘+ﬁ6PDEG,’})

p-value for 3; is 0.01: “strong evidence” that 3; # 0.

Predictor
Response ‘ INC_| CHILD | DEG | AGE | PCHILD | PINC | PDEG
INC ] NA ] 110 (11) [ 7.03(<01) | 34(<01) | 4.07(<.01) [ 28(4l) [ 140(.12)

CHILD [[ .01 (.01) | NA [ -07(06) | .04(<.01) | -06 (20) [ .02(08) [ -05(20)
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Inverse normal model

One possibility would be to transform the data to have normal marginals, then
fit a multivariate normal model. This cannot be done for discrete data, but
such data can be viewed as a function of normal data.
If F is a distribution there exists a nondecreasing function g such that

1. if Z ~ normal(0,1),

2. and Y = g(2),
then Y ~ F.
If Fis continuous then g(z) = F~1(®(z)), g~ * is a function and g~ *(Y) is

standard normal. If F is not continuous then g~ maps to a set (this includes
probit models, for example).
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Multivariate normal copula model

This idea motivates the following “latent variable” model:

(Zi,...,2Z,) ~ multivariate normal(0, X)
V1,....Y) = (&(Z4),---,80(Z))

Y parameterizes the dependence, gi, ..., gy the marginal distributions.
e scale free
e appropriate for discrete and continuous data

e compatible full conditional distributions

Estimation strategies:

e estimation of X conditional on plug-in estimates of gi,...,gp; (procedures
for continuous data gives inconsistent results for discrete data)

e joint estimation of ¥ and g1, ..., gp;

(parametric models of g too simple, nonparametric too complex)
e marginal likelihood estimation.

(how would that work?)
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Rank likelihood

Semiparametric Gaussian copula model:

Zy,...,Z, ~ iid. multivariate normal(0,X)
Yij = gl(Z))

e Y is the parameter of interest

® gi,...,8p are high-dimensional nuisance parameters

For continuous data, let r;; = rank of y;; among y1j,...,yn;. Then

p(ylx,g) = p(r,ylxZ,g)
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Rank likelihood

Semiparametric Gaussian copula model:

Zy,...,Z, ~ iid. multivariate normal(0,X)
Yij = gl(Z))

e Y is the parameter of interest

® gi,...,8p are high-dimensional nuisance parameters

For continuous data, let r;; = rank of y;; among y1j,...,yn;. Then

p(ylx,g) p(r,y|x, g)

p(r|x, g) x p(ylr, Z, g)
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Rank likelihood

Semiparametric Gaussian copula model:

Zy,...,Z, ~ iid. multivariate normal(0,X)
Yij = gl(Z))

e Y is the parameter of interest

® gi,...,8p are high-dimensional nuisance parameters
For continuous data, let r;; = rank of y;; among y1j,...,yn;. Then
p(ylx,g) = p(rylx, g)

= p(rx,g) x p(ylr, Xz, g)
= p(rIZ) x p(ylr, X, g)

Will this work for discrete data?

sinal sef

ikelihooc
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Extending the rank likelihood

If g; is not strictly increasing then

e variable j has atoms,
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Extending the rank likelihood

If g; is not strictly increasing then
e variable j has atoms,
° Ziyj < Zpyj 7 Yii < Yoi

Marginal set likelihood
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Extending the rank likelihood

If g; is not strictly increasing then
e variable j has atoms,
© 71 <Zyj# Yuj < Y
e p(r|X,g) depends on g.
So the rank likelihood depends on g.
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Extending the rank likelihood

If g; is not strictly increasing then
e variable j has atoms,
° Zij < Zyj# Vi< Yii
e p(r|X,g) depends on g.
So the rank likelihood depends on g.
However, Y, ; < Y, ; = Z; ; < Z, ;. This means that given Y =y we do know

ZecAly)=A{z: 2y, <2y if i,y < Yo}
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Extending the rank likelihood

If g; is not strictly increasing then
e variable j has atoms,
© 71 <Zyj# Yuj < Y
e p(r|X,g) depends on g.
So the rank likelihood depends on g.

However, Y; ; < Y, ;= Z,,; < Z,;. This means that given Y =y we do know
Ze Aly) ={z: zn) < 2y, if yi,j < ¥i,j}
We can construct the following marginal likelihood:

p(ylZ,g) = p(Z<A(y)yx g)
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Extending the rank likelihood

If g; is not strictly increasing then
e variable j has atoms,
© 71 <Zyj# Yuj < Y
e p(r|X,g) depends on g.
So the rank likelihood depends on g.

However, Y; ; < Y, ;= Z,,; < Z,;. This means that given Y =y we do know
Ze Aly) ={z: zn) < 2y, if yi,j < ¥i,j}
We can construct the following marginal likelihood:

p(ylZ,g) = p(Z<A(y)yx g)
Pr(Z € A(y)IXZ,g) x p(y|Z € A(y), T, g)



Marginal likelihood for copula estimation
Extending the rank likelihood

If g; is not strictly increasing then
e variable j has atoms,
° Zyj<Zyj# Y < Ya,
e p(r|X,g) depends on g.
So the rank likelihood depends on g.
However, Y, ; < Y, ; = Z; ; < Z, ;. This means that given Y =y we do know

Ze Aly) ={z:zyj < 2 if yi,j < Yi,j}
We can construct the following marginal likelihood:

p(ylZ,g) = p(Z<A(y)yx g)
Pr(Z € A(y)IXZ,g) x p(y|Z € A(y), T, g)

Pr(Z € A(y)|X) x p(y|Z € A(y), X, g)

PrizeAm) = [ Tlei) oz

If gj's are continuous, then Pr(Z € A(y)|X) = Pr(R = r|X).
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Estimation

Bayesian estimates are easy to obtain.

Given a prior distribution p(X), we iterate the following steps:
Z7 Zf(i,j% z € ’é\(y))Y

2. sample X ~ p(X|Z,Z € A(y)) = p(X|Z).

1. for each i,j, sample Z; j ~ p(Z;;

This generates a Markov chain {E® £®) 1 such that

£ 2 p(E|Z € A(y))
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The actual R-code

Given {Z,8} and {Ranks,n,p,S0,n0}:

#### update S
S<-solve(rwish(solve (SO*n0+t (Z)%*%Z) ,n0+n))
##H#

#### update Z
for(j in 1:p) {

Sjc<= S[j,-j1%*%solve(S[-j,-31)
sdj<- sqrt( S[j,j] -S[j,-j1%*%solve(S[-3,-31%%S[-3,51 )
muj<- Z[,-jl%*%t(Sjc)

for(r in unique(Ranks[,j1)){

ir<- (1:n) [Ranks[,jl==r & 'is.na(Ranks[,j])]
1b<-suppressWarnings(max( Z[ Ranks[,jl==r-1,j],na.rm=TRUE ))
ub<-suppressWarnings(min( Z[ Ranks[,jl==r+1,j],na.rm=TRUE ))
Z[ir,jl<-gnorm(runif (length(ir),
pnorm(1lb,mujlir],sdj) ,pnorm(ub,mujlir],sdj)),mujlir],sdj)
}

ir<-(1:n) [is.na(Ranks[,j1)]
Z[ir,jl<-rnorm(length(ir) ,muj[ir],sdj)

#HHH
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GSS Example

Data on 1002 male respondents to the 1994 GSS.

INC : income of respondent
DEG : highest degree obtained
CHILD : number of children
PINC : income category of parents
PDEG : maximum of mother's and father’s highest degree
PCHILD : number of siblings plus one
AGE : age in years

Using MCMC integration, we estimate
>, the correlation matrix, and

2, J-]Z[*'/_ i the regression coefficients.

Marginal set likelihood
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Correlations and regressions
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Correlations and regressions
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Two-sided matching

What characteristics do men and women
O O prefer in their marriage partners?

® xi1,...,Xp are characteristics of
females

® Vi,...,¥m are characteristics of

O males

e h; = index of husband of woman j,
h; = 0 if she is single

Husband’s Education

o w =

index of wife of man i,
w; = 0 if he is single

Wife’s Education Can we ascertain preferences for
characteristics from these data?

We treat characteristics {X, Y} as fixed and the matching {w, h} as random.
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Assumptions about the matching process

e U;j = man i’s utility for woman j, Uj o = utility for being single

e V; ;= woman j's utility for man i, Vjo = utility for being single
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Assumptions about the matching process

e U;j = man i’s utility for woman j, Uj o = utility for being single

e V; ;= woman j's utility for man i, Vjo = utility for being single
The matching process is that

1. members of the population meet,

2. make proposals to and marry each other,

3. the resulting matching is observed.
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Assumptions about the matching process

e U;j = man i’s utility for woman j, Uj o = utility for being single
e V; ;= woman j's utility for man i, Vjo = utility for being single
The matching process is that
1. members of the population meet,
2. make proposals to and marry each other,
3. the resulting matching is observed.
It is assumed that the matching is stable, meaning
e not that it is unchanging over time, but that
e matches are voluntary, so that
Uec{u:tuiw >uiVjiivii>vin}
Ve{v:ivin > v Vitu > tiw}
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A parametric marriage model

Goal: relate observed characteristics {X, Y} to utilities {U, V}.

1. utilities are generated: U ~ p(u|a, X), V ~ p(v|3,Y)
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A parametric marriage model

Goal: relate observed characteristics {X, Y} to utilities {U, V}.

1. utilities are generated: U ~ p(u|a, X), V ~ p(v|3,Y)

2. marriages result from an unknown matching process: {h,w} = g(U, V)
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A parametric marriage model

Goal: relate observed characteristics {X, Y} to utilities {U, V}.

1. utilities are generated: U ~ p(u|a, X), V ~ p(v|3,Y)
2. marriages result from an unknown matching process: {h,w} = g(U, V)
3. the characteristics {X, Y} and the matching {h,w} are observed.



Two-sided matching models

A parametric marriage model

Goal: relate observed characteristics {X, Y} to utilities {U, V}.

1. utilities are generated: U ~ p(u|a, X), V ~ p(v|3,Y)
2. marriages result from an unknown matching process: {h,w} = g(U, V)
3. the characteristics {X, Y} and the matching {h,w} are observed.

It is assumed that the matching we observe is stable:
U e {uij: tiw > uij Vj:vii> vin}
Ve {vii:vim > Vi Vit uij> uiw}
Thus observing the matching {h,w} implies that

{U,V} € A({h,w})
Z € Ay
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Marginal likelihood estimation

e 0 = {a, 3}, the parameters of interest
e Z = {U,V}, the unobserved utilities

o y={h,w} = g(Z), the observed matching.

Observing Y =y tells us
1. y is a stable matching, so Z € A(y)
2. y is the actual observed matching resulting from a marriage process.

Using information in 2 requires estimation/specification of the marriage process.

Using information in 1 does not.

p(yld,g) = p(Z e A(Y),yl0,g)

ikelihooc
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Marginal likelihood estimation

e 0 = {a, 3}, the parameters of interest
e Z = {U,V}, the unobserved utilities

o y={h,w} = g(Z), the observed matching.

Observing Y =y tells us
1. y is a stable matching, so Z € A(y)
2. y is the actual observed matching resulting from a marriage process.

Using information in 2 requires estimation/specification of the marriage process.

Using information in 1 does not.

p(yld,g) = p(Z e A(Y),yl0,g)
Pr(Z € A(y)l0,g) x p(y|Z € A(y), 0, g)

copula estimatior Two-sided matching models Marginal set likelihooc
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Marginal likelihood estimation

e 0 = {a, 3}, the parameters of interest
e Z = {U,V}, the unobserved utilities

o y={h,w} = g(Z), the observed matching.

Observing Y =y tells us
1. y is a stable matching, so Z € A(y)
2. y is the actual observed matching resulting from a marriage process.

Using information in 2 requires estimation/specification of the marriage process.

Using information in 1 does not.

p(yld,g) = p(Z e A(Y),yl0,g)
Pr(Z € A(y)l0,g) x p(y|Z € A(y), 0, g)
Pr(Z € A(y)|0) x p(y|Z € Aly),0,g)

—~ =

copula estimatior Two-sided matching models Marginal set likelihooc
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The general transformation model
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The general transformation model

Z ~ p(z|0)
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The general transformation model

Z ~ p(zl0) Y = ¢(2)
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The general transformation model

Z ~ p(zl0) Y = g(2) Z e A(Y)
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Marginal set likelihood

Suppose we have a set valued function A() : Y — o(Z) such that

g '(y) C A(y)Vy,g, orequivalently,
z € Ag(2)Vzeg,

Then Pr(Z € A(Y)|0,g) =1, so

Pr(Y =yl0,g) = Pr(Ze€A(Y),Y =yl0,g)

Marginal set likelihood
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Marginal set likelihood

Suppose we have a set valued function A() : ) — o(Z) such that
g '(y) C A(y)Vy,g, orequivalently,
z € Ag(2) vz,g,
Then Pr(Z € A(Y)|0,g) =1, so

Pr(Y =yl0,g) = Pr(Ze€A(Y),Y =yl0,g)
= Pr(ZeA(y),Y=yldg)

Marginal set likelihood
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Marginal set likelihood

Suppose we have a set valued function A() : Y — o(Z) such that

g '(y) C A(y)Vy,g, orequivalently,
z € Ag(2)Vzeg,

Then Pr(Z € A(Y)|0,g) =1, so

Pr(Y =yl0,g) = Pr(Ze€A(Y),Y =yl0,g)
Pr(Z € A(y), Y =yl0,g)
= Pr(Ze€A(y)l0,g) x Pr(Y =y|Z € A(y),0,g)
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Marginal set likelihood

Suppose we have a set valued function A() : Y — o(Z) such that

g '(y) C A(y)Vy,g, orequivalently,
z € Ag(2) vz,g,
Then Pr(Z € A(Y)|0,g) =1, so
Pr(Y =yl0,g) = Pr(Ze€A(Y),Y =yl0,g)
= Pr(ZeA(y),Y =yl0,g)
= Pr(ZeA(y)lo,g) x Pr(Y =y|Z € A(y),0,g)
= Pr(Z € A(y)|0) x Pr(Y = y|Z € A(y),0,g)

Idea: estimate 6 using only the marginal likelihood Pr(Z € A(y)|f)
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Most informative sets

Which set-valued function is most informative?
Consider the class of functions
A={A():Y —0o(2), z€ Alg(2)) Vz, g}

A marginal set likelihood could be based on any element of A.
Intuitively, we want to use the “smallest” such function A().
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Most informative sets

Which set-valued function is most informative?

Consider the class of functions
A={A():Y —0o(2), z€ Alg(2)) Vz, g}

A marginal set likelihood could be based on any element of A.
Intuitively, we want to use the “smallest” such function A().

Lemma: For each y, let /N4(y) = NAA(y). Then
e Ac A
o A(y) ={z:y = g(z) for some g}.
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Most informative sets

Which set-valued function is most informative?

Consider the class of functions
A={A():Y —=0(2), z€ Alg(2)) Vz,g}.

A marginal set likelihood could be based on any element of A.
Intuitively, we want to use the “smallest” such function A().
Lemma: For each y, let A(y) = N4A(y). Then

e Ac A

e Aly) = {z:y = g(z) for some g}.
Lemma:

o for the copula model, A(y) = {z: 2, < z,; if yij < Yi,}

o for the marriage model, A(y) = {u,v : y is a stable match}
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What is a statistic?
Any statistic can be defined in terms of a set function:

Aly) ={z : t(g(2)) = t(y)}
Can be used for marginal likelihood if Pr(Z € A(y)|0, g) = Pr(Z € A(y)|0).
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What is a statistic?
Any statistic can be defined in terms of a set function:
Aly) ={z: t(g(2)) = t(y)}
Can be used for marginal likelihood if Pr(Z € A(y)|0,g) = Pr(Z € A(y)|0).
Example (rank likelihood for regression):
Zi = pBxi+e¢i, Yi=g(Z), g nondecreasing

R(y) = ranks(y1,-..,¥n)
Aly) = {z:zy<z,ify, <yp}
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What is a statistic?
Any statistic can be defined in terms of a set function:

Aly) = {z: t(g(2)) = t(y)}
Can be used for marginal likelihood if Pr(Z € A(y)|0,g) = Pr(Z € A(y)|0).

Example (rank likelihood for regression):

Zi = pBxi+e¢i, Yi=g(Z), g nondecreasing
R(y) = ranks(y1,...,yn)
A(Y) = {z 1z < Zj if Yy < yiz}

If g is strictly increasing,

Z e Aly) < R(g(2)) = R(y) Vg < A(Y) = Aly)
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What is a statistic?
Any statistic can be defined in terms of a set function:

Aly) = {z: t(g(2)) = t(y)}
Can be used for marginal likelihood if Pr(Z € A(y)|0,g) = Pr(Z € A(y)|0).

Example (rank likelihood for regression):

Zi = pBxi+e¢i, Yi=g(Z), g nondecreasing
R(y) = ranks(y1,...,yn)
A(Y) = {z 1z < Zj if Yy < yiz}

If g is strictly increasing,
Z € Aly) & R(g(Z)) = R(y) Vg < A(Y) = Aly)
If g is not strictly increasing, then
A(Y) = A(y) = Z € A(y) but Z € A(y) % A(Y) = Ay)
* {z: R(g(2)) = R(y)} C Aly)

* Pr(R(g(Z)) = R(y)|0, g) depends on g
e Pr(Z € A(y)|0, g) does not depend on g
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Example: rank likelihood

Aly) ={zy <z, if yy <yp}

Suppose Z € a={z:2z1 < z < z3}

g strictly increasing g not strictly increasing
| J j
/
11 11
Z, 2 Z3 2, 2, Z3
AY) = {za<zn<z}Vg A(Y) {znn1 < (2,z)} fg=a

Zca = AY)=a A(Y) {(z,2) <z} ifg=g
Zca # AlY)=a
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Marginal set likelihood

What is a statistic?

Can the event {Z € A(y)} be written as {t(g(Z)) = t(y)} for some statistic t?
If a marginal likelihood is based on a statistic t(y), then

Pr(t(Y) = t(y)I0)

Aly)

So for a statistic-based likelihood,

Pr(Z € A(y)|0) where
{z: t(g(2)) = t(y)}

ZeAly) & t(Y)=t(g(2)=t(y)
ZeAly) & AY)=Ay)
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Marginal set likelihood

What is a statistic?

Can the event {Z € A(y)} be written as {t(g(Z)) = t(y)} for some statistic t?
If a marginal likelihood is based on a statistic t(y), then

Pr(t(Y) = t(y)I0)

Aly)

So for a statistic-based likelihood,

Pr(Z € A(y)|0) where
{z: t(g(2)) = t(y)}

ZeAly) & t(Y)=t(g(2))=ty)
ZeAly) & A(Y)=Aly)
But for some problems,
Z e Aly) # AY) = Aly)

Not all set-based likelihoods can be expressed as statistic-based likelihoods.
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Likelihood derivatives
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Likelihood derivatives

Does the distinction matter?
Statistic-based likelihoods:

L / "'(f"j) (tlo)d

2 / p(t[6)d
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Likelihood derivatives

Does the distinction matter?

Statistic-based likelihoods:

E[d"’gdif;(fmw] = /’;;((tt”g))p(tl@)dt

d
= %/p(t|0)dt—0

Set-based likelihoods:

P2 € A0 ) ZHp(A(V):alm
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Likelihood derivatives

Does the distinction matter?

Statistic-based likelihoods:

E[d"’gdif;(fmw] = /’;;((tt”g))p(tl@)dt

d
= %/p(t|0)dt—0

Set-based likelihoods:

dlogPr(Z € A(y)|0)|0] Pr'(Z € al0)

= = Y s A) = alo.g)

Bl . Pr(Z € al6)

= Y Pr(Zcal®)Pr(A(Y)=al0,g,Z € a)="
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Let m(0) be a prior, L(A]y) some positive function and define

pe(0ly) o< () x L(O]y).

An a-level confidence set based on p; is a set C(y) such that
/ p(0ly) d0 = o Vy
C(y)

so C(y) has the property that
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Proper by coverage

Let m(0) be a prior, L(A]y) some positive function and define
pe(0ly) o< () x L(O]y).

An a-level confidence set based on p; is a set C(y) such that
/ p(0ly) d0 =« Vy
C(y)

so C(y) has the property that

if 6 ~ p.(ly), then Pr(d € C(y)ly) =«, foreveryy.

The “likelihood” function L(6|y) is proper by coverage (Monahan and Boos,
1992) for a model p(y|0) if

when 6 ~ 7(6) and Y ~ p(y|f), then Pr(d € C(Y))=a
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What about if L(0]y) = Pr(Z € A(y)|0)?
Proposition:
e For some priors on g, Pr(Z € A(y)|0) will be proper by coverage, but

e For other priors on g, it won't be.



Marginal set likelihood

Proper by coverage

If L(0,gly) = p(y|0, g) then L(0, gly) is proper by coverage
If L(0]y) = p(t]|0) for t = t(y) then L(f]|y) is proper by coverage
What about if L(0]y) = Pr(Z € A(y)|0)?

Proposition:
e For some priors on g, Pr(Z € A(y)|0) will be proper by coverage, but

e For other priors on g, it won't be.

For rank regression, the set likelihood will be proper by coverage if w(g) makes
p(A(g(Z)) = a|Z) uniform over possible sets a.
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e If it does, our likelihood is statistic-based.
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Marginal set likelihood

Summary

Observing Y = y can tell us that some event A(y) is true.

The probability that A(y) is true might be independent of g.
e If so, {A(y) is true} can be used to construct a likelihood.

The fact that A(y) is true may imply that we learn that it is true
e If it does, our likelihood is statistic-based.

e |f it does not, then our likelihood is not statistic-based.

Questions:
o Are there other applications of set-based likelihoods?
e What are the general properties of set-based likelihoods?
e asymptotics
e Bayesian propriety

e How can one identify the optimal A(y) in a given problem?
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