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Dropout in Longitudinal Studies

Most longitudinal studies are designed to collect data on every individual at

each time of follow-up.

Commonly, not all responses are observed at all occasions.

Results in a large class of distinct missingness patterns.

Longitudinal studies frequently suffer from dropout:

Some individuals “drop-out” of study before intended completion time and

thus have incomplete responses.



Reasons for dropout: happenstance, adverse events, lack of efficacy.

Methods currently available via commercial software assume (at best) that

dropout is “ignorable”.

When dropout is “ignorable”, probability of dropout does not depend upon the

unobserved events (Rubin, 1976).

When probability of dropout depends upon the unobserved events it is said to

be “nonignorable”.

If dropout is “nonignorable”, bias can potentially arise.

Need for simple methods that can handle “nonignorable” dropout.



Example: Clinical trial of contracepting women

Randomized clinical trial comparing two doses of a contraceptive:

100 mg or 150 mg of DMPA, given at 90-day intervals.

Woman completed a menstrual diary that recorded any vaginal bleeding

pattern disturbances.

Outcome of interest is a repeated binary response indicating whether or not a

woman experienced amenorrhea (absence of menstrual bleeding).

A total of 1151 women completed the menstrual diaries.



Dropout: There was substantial dropout for reasons that were thought likely

to be related to the outcome.

More than one third of the women dropped out of the trial:

• 17% dropped out after receiving only one injection of DMPA

• 13% dropped out after receiving only two injections of DMPA

• 7% dropped out after receiving three injections of DMPA

When the dropout rates are broken down by dose group, the rates were

marginally higher in the 150 mg dose group.

Analytic Goal: Estimate dosage specific rates of amenorrhea that would have

been observed in the absence of dropout and evaluate how sensitive inferences

are to differing assumptions regarding dropout.



Notation

• N individuals observed at same set of occasions {t1, t2, ..., tn}

• Let Yi j denote the response for ith individual at jth occasion

• Y c
i denotes the n×1 complete response vector, Y c

i = (Yi1, ...,Yin)
′

• Let Xi j be a p×1 vector of covariates measured at t j, j = 1, . . . ,n

• Let Xi = (Xi1, ...,Xin)
′ denote the matrix of covariates

• Primarily interested in making inferences about mean of f (Y c
i |Xi),

e.g., E(Y c
i |Xi) = Xiβ or g [E(Y c

i |Xi)] = Xiβ.



Dropout

• Each subject has a discrete event time Di, denoting nonignorable dropout

• Let Di ∈ {t1, ..., tn} denote the last observed measurement occasion

• Dropout is “nonignorable” when Di depends on unobserved Yi j

• If Di 6= tn, ith subject is a “dropout”; otherwise, a “completer”

• Let φi j = Pr(Di = t j)



Observed Data

• Let Yi denote the ni ×1 vector of the responses observed on the ith

individual, i.e., the observed portion of Y c
i

• Observed data for each subject consist of (Yi,Di,Xi)

• The covariates in Xi will generally include treatment or exposure group,

in addition to time (t j)



Models for Joint Distribution of (Y c
i ,Di)

To correct for bias when dropout is nonignorable, joint models for the

multivariate outcomes and dropout indicators have been proposed.

Little and Rubin (1987, 2002) and Little (1993; 1995) identified two broad

classes of joint models:

1. Selection Models

2. Pattern Mixture Models



Selection Models

Joint distribution of Y c
i and Di is written as follows,

f (Y c
i ,Di|Xi) = fY (Y c

i |Xi) fD·Y (Di|Y
c
i ,Xi).

In longitudinal studies, primary focus is on inferences about fY (Y c
i |Xi).

fD·Y (Di|Y c
i ,Xi) plays the role of “nuisance parameters”, which can be ignored

only if f (Di|Y c
i ,Xi) does not depend upon any missing Yi j’s (or random

effects).

Examples: Wu and Carroll (1988); Diggle and Kenward (1994); Molenberghs,

Kenward and Lesaffre (1997); Ten Have et al. (1998, 2000).



Pattern Mixture Models

Joint distribution of Y c
i and Di is written as follows,

f (Y c
i ,Di|Xi) = fD(Di|Xi) fY ·D(Y c

i |Di,Xi).

In longitudinal studies inferences about fY ·D(Y c
i |Di,Xi) are not usually of

main interest.

Rather, the primary interest is on inferences about fY (Y c
i |Xi), obtained by

averaging over the distribution of Di.

Examples: Wu and Bailey (1989); Follmann and Wu (1995); Little (1993,

1994); Hogan and Laird (1997).



Comment

Models for nonignorable dropout are fundamentally nonidentifiable.

Inference is possible only when unverifiable assumptions are made.

Inescapable fact that all methods for handling nonignorable dropout have to

make some unverifiable assumptions.

In longitudinal studies, this problem is ameliorated somewhat by the fact that

there is some information about the response before dropout.

However, recognizing that identification is driven by unverifiable assumptions,

sensitivity analysis is warranted.



Selection versus Pattern Mixture Models

Selection Models:

• Target of inference: Model includes parameters of primary interest

• Easy to formulate hypotheses about dropout process

• Difficult to infer how assumptions on dropout process translate into

assumptions about distribution of unobserved responses

• Difficult to determine model identifiability

• Computationally intractable



Pattern Mixture Models:

• Target of inference: Model excludes parameters of primary interest

• Make explicit assumptions about distribution of unobserved responses

• Implied dropout process is not immediately transparent

• Straightforward to determine model identifiability

• Computationally simple



Marginally-Specified Pattern Mixture Models

Recall: Basic idea underlying pattern mixture models,

f (Y c
i ,Di|Xi) = fD(Di|Xi) fY ·D(Y c

i |Di,Xi),

is statification by different patterns of dropout.

Pattern mixture models for longitudinal data must incorporate dependence of

Y c
i on Di as well as Xi.

That is, distribution of Y c
i (given Xi) for those who dropout must be related to

the distribution of Y c
i for those who complete the study.



Example

Consider models for Yi j, conditional on the time of dropout, that are of the

following general form:

g [E(Yi j|Xi j,Di)] = Z′
i jβ

∗

where g(·) is a known link function (e.g., log or logit), design vector Zi j

depends on dropout time, Di and also incorporates the covariates Xi j.

Thus, conditional mean of Yi j might depend on Di and any other covariates

(e.g., treatment or exposure group, time), and their interactions.

Note that the model for conditional mean of Yi j will not be identified unless

some (unverifiable) assumptions are made.



Recall: In a longitudinal study parameter of primary interest is not β∗.

Rather, the target of inference is the marginal expectation of the repeated

outcomes,

E(Yi j|Xi j) = µi j =
n

∑
l=1

φil g−1(Z′
i jβ

∗),

where Zi j depends on the dropout patterns, and φil depends on Xi (or some

subset of Xi).

Problem:

For non-linear link function, g(·), if

g [E(Yi j|Xi j,Di)] = Z′
i jβ

∗

then

g [E(Yi j|Xi j)] 6= X ′
i jβ



Illustration:

For example, if

logit [E(Yi j|Xi j,Di)] = Z′
i jβ

∗

then

logit [E(Yi j|Xi j)] = log
(

µi j
1−µi j

)

= log







∑n
l=1 φil

exp(Z′i jβ∗)

1+exp(Z′i jβ∗)

1−∑n
l=1 φil

exp(Z′i jβ∗)

1+exp(Z′i jβ∗)







6= X ′
i jβ.



Marginally-Specified Pattern Mixture Models

To circumvent some of the problems with pattern mixture models, we propose

marginally-specified models that involve three main components:

(i) Marginal model for mean of Yi j: E(Yi j|Xi j)

(ii) Marginal model for dropout pattern, Di: fD(Di|Xi)

(iii) Conditional model for mean of Yi j given Di: E(Yi j|Di,Xi j)



(i) Marginal model for mean of Yi j:

g [E(Yi j|Xi j)] = X ′
i jβ

(ii) Marginal model for Di:

The multinomial probabilities for dropout, φi = (φi1, ...,φin)
′, can simply be

estimated as the sample proportion with each dropout time (stratified by

exposure or treatment group and, perhaps, by other relevant covariates).

Alternatively, can consider parametric models for φi.



(iii) Conditional model for mean of Yi j given Di:

g [E(Yi j|Xi j,Di)] = ∆i j +Z′
i jβ

∗

where Zi j depends on Di and also incorporates the covariates Xi j.

Note 1: ∆i j is defined implicitly as a function of β,β∗
,φi, since

E(Yi j|Xi j) = µi j =
n

∑
l=1

φil g−1(∆i j +Z′
i jβ

∗).

Note 2: (i), (ii), and (iii) specify a semi-parametric model.



Estimation of β

Once identifying constraints are adopted, β (and β∗) can be estimated via the
solution to a set of GEEs:

N

∑
i=1

G′
iV

−1
i [Yi −E(Yi|Xi,Di)] = 0,

where

Gi =
∂E(Yi|Xi,Di)

∂θ
,and θ = (β′

,β∗′),

and Vi is an appropriate weight matrix.

Note: Solution to GEE also requires solving for implicitly defined ∆i j:

g−1(X ′
i jβ) = E(Yi j|Xi j) = µi j =

n

∑
l=1

φil g−1(∆i j +Z′
i jβ

∗).



Concluding Remarks

Selection and pattern mixture models have their own distinct advantages and

disadvantages.

Marginally-specified pattern mixture models capitalize on desirable features

of each approach:

• marginally-specified pattern mixture models circumvent the obvious

drawback of pattern mixture models

• by construction, regression parameters in marginally-specified pattern

mixture models have “marginal” interpretations

• unlike selection models, identifiability restrictions are readily established

• estimation is relatively straightforward



The proposed model is semi-parametric.

The avoidance of full distributional assumptions can be advantageous:

• avoids having to make identifying restrictions on higher-order moments

• often no convenient specification of joint distribution when Yi j are discrete

The general approach is closely related to “marginally-specified conditional

models” developed for complete data (e.g., Fitzmaurice and Laird, 1993;

Azzalini, 1994; Heagerty and Zeger, 2000).

Extensions to more general patterns of missing data are, in principle,

straightforward.


