Multi-View Regression via Canonincal Correlation Analysis

Dean P. Foster
U. Pennsylvania

(Sham M. Kakade of TTI)

$$
(\forall i \leq n) \quad y_{i}=\sum_{i=j}^{p} x_{i j} \beta_{j}+\epsilon_{i} \quad \epsilon_{i} \sim_{\mathrm{iid}} N\left(0, \sigma^{2}\right)
$$

Data mining and Machine learning: $p \gg n$

$$
(\forall i \leq n) \quad y_{i}=\sum_{i=j}^{p} x_{i j} \beta_{j}+\epsilon_{i} \quad \epsilon_{i} \sim_{\mathrm{iid}} N\left(0, \sigma^{2}\right)
$$

Can't fit model if $p \gg n$:

- Trick: assume most β_{i} are in fact zero
- Variable selection:

$$
\hat{\beta}_{i}^{\mathrm{RIC}}= \begin{cases}0 & \text { if }\left|\hat{\beta}_{\beta}\right| \leq S E_{i} \sqrt{2 \log p} \\ \hat{\beta}_{i} & \text { otherwise }\end{cases}
$$

- Basically just stepwise regression and Bonferroni
- Can be justified by "risk ratios" (Donoho and Johnstone '94, Foster and George '94)

$$
(\forall i \leq n) \quad y_{i}=\sum_{i=j}^{p} x_{i j} \beta_{j}+\epsilon_{i} \quad \epsilon_{i} \sim_{\mathrm{iid}} N\left(0, \sigma^{2}\right)
$$

l've played with lots of alternatives:

- FDR instead of RIC:
- $\sqrt{2 \log p} \rightarrow \sqrt{2 \log (p / q)}$
- empirical Bayes (George and Foster, 2000)
- Cauchy prior (Foster and Stine, 200x)
- regression \rightarrow logistic regression
- IID \rightarrow independence
- independence \rightarrow block independence (with Dongyu Lin)

$$
(\forall i \leq n) \quad y_{i}=\sum_{i=j}^{p} x_{i j} \beta_{j}+\epsilon_{i} \quad \epsilon_{i} \sim_{\mathrm{iid}} N\left(0, \sigma^{2}\right)
$$

Where do this many variables come from?

- Missing value codes
- Interactions
- Transformations
- Historical example (Personal Bankruptcy)
- 350 basic variables
- all interactions, missing value codes, etc lead to 67,000 variables
- about 1 million clustered cases
- Ran stepwise logistic regression using FDR
- Another talk tells of the details of that experiment

$$
(\forall i \leq n) \quad y_{i}=\sum_{i=j}^{p} x_{i j} \beta_{j}+\epsilon_{i} \quad \epsilon_{i} \sim_{\mathrm{iid}} N\left(0, \sigma^{2}\right)
$$

Summary of current state of the art:

- We can generate many non-linear X 's
- We can select the good ones large lists
- Isn't the problem "solved"?

$$
(\forall i \leq n) \quad y_{i}=\sum_{i=j}^{p} x_{i j} \beta_{j}+\epsilon_{i} \quad \epsilon_{i} \sim_{\text {iid }} N\left(0, \sigma^{2}\right)
$$

There is always room for finding new X 's

- Current methods of finding X 's are non-linear
- Can we find "new" linear combinations of existing X 's?
- Hope, use linear theory
- Hope, fast CPU
- Hope, new theory

Semi-supervised learning is:

- Y's are expensive
- X's are cheap
- We get n rows of Y
- But also m free rows of just X 's
- Called, semi-supervised learning
- Can this help?

$$
\left[\begin{array}{c}
Y \\
(n \times 1)
\end{array}\right]\left[\begin{array}{c}
X \\
(n \times p)
\end{array}\right]
$$

with $p \gg n$
m rows of unlabeled data:

$$
\left[\begin{array}{c}
Y \\
n \times 1
\end{array}\right]\left[\begin{array}{c}
X \\
(n+m) \times p \\
\end{array}\right]
$$

m rows of unlabeled data, and two sets of equally useful X 's:

$$
\left[\begin{array}{c}
Y \\
n \times 1
\end{array}\right]\left[\begin{array}{c}
X \\
(n+m) \times p
\end{array}\right]
$$

With: $m \gg n$

- Person identification
- $\mathrm{Y}=$ identity
- $\mathrm{X}=$ Profile photo
- $Z=$ front photo
- Topic identification (medline)
- $\mathrm{Y}=$ topic
- $X=$ abstract
- $\mathrm{Z}=$ text
- The web:
- $\mathrm{Y}=$ classification
- $\mathrm{X}=$ content (i.e. words)
- $Z=$ hyper-links
- We will call these the multi-view setup

A Multi-View Assumption

Define

$$
\begin{aligned}
\sigma_{x}^{2} & =E[Y-E(Y \mid X)]^{2} \\
\sigma_{Z}^{2} & =E[Y-E(Y \mid Z)]^{2} \\
\sigma_{x, Z}^{2} & =E[Y-E(Y \mid X, Z)]^{2}
\end{aligned}
$$

(We will take conditional expectations to be linear)

Assumption

Y, X, and Z satisfy the α-multiview assumption if:

$$
\begin{aligned}
\sigma_{x}^{2} & \leq \sigma_{x, z}^{2}(1+\alpha) \\
\sigma_{z}^{2} & \leq \sigma_{x, z}^{2}(1+\alpha)
\end{aligned}
$$

- In other words, $\sigma_{x}^{2} \approx \sigma_{z}^{2} \approx \sigma_{x, z}^{2}$
- Views X and Z are redundant (i.e. highly collinear)
- The views are redundant.
- Satisfied if each view predict Y well.
- No conditional independence assumptions (i.e. Bayes nets)
- No coordinates, norm, eigenvalues, or dimensionality assumptions.

Lemma

Under the α-multiview assumption

$$
E\left[(E(Y \mid X)-E(Y \mid Z))^{2}\right] \leq 2 \alpha \sigma^{2}
$$

- Idea: find directions in X and Z that are highly correlated
- CCA solves this problem already!

CCA = canonical correlation analysis

- Find the directions that are most highly correlated
- Very close to PCA (principal components analysis)
- Generates coordinates for data
- End up with canonical coordinates for both X's and Z's
- Numerically an Eigen-value problem

Definition

X_{i}, and Z_{j}, are in CCA form if

- X_{i} are orthonormal
- Z_{i} are orthonormal
- $X_{i}^{\top} Z_{j}=0$ for $i \neq j$
- $X_{i}^{\top} Z_{i}=\lambda_{i}, \lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{p} \geq 0$
(This is the output of running CCA on the original X 's and Z^{\prime} 's.)

$$
\Sigma=\left[\begin{array}{c|c}
\Sigma_{x x} & \Sigma_{x z} \\
\hline \Sigma_{z x} & \Sigma_{z z}
\end{array}\right] \rightarrow\left[\begin{array}{c|c}
\mathrm{I} & D \\
\hline D & \mathrm{I}
\end{array}\right]
$$

The canonical correlations are λ_{i} :

$$
D=\left[\begin{array}{cccc}
\lambda_{1} & 0 & 0 & \cdots \\
0 & \lambda_{2} & 0 & \cdots \\
0 & 0 & \lambda_{3} & \cdots \\
\vdots & \vdots & \vdots & \vdots
\end{array}\right]
$$

Theorem

Let $\hat{\beta}$ be the Ridge regression estimator with weights induced by the CCA. Then

$$
\operatorname{Risk}(\hat{\beta}) \leq\left(5 \alpha+\frac{\sum \lambda_{i}^{2}}{n}\right) \sigma^{2}
$$

Theorem

Let $\hat{\beta}$ be the Ridge regression estimator with weights induced by the CCA. Then

$$
\operatorname{Risk}(\hat{\beta}) \leq\left(5 \alpha+\frac{\sum \lambda_{i}^{2}}{n}\right) \sigma^{2}
$$

CCA-ridge regression is to minimize least squares plus a penalty of:

$$
\sum_{i} \frac{1-\lambda_{i}}{\lambda_{i}} \beta_{i}^{2}
$$

- Large penalties in the less correlated directions.
- λ_{i} 's are the correlations
- A shrinkage estimator.

Theorem

Let $\hat{\beta}$ be the Ridge regression estimator with weights induced by the CCA. Then

$$
\operatorname{Risk}(\hat{\beta}) \leq\left(5 \alpha+\frac{\sum \lambda_{i}^{2}}{n}\right) \sigma^{2}
$$

Recall α is the multiview property:

$$
\begin{aligned}
\sigma_{x}^{2} & \leq \sigma_{x, z}^{2}(1+\alpha) \\
\sigma_{z}^{2} & \leq \sigma_{x, z}^{2}(1+\alpha)
\end{aligned}
$$

Theorem

Let $\hat{\beta}$ be the Ridge regression estimator with weights induced by the CCA. Then

$$
\operatorname{Risk}(\hat{\beta}) \leq\left(5 \alpha+\frac{\sum \lambda_{i}^{2}}{n}\right) \sigma^{2}
$$

- 5α is the bias
- $\frac{\sum \lambda_{i}^{2}}{n}$ is variance

Theorem

Let $\hat{\beta}$ be the Ridge regression estimator with weights induced by the CCA. Then

$$
\operatorname{Risk}(\hat{\beta}) \leq\left(5 \alpha+\frac{\sum \lambda_{i}^{2}}{n}\right) \sigma^{2}
$$

Doesn't fit my personality and style

- I like feature selection!
- On to theorem 2

Alternative version

Theorem

For $\hat{\beta}$ be the CCA-testimator:

$$
\operatorname{Risk}(\hat{\beta}) \leq\left(2 \sqrt{\alpha}+\frac{d}{n}\right) \sigma^{2}
$$

where d is the number of λ_{i} for which $\lambda_{i} \geq 1-\sqrt{\alpha}$.

Theorem

For $\hat{\beta}$ be the CCA-testimator:

$$
\operatorname{Risk}(\hat{\beta}) \leq\left(2 \sqrt{\alpha}+\frac{d}{n}\right) \sigma^{2}
$$

where d is the number of λ_{i} for which $\lambda_{i} \geq 1-\sqrt{\alpha}$.
The CCA testimator:

$$
\widehat{\beta}_{i}=\left\{\begin{array}{cl}
\operatorname{MLE}\left(\beta_{i}\right) & \text { if } \lambda_{i} \geq 1-\sqrt{\alpha} \tag{1}\\
0 & \text { else }
\end{array}\right.
$$

Theorem

For $\hat{\beta}$ be the CCA-testimator:

$$
\operatorname{Risk}(\hat{\beta}) \leq\left(2 \sqrt{\alpha}+\frac{d}{n}\right) \sigma^{2}
$$

where d is the number of λ_{i} for which $\lambda_{i} \geq 1-\sqrt{\alpha}$.
Do we need to know α ?

- We can try features in order
- Use promiscuous rule to add variables (i.e. AIC)
- Will do as well as theorem, and possibly much better
- Doesn't mix all that well with stepwise regression

Conclusions

- Trade off between two theorems?
- Experimental work?

Conclusions

- Trade off between two theorems?
- Experimental work? Soon!

