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Model and background

(∀i ≤ n) yi =

p∑
i=j

Xijβj + εi εi ∼iid N(0, σ2)

Data mining and Machine learning: p � n



Model and background

(∀i ≤ n) yi =

p∑
i=j

Xijβj + εi εi ∼iid N(0, σ2)

Can’t fit model if p � n:

Trick: assume most βi are in fact zero
Variable selection:

β̂RIC
i =

{
0 if |β̂i | ≤ SEi

√
2 log p

β̂i otherwise

Basically just stepwise regression and Bonferroni
Can be justified by “risk ratios” (Donoho and Johnstone ’94,
Foster and George ’94)



Model and background

(∀i ≤ n) yi =

p∑
i=j

Xijβj + εi εi ∼iid N(0, σ2)

I’ve played with lots of alternatives:
FDR instead of RIC:√

2 log p →
√

2 log(p/q)
empirical Bayes (George and Foster, 2000)
Cauchy prior (Foster and Stine, 200x)

regression → logistic regression
IID → independence
independence → block independence (with Dongyu Lin)



Model and background

(∀i ≤ n) yi =

p∑
i=j

Xijβj + εi εi ∼iid N(0, σ2)

Where do this many variables come from?
Missing value codes
Interactions
Transformations
Historical example (Personal Bankruptcy)

350 basic variables
all interactions, missing value codes, etc lead to 67,000
variables
about 1 million clustered cases
Ran stepwise logistic regression using FDR
Another talk tells of the details of that experiment



Model and background

(∀i ≤ n) yi =

p∑
i=j

Xijβj + εi εi ∼iid N(0, σ2)

Summary of current state of the art:
We can generate many non-linear X ’s
We can select the good ones large lists
Isn’t the problem “solved”?



Model and background

(∀i ≤ n) yi =

p∑
i=j

Xijβj + εi εi ∼iid N(0, σ2)

There is always room for finding new X ’s



New features

Current methods of finding X ’s are non-linear
Can we find “new” linear combinations of existing X ’s?

Hope, use linear theory
Hope, fast CPU
Hope, new theory



Semi-supervised

Semi-supervised learning is:
Y ’s are expensive
X ’s are cheap
We get n rows of Y
But also m free rows of just X ’s
Called, semi-supervised learning
Can this help?



Usual data table for data mining


Y

(n × 1)




X

(n × p)


with p � n



With unlabeled data

m rows of unlabeled data:
Y

n × 1




X

(n + m)× p





With alternative X’s

m rows of unlabeled data, and two sets of equally useful X ’s:
Y

n × 1




X

(n + m)× p





Z

(n + m)× p


With: m � n



Examples

Person identification
Y = identity
X = Profile photo
Z = front photo

Topic identification (medline)
Y = topic
X = abstract
Z = text

The web:
Y = classification
X = content (i.e. words)
Z = hyper-links

We will call these the multi-view setup



A Multi-View Assumption

Define

σ2
x = E [Y − E(Y |X )]2

σ2
z = E [Y − E(Y |Z )]2

σ2
x ,z = E [Y − E(Y |X , Z )]2

(We will take conditional expectations to be linear)

Assumption
Y,X, and Z satisfy the α-multiview assumption if:

σ2
x ≤ σ2

x ,z(1 + α)

σ2
z ≤ σ2

x ,z(1 + α)

In other words, σ2
x ≈ σ2

z ≈ σ2
x ,z

Views X and Z are redundant (i.e. highly collinear)



The Multi-View Assumption in the Linear Case

The views are redundant.
Satisfied if each view predict Y well.
No conditional independence assumptions (i.e. Bayes
nets)
No coordinates, norm, eigenvalues, or dimensionality
assumptions.



Both estimators are similar

Lemma
Under the α-multiview assumption

E [(E(Y |X )− E(Y |Z ))2] ≤ 2ασ2

Idea: find directions in X and Z that are highly correlated
CCA solves this problem already!



What if we run CCA on X and Z?

CCA = canonical correlation analysis
Find the directions that are most highly correlated
Very close to PCA (principal components analysis)
Generates coordinates for data
End up with canonical coordinates for both X ’s and Z ’s
Numerically an Eigen-value problem



CCA form

Definition
Xi , and Zj , are in CCA form if

Xi are orthonormal
Zi are orthonormal
X T

i Zj = 0 for i 6= j
X T

i Zi = λi , λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0

(This is the output of running CCA on the original X ’s and Z ’s.)



CCA form as a covariance matrix

Σ =

[
ΣXX ΣXZ

ΣZX ΣZZ

]
→
[

I D
D I

]
The canonical correlations are λi :

D =


λ1 0 0 . . .
0 λ2 0 . . .
0 0 λ3 . . .
...

...
...

...





The Main Result

Theorem

Let β̂ be the Ridge regression estimator with weights induced
by the CCA. Then

Risk(β̂) ≤

(
5α +

∑
λ2

i
n

)
σ2



The Main Result

Theorem

Let β̂ be the Ridge regression estimator with weights induced
by the CCA. Then

Risk(β̂) ≤

(
5α +

∑
λ2

i
n

)
σ2

CCA-ridge regression is to minimize least squares plus a penalty
of: ∑

i

1− λi

λi
β2

i

Large penalties in the less correlated directions.
λi ’s are the correlations
A shrinkage estimator.



The Main Result

Theorem

Let β̂ be the Ridge regression estimator with weights induced
by the CCA. Then

Risk(β̂) ≤

(
5α +

∑
λ2

i
n

)
σ2

Recall α is the multiview property:

σ2
x ≤ σ2

x ,z(1 + α)

σ2
z ≤ σ2

x ,z(1 + α)



The Main Result

Theorem

Let β̂ be the Ridge regression estimator with weights induced
by the CCA. Then

Risk(β̂) ≤

(
5α +

∑
λ2

i
n

)
σ2

5α is the biasP
λ2

i
n is variance



The Main Result

Theorem

Let β̂ be the Ridge regression estimator with weights induced
by the CCA. Then

Risk(β̂) ≤

(
5α +

∑
λ2

i
n

)
σ2

Doesn’t fit my personality and style
I like feature selection!
On to theorem 2



Alternative version

Theorem

For β̂ be the CCA-testimator:

Risk(β̂) ≤
(

2
√

α +
d
n

)
σ2

where d is the number of λi for which λi ≥ 1−
√

α.



Alternative version

Theorem

For β̂ be the CCA-testimator:

Risk(β̂) ≤
(

2
√

α +
d
n

)
σ2

where d is the number of λi for which λi ≥ 1−
√

α.

The CCA testimator:

β̂i =

{
MLE(βi) if λi ≥ 1−

√
α

0 else
(1)



Alternative version

Theorem

For β̂ be the CCA-testimator:

Risk(β̂) ≤
(

2
√

α +
d
n

)
σ2

where d is the number of λi for which λi ≥ 1−
√

α.

Do we need to know α?
We can try features in order
Use promiscuous rule to add variables (i.e. AIC)
Will do as well as theorem, and possibly much better
Doesn’t mix all that well with stepwise regression



Conclusions

Trade off between two theorems?
Experimental work?

Soon!
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