Bayesian model averaging for categorical data

Jon Forster<br>University of Southampton

(includes joint work with Emily Webb)

## Outline

1. Motivating examples
2. Bayesian inference for contingency tables
3. Example: Disclosure risk estimation
4. Extra structure: Ordinal data
5. Extra structure: Square tables

## Example: Alcohol, hypertension and obesity

Table 1: Knuiman and Speed (1988)

|  |  | Alcohol intake (drinks/day) |  |  |  |
| :--- | :---: | ---: | ---: | ---: | ---: |
| Obesity | Hypertension | 0 | $1-2$ | $3-5$ | $>5$ |
| Low |  |  |  |  |  |
|  | Yes | 5 | 9 | 8 | 10 |
|  | No | 40 | 36 | 33 | 24 |
|  | Yes | 6 | 9 | 11 | 14 |
| High | No | 33 | 23 | 35 | 30 |
|  | Yes | 9 | 12 | 19 | 19 |
|  | No | 24 | 25 | 28 | 29 |

## Example: Colouring of blackbirds

Table 2: Anderson and Pemberton (1985)

| Lower Mandible | Orbital Ring |  |  |  |
| :---: | :---: | ---: | ---: | ---: |
|  | Upper Mandible | 1 | 2 | 3 |
|  | 1 | 40 | 19 | 0 |
|  | 2 | 0 | 0 | 0 |
|  | 3 | 0 | 1 | 0 |
| 2 | 1 | 1 | 6 | 0 |
|  | 2 | 1 | 2 | 1 |
|  | 3 | 0 | 1 | 0 |
| 3 | 1 | 1 | 2 | 0 |
|  | 2 | 0 | 1 | 1 |
|  | 3 | 0 | 6 | 7 |

$1=$ mostly black, $2=$ intermediate, $3=$ mostly yellow

## Example: Cohabitation

Table 3: Inter-Ethnic Unions in Great Britain, 1991 (1\% SAR)

| Ethnic group of | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| male partner |  |  |  |  |  |  |  |  |  |  |

## Example: Marriage

Table 4: Distribution of marriages in the village of Nemgéné by lineage of each spouse (Cazes, 1990)

| Husband's <br> lineage | lariwa Ger. | Segiwa | Suraba | Wife's lineage |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Pussuwoï | lariwa | Tengo $_{2}$ | Tengo | Other |  |  |  |  |
| lariwa Ger. | $\mathbf{0}$ | 2 | 3 | 3 | 3 | 4 | 1 | 3 |
| Segiwa | 2 | $\mathbf{0}$ | 2 | 5 | 1 | 1 | 6 | 3 |
| Suraba | 0 | 2 | $\mathbf{0}$ | 2 | 3 | 6 | 7 | 6 |
| Pussuwoï | 1 | 4 | 4 | $\mathbf{0}$ | 3 | 5 | 9 | 7 |
| lariwa | 2 | 2 | 3 | 4 | $\mathbf{1}$ | 1 | 13 | 16 |
| Tengo $_{2}$ | 4 | 0 | 4 | 8 | 4 | $\mathbf{1}$ | 16 | 14 |
| Tengo | 4 | 6 | 8 | 10 | 8 | 14 | $\mathbf{1 2}$ | 16 |
| Other | 2 | 6 | 7 | 4 | 17 | 6 | 21 | $\mathbf{1 7}$ |

## Example: Disclosure risk assessment (1)

Table 5: Six potential key variables from the 3\% 2001 Individual SAR
Restricted to 154295 individuals living in South West England Sex (2 categories)
Age (coded into 11 categories)
Accomodation type (8 categories)
Number of cars owned or available for use (5 categories)
Occupation type (11 categories)
Family type (10 categories)
The full table has 96800 cells of which 3796 are uniques.
This is our 'population', from which we took a $3 \%$ subsample.

## Example: Disclosure risk assessment (2)

Sample data contains 4761 individuals in 2330 cells.
1543 (32\%) are uniques, of which 114 (7\%) are population uniques. Average population total in a sample unique cell is 17 .

| Population |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0 | 1 | 2 | 3 | 4 | $5-9$ | $10-19$ | $20+$ | Total |  |  |  |  |
| 0 | 84867 | 3682 | 1694 | 967 | 631 | 1482 | 757 | 390 | 94470 |  |  |  |  |
| 1 | - | $\mathbf{1 1 4}$ | $\mathbf{1 1 0}$ | $\mathbf{1 1 8}$ | $\mathbf{1 0 4}$ | $\mathbf{3 1 3}$ | $\mathbf{3 2 2}$ | $\mathbf{4 6 2}$ | $\mathbf{1 5 4 3}$ |  |  |  |  |
| 2 | - | - | 0 | 2 | 5 | 28 | 67 | 266 | 368 |  |  |  |  |
| Sample | - | - | - | - | 0 | 0 | 1 | 15 | 140 | 156 |  |  |  |
| 3 | - | - | - | - | 0 | 0 | 0 | 76 | 76 |  |  |  |  |
| $5-9$ | - | - | - | - | - | 0 | 0 | 125 | 125 |  |  |  |  |
| $10-19$ | - | - | - | - | - | - | 0 | 48 | 48 |  |  |  |  |
| $20+$ | - | - | - | - | - | - | - | 14 | 14 |  |  |  |  |
| Total | 84867 | 3796 | 1804 | 1087 | 740 | 1824 | 1161 | 1521 | 96800 |  |  |  |  |

## The inference problem

Sample data consists of values of categorical variables, recorded for each individual in the sample, expressed as a multiway contingency table.

The observed data are $\boldsymbol{y}$ which can be thought of as $\boldsymbol{y}=\left(\boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{n}\right)$, the collection of unit level data for the sample, or as $\boldsymbol{y}=\left(y_{1}, \ldots, y_{K}\right)$, the cell counts in the corresponding contingency table. $\boldsymbol{Y}=\left(Y_{1}, \ldots, Y_{K}\right)$ are the corresponding population cell counts.
$n$ and $N$ are the sample and population totals respectively.

## General Bayesian inference

For a single model, data $\boldsymbol{y}$, model parameters $\boldsymbol{\beta}$

$$
p(\boldsymbol{\beta} \mid \boldsymbol{y})=\frac{p(\boldsymbol{y} \mid \boldsymbol{\beta}) p(\boldsymbol{\beta})}{p(\boldsymbol{y})}
$$

Posterior $\propto$ likelihood $\times$ prior

$$
p(\boldsymbol{y})=\int p(\boldsymbol{y} \mid \boldsymbol{\beta}) p(\boldsymbol{\beta}) \mathrm{d} \boldsymbol{\beta}
$$

Prediction of a future observation $y^{*}$ proceeds naturally through

$$
p\left(y^{*} \mid \boldsymbol{y}\right)=\int p\left(y^{*} \mid \boldsymbol{\beta}\right) p(\boldsymbol{\beta} \mid \boldsymbol{y}) \mathrm{d} \boldsymbol{\beta}
$$

assuming $y^{*}$ is independent of $\boldsymbol{y}$ given $\boldsymbol{\beta}$.

## Bayesian inference for finite populations

Population cell frequencies $\boldsymbol{Y}=\left(Y_{1}, \ldots, Y_{K}\right)$ are the main parameters (unknowns).
A two stage prior distribution, $\boldsymbol{Y} \sim p(\boldsymbol{Y} \mid \boldsymbol{\beta}), \boldsymbol{\beta} \sim p(\boldsymbol{\beta})$
This implies a model for $p(\boldsymbol{y} \mid \boldsymbol{\beta})$, from which we get

$$
p(\boldsymbol{\beta} \mid \boldsymbol{y})=\frac{p(\boldsymbol{y} \mid \boldsymbol{\beta}) p(\boldsymbol{\beta})}{p(\boldsymbol{y})} \quad \text { as before. }
$$

Then, for the unknown part of the population, (assuming $\boldsymbol{Y}-\boldsymbol{y}$ is independent of $\boldsymbol{y}$, given $\boldsymbol{\beta}$ ) the inference is provided by the predictive

$$
p(\boldsymbol{Y}-\boldsymbol{y} \mid \boldsymbol{y})=\int p(\boldsymbol{Y}-\boldsymbol{y} \mid \boldsymbol{\beta}) p(\boldsymbol{\beta} \mid \boldsymbol{y}) \mathrm{d} \boldsymbol{\beta}
$$

(Ericson, 1969)

## Bayesian inference for contingency tables

$\boldsymbol{Y}$ has a multinomial $(N, \boldsymbol{\pi})$ distribution.
$\boldsymbol{y}$ has a multinomial $(n, \boldsymbol{\pi})$ distribution

$$
p(\boldsymbol{y} \mid \boldsymbol{\pi}) \propto \pi_{1}^{y_{1}} \pi_{2}^{y_{2}} \cdots \pi_{k}^{y_{k}}=\prod_{i=1}^{k} \pi_{i}^{y_{i}}
$$

$\pi$ might have a Dirichlet prior distribution - multicategory generalisation of beta distribution.

$$
p(\boldsymbol{\pi})=\frac{\Gamma\left(\lambda_{1}+\lambda_{2}+\cdots+\lambda_{k}\right)}{\Gamma\left(\lambda_{1}\right) \Gamma\left(\lambda_{1}\right) \cdots \Gamma\left(\lambda_{k}\right)} \pi_{1}^{\lambda_{1}-1} \pi_{2}^{\lambda_{2}-1} \cdots \pi_{k}^{\lambda_{k}-1}
$$

However, we usually prefer to model $\boldsymbol{\pi}$ as $\boldsymbol{\pi}=\boldsymbol{\pi}(\boldsymbol{\beta})$ and put a prior on $\boldsymbol{\beta}$.

Undirected graphical models


Directed graphical models

(a)

(b)

(c)

General log-linear models

## Decomposable graphical models


$A$ is independent of $B$ given $C$, so that

$$
P(A=i \text { and } B=j \mid C=k)=P(A=i \mid C=k) P(B=j \mid C=k)
$$

$\Rightarrow P(A=i$ and $B=j$ and $C=k)=P(A=i \mid C=k) P(B=j \mid C=k) P(C=k)$
or

$$
\pi_{i j k}=\beta_{i \mid k}^{A} \beta_{j \mid k}^{B} \beta_{k}^{C}
$$

Independent Dirichlet priors for $P(A \mid C=k), P(B \mid C=k)$, for each $k$, and for $P(C)$. Hyper-Dirichlet (Dawid and Lauritzen, 1993) is special case.

Posterior computation is generally straightforward. (Predictive?)

## Bayesian inference under model uncertainty

Allows model uncertainty to be coherently incorporated.
Full prior distribution consists of the multinomial $p\left(\boldsymbol{Y} \mid \boldsymbol{\beta}_{m}, m\right), p\left(\boldsymbol{\beta}_{m} \mid m\right)$ the prior for $\boldsymbol{\beta}_{m}$ for each $m \in M$ and $p(m)$, a discrete prior distribution over the set of possible models $M$.
Under model uncertainty

$$
p(\boldsymbol{Y}-\boldsymbol{y} \mid \boldsymbol{y})=\sum_{m \in M} p(m \mid \boldsymbol{y}) \int p\left(\boldsymbol{Y}-\boldsymbol{y} \mid N-n, \boldsymbol{\beta}_{m}, m\right) p\left(\boldsymbol{\beta}_{m} \mid \boldsymbol{y}, m\right) \mathrm{d} \boldsymbol{\beta}_{m}
$$

where by Bayes theorem

$$
p(m \mid \boldsymbol{y})=\frac{p(m) p(\boldsymbol{y} \mid m)}{\sum_{m \in M} p(m) p(\boldsymbol{y} \mid m)}
$$

and $p(\boldsymbol{y} \mid m)=\int p\left(\boldsymbol{y} \mid m, \boldsymbol{\beta}_{m}\right) p\left(\boldsymbol{\beta}_{m} \mid m\right) \mathrm{d} \boldsymbol{\beta}_{m}$.

## Model averaging

$$
p(\boldsymbol{Y}-\boldsymbol{y} \mid \boldsymbol{y})=\sum_{m} p(m \mid \boldsymbol{y}) \int p\left(\boldsymbol{Y}-\boldsymbol{y} \mid N-n, \boldsymbol{\beta}_{m}, m\right) p\left(\boldsymbol{\beta}_{m} \mid \boldsymbol{y}, m\right) \mathrm{d} \boldsymbol{\beta}_{m}
$$

is a weighted average of the posterior distributions under the various models.
The posterior model probabilities may not be of interest in themselves interpret them as weights for prediction.
Posterior predictive expectations of any function of $\boldsymbol{Y}$ will also be a model average

$$
E[g(\boldsymbol{Y}) \mid \boldsymbol{y}]=\sum_{m} p(m \mid \boldsymbol{y}) E[g(\boldsymbol{Y}) \mid \boldsymbol{y}, m] .
$$

Modelling provides 'structured smoothing'.

## Disclosure risk assessment

Table 3: Six potential key variables from the 3\% 2001 Individual SAR
Restricted to 154295 individuals living in South West England Sex (2 categories)
Age (coded into 11 categories)
Accomodation type (8 categories)
Number of cars owned or available for use (5 categories)
Occupation type (11 categories)
Family type (10 categories)
The full table has 96800 cells of which 3796 are uniques.
This is our 'population', from which we took a $3 \%$ subsample.

## Disclosure risk assessment (2)

Sample data contains 4761 individuals in 2330 cells.
1543 (32\%) are uniques, of which 114 (7\%) are population uniques. Average population total in a sample unique cell is 17 .

| Population |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0 | 1 | 2 | 3 | 4 | $5-9$ | $10-19$ | $20+$ | Total |  |  |  |  |
| 0 | 84867 | 3682 | 1694 | 967 | 631 | 1482 | 757 | 390 | 94470 |  |  |  |  |
| 1 | - | $\mathbf{1 1 4}$ | $\mathbf{1 1 0}$ | $\mathbf{1 1 8}$ | $\mathbf{1 0 4}$ | $\mathbf{3 1 3}$ | $\mathbf{3 2 2}$ | $\mathbf{4 6 2}$ | $\mathbf{1 5 4 3}$ |  |  |  |  |
| 2 | - | - | 0 | 2 | 5 | 28 | 67 | 266 | 368 |  |  |  |  |
| Sample | - | - | - | - | 0 | 0 | 1 | 15 | 140 | 156 |  |  |  |
| 3 | - | - | - | - | 0 | 0 | 0 | 76 | 76 |  |  |  |  |
| $5-9$ | - | - | - | - | - | 0 | 0 | 125 | 125 |  |  |  |  |
| $10-19$ | - | - | - | - | - | - | 0 | 48 | 48 |  |  |  |  |
| $20+$ | - | - | - | - | - | - | - | 14 | 14 |  |  |  |  |
| Total | 84867 | 3796 | 1804 | 1087 | 740 | 1824 | 1161 | 1521 | 96800 |  |  |  |  |

Either population uniqueness, of a sample unique

$$
I\left[Y_{i}=1, y_{i}=1\right]
$$

or Benedetti-Franconi

$$
\frac{1}{Y_{i}}
$$

As is true for most such measures, these are functions of $\boldsymbol{Y}$ and can be thought of as probabilities $P($ event $\mid \boldsymbol{Y})$, given the population $\boldsymbol{Y}$.

## Bayesian estimation of measures of disclosure risk Southampton

Corresponding Bayesian predictive probabilities are posterior expectations

$$
P(\text { event } \mid \boldsymbol{y})=E[P(\text { event } \mid \boldsymbol{Y}) \mid \boldsymbol{y}]
$$

so the above measures are estimated by the predictive probabilities

$$
p\left(Y_{i}=1 \mid \boldsymbol{y}\right)=p\left(Y_{i}-y_{i}=0 \mid \boldsymbol{y}\right) \quad \text { for sample uniques }
$$

and

$$
E\left(1 / Y_{i} \mid \boldsymbol{y}\right)=\sum_{j=0}^{N-n} \frac{1}{j+y_{i}} p\left(Y_{i}-y_{i}=j \mid \boldsymbol{y}\right) .
$$

## Computation

Computational difficulties

1. Evaluating integrals - may be mathematically intractable
2. Number of models is large.
3. Number of possible values of (multivariate) $\boldsymbol{Y}$ is large.

Monte Carlo methods of computation are possible but time-consuming. Approximating the posterior distribution of $\pi_{i}$ by a gamma $(\alpha, \beta)$ distribution, with correct mean and variance (straightforward to evaluate for hyper-Dirichlet) gives

$$
P\left(Y_{i}-y_{i}=0 \mid \boldsymbol{y}\right) \approx\left(\frac{\beta}{\beta+u}\right)^{\alpha}
$$

and

$$
E\left[1 / Y_{i} \mid \boldsymbol{y}\right] \approx\left(\frac{\beta}{\beta+u}\right)^{\alpha} \frac{1}{y_{i}}{ }_{2} F_{1}\left(\alpha, y_{i}, y_{i}+1, u /(\beta+u)\right) .
$$

which are fast to evaluate and accurate.
Also fast search strategy for identifying high probability models.

## Estimated v. True Disclosure Risk




Estimated $P(F=1$ If $)$ for sample uniques

## ROC curve for uniqueness detection



## Alcohol, hypertension and obesity

Table 1: Knuiman and Speed (1988)

|  |  | Alcohol intake (drinks/day) |  |  |  |
| :--- | :---: | ---: | ---: | ---: | ---: |
| Obesity | Hypertension | 0 | $1-2$ | $3-5$ | $>5$ |
| Low | Yes | 5 | 9 | 8 | 10 |
|  | No | 40 | 36 | 33 | 24 |
| Average | Yes | 6 | 9 | 11 | 14 |
| High | No | 33 | 23 | 35 | 30 |
|  | Yes | 9 | 12 | 19 | 19 |
|  | No | 24 | 25 | 28 | 29 |

## Issues with model probabilities

Posterior model probabilities for Table 1

| Model | Posterior probability | Posterior probability (ordinal) |
| :---: | :---: | :---: |
| $O H+A H$ | 0.036 | 0.725 |
| $A+O H$ | 0.643 | 0.091 |
| $A O H$ | 0.000 | 0.084 |
| $O H+O A$ | 0.000 | 0.053 |
| $O+A H$ | 0.017 | 0.027 |
| $O A+A H$ | 0.000 | 0.013 |
| $O+A+H$ | 0.304 | 0.005 |
| $H+O A$ | 0.000 | 0.002 |

## Ordinal probit models - multivariate

Chib and Greenberg (1998), generalising Albert and Chib (1993) $\boldsymbol{z}_{i} \sim N\left(\boldsymbol{\mu}, \boldsymbol{\Sigma}_{m}\right)$ is a latent continuous variable
$y_{i j}=c$ if $\alpha_{j, c-1}<z_{i} \leq \alpha_{j, c}$,

$$
\left(\alpha_{j, 0}=-\infty, \alpha_{j, m_{j}}=\infty\right)
$$

Prior is

$\boldsymbol{\mu} \sim$ MV Normal
$\alpha_{j, c} \sim$ Indept Uniform subject to ordering constraint
$\Sigma_{m} \sim$ distribution consistent with any constraints Identifiability constraints $-\sigma_{i i}=1, \alpha_{j, 1}=0, j=1, \ldots, p$.

## An alternative parameterisation

Constrain $\alpha_{j, 1}=-\alpha_{j, m_{j}-1}=\Phi^{-1}\left(\frac{1}{m_{j}}\right), j=1, \ldots, p$.
Then $\boldsymbol{\Sigma}$ is unconstrained and can be given a (hyper) Inverse Wishart prior. Conditionals are then straightforward to sample.

Not possible if any $k_{i}=2$ (binary variable).
Instead, consider the Cholesky decomposition

$$
\boldsymbol{\Sigma}^{-1}=\boldsymbol{P}^{T} \boldsymbol{P}
$$

where $\boldsymbol{P}$ is upper triangular.
[Daniels and Pourahmadi, 2002, Smith and Kohn, 2002]

## Southamplitin

The elements of $\boldsymbol{P}$ appear in the decomposition

$$
\begin{aligned}
z_{i p} & \sim \mu_{p}+N\left(0, \frac{1}{\phi_{p p}^{2}}\right) \\
z_{i, p-1} \mid z_{i p} & \sim \mu_{p-1}-\frac{\phi_{p-1, p}}{\phi_{p-1, p-1}}\left(z_{i p}-\mu_{p}\right)+N\left(0, \frac{1}{\phi_{p-1, p-1}^{2}}\right) \\
\vdots & \vdots \\
z_{i 1} \mid z_{i 2}, \ldots, z_{i p} & \sim \mu_{1}-\frac{\phi_{1 p}}{\phi_{11}}\left(z_{i p}-\mu_{p}\right)-\cdots-\frac{\phi_{12}}{\phi_{11}}\left(z_{i 2}-\mu_{2}\right)+N\left(0, \frac{1}{\phi_{11}^{2}}\right)
\end{aligned}
$$

For binary (and other) variables we can constrain $\lambda_{j} \equiv \phi_{j j}^{-1}=1$.
remaining $\lambda_{j} \equiv \phi_{j j}^{-1} \sim$ Gamma
$\psi_{j} \equiv\left(\phi_{j, j+1}, \ldots, \phi_{j p}\right) \phi_{j j}^{-1} \mid \phi_{j j} \sim$ MV Normal
[Equivalence with (hyper) inverse Wishart; Roverato (2002)]

## Graphical models

## Southampporn

Gaussian DAG models for $\boldsymbol{z}$ ('graphical' ordinal probit models for $\boldsymbol{y}$ ) can be specified by setting certain $\psi_{j k}=0$, for an appropriate ordering.
Undirected graphical models can be specified using an equivalent DAG
Conditional conjugacy allows straightforward MCMC computation
Model determination for DAG models given an ordering uses Reversible Jump MCMC with transitions between models which differ by a single edge (see also Fronk, 2002)

Model determination for undirected graphical models requires order switching. Propose to transpose two neighbouring variables in the current ordering, with associated deterministic parameter transformation (RJMCMC allows this)
Prior must compensate for the fact that not all models are available under the same number of orderings (Order counting in the 'model jump' step; Chandran et al, 2003).

## Southamplin

Table 2: Colouring of blackbirds (Anderson and Pemberton, 1985)

| Lower Mandible | Upper Mandible | 1 |  |  |
| :---: | :---: | ---: | ---: | ---: |
|  |  |  |  |  |
|  | 2 | 3 |  |  |
| 1 | 1 | 40 | 19 | 0 |
|  | 2 | 0 | 0 | 0 |
| 2 | 3 | 0 | 1 | 0 |
|  | 1 | 1 | 6 | 0 |
|  | 2 | 1 | 2 | 1 |
| 3 | 3 | 0 | 1 | 0 |
|  | 1 | 1 | 2 | 0 |
|  | 2 | 0 | 1 | 1 |
|  | 3 | 0 | 6 | 7 |

$1=$ mostly black, $2=$ intermediate, $3=$ mostly yellow

## Predictive logarithmic scores for Table 2

| Conditional independence <br> structure | Ordinal models | Non-ordinal models |
| :---: | :---: | :---: |
| None | -178.4 | -197.7 |
| $L \Perp O \mid U$ | -177.8 | -186.3 |
| $U \Perp O \mid L$ | -178.3 | -188.2 |
| model-averaged | -178.4 | -190.7 |

$$
S=\sum_{i=1}^{90} \log p\left(\boldsymbol{y}_{i} \mid \boldsymbol{y}_{\backslash i}\right)
$$

where $\boldsymbol{y}_{\backslash i}$ represents the data $\boldsymbol{y}$ with $\boldsymbol{y}_{i}$ removed
Posterior model probabilities are 0.279 (unstructured), $0.427(L \Perp O \mid U)$ and $0.293(U \Perp O \mid L)$.

Table 3: Inter-Ethnic Unions in Great Britain, 1991 (1\% SAR)

| Ethnic group of male partner | up of female par |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| White | 126150 | 102 | 41 | 63 | 71 | 10 | 0 | 79 | 148 | 139 |
| Black-Carribean | 225 | 599 | 8 | 10 | 4 | 2 | 0 | 2 | 3 | 12 |
| Black-African | 48 | 16 | 208 | 4 | 2 | 1 | 0 | 0 | 0 | 2 |
| Black Other | 76 | 3 | 2 | 62 | 1 | 0 | 0 | 0 | 2 | 1 |
| Indian | 134 | 2 | 4 | 1 | 1762 | 18 | 0 | 5 | 4 | 5 |
| Pakistani | 42 | 0 | 0 | 1 | 6 | 775 | 0 | 0 | 4 | 3 |
| Bangladeshi | 7 | 0 | 2 | 0 | 4 | 1 | 217 | 0 | 0 | 2 |
| Chinese | 34 | 0 | 0 | 0 | 2 | 0 | 0 | 234 | 0 | 0 |
| Other Asian | 55 | 4 | 1 | 1 | 4 | 4 | 1 | 2 | 296 | 6 |
| Other | 218 | 2 | 1 | 2 | 7 | 4 | 0 | 2 | 5 | 191 |

## Models for square contingency tables

Consider the saturated log-linear model for $\boldsymbol{\pi}$ written as

$$
\log \pi_{i j}= \begin{cases}\mu+\alpha_{i}+\alpha_{j}+\beta_{i}-\beta_{j}+\gamma_{i j}+\lambda_{i j} & i<j \\ \mu+\alpha_{i}+\alpha_{j}+\beta_{i}-\beta_{j}+\gamma_{j i} & i>j \\ \mu+\nu+\delta_{i} & i=j\end{cases}
$$

Simpler models can be obtained by setting one or more of $\nu,\left\{\alpha_{i}\right\},\left\{\beta_{i}\right\},\left\{\delta_{i}\right\}$, $\left\{\gamma_{i j}\right\},\left\{\lambda_{i j}\right\}$ to zero.

Such models are invariant under the action of the relevant permutation group $G=S_{r} \times S_{2}$ acting on the cells of the table by permutation of row/column levels and/or switching the row and column variable (McCullagh, 2000).

Potential models include well-known models such as symmetry, quasi-symmetry and quasi-independence.

## Extra structure

A further invariant component can be obtained by replacing $\left\{\alpha_{i}, \delta_{i}\right\}$ by $\left\{\alpha_{i} \sin \phi, \alpha_{i} \cos \phi\right\}$ for any $\phi \in(-\pi / 2, \pi / 2)$.
For example, $\phi=\tan ^{-1}(1 / 2)$ allows the diagonal parameter model

$$
\log \pi_{i j}= \begin{cases}\mu+\alpha_{i}+\alpha_{j}+\beta_{i}-\beta_{j}+\gamma & i=j \\ \mu+\alpha_{i}+\alpha_{j}+\beta_{i}-\beta_{j} & i \neq j\end{cases}
$$

(as well as the independence model)

## Example: Marriage

Table 4: Distribution of marriages in the village of Nemgéné by lineage of each spouse (Cazes, 1990)

| Husband's <br> lineage | lariwa Ger. | Segiwa | Suraba | Wife's lineage |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Pussuwoï | lariwa | Tengo $_{2}$ | Tengo | Other |  |  |  |  |
| lariwa Ger. | $\mathbf{0}$ | 2 | 3 | 3 | 3 | 4 | 1 | 3 |
| Segiwa | 2 | $\mathbf{0}$ | 2 | 5 | 1 | 1 | 6 | 3 |
| Suraba | 0 | 2 | $\mathbf{0}$ | 2 | 3 | 6 | 7 | 6 |
| Pussuwoï | 1 | 4 | 4 | $\mathbf{0}$ | 3 | 5 | 9 | 7 |
| lariwa | 2 | 2 | 3 | 4 | $\mathbf{1}$ | 1 | 13 | 16 |
| Tengo $_{2}$ | 4 | 0 | 4 | 8 | 4 | $\mathbf{1}$ | 16 | 14 |
| Tengo | 4 | 6 | 8 | 10 | 8 | 14 | $\mathbf{1 2}$ | 16 |
| Other | 2 | 6 | 7 | 4 | 17 | 6 | 21 | $\mathbf{1 7}$ |

## Invariant log-linear model inference

Weak evidence for the models 'QI+Marginal Homogeneity' (posterior probability $=0.0132$ ).

$$
\log \pi_{i j}= \begin{cases}\mu+\alpha_{i}+\alpha_{j} & i \neq j \\ \mu+\delta_{i} & i=j .\end{cases}
$$

The preferred model (posterior probability $=0.9867$ ) reflects some common structure of the diagonal and off-diagonal cells.

$$
\log \pi_{i j}= \begin{cases}\mu+\frac{\left(\alpha_{i}+\alpha_{j}\right) \sin \phi}{\sqrt{2(r-2)}} & i \neq j \\ \mu+\delta+\alpha_{i} \cos \phi & i=j\end{cases}
$$

Marginal likelihood: single $U_{\phi}$


Log marginal likelihoods for each model with $\phi$ plotted against $\phi / \pi$. Solid/dashed lines include/exclude $\nu$. In order of modal height: $\emptyset,\{\beta\},\{\gamma\},\{\beta, \gamma\},\{\lambda\},\{\beta, \lambda\},\{\gamma, \lambda\},\{\beta, \gamma, \lambda\}$

