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Longitudinal Data

Data: From individual treatment effects over time.
Nature: Highly unbalanced, observing at irregular time points.
Time: ' individual observed at time ¢;;, j = 1,---, J;.

Collected data: covariate vector x;(t) along with its associated

response y; at time &;;:

{(tij, xi(tij), y(tiz), 5 =1, -+, Ji}

Notation: y; = (yi(ti), -, vi(tis), Xi = (xi(ta), - -, xi(ti))"



Example 1 — CD4 data

Measurements (from multi-center AIDS cohort study): CD4-cell

percentages and other important covariates for 283 homosexual men
infected during 84-91 were measured over a period of time in order
to monitor AIDS progression (Kaslow et al. 1987).

Covariates: X;(t) = Smoking, Xo(t) = age, X3(t) = preCDA4.
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Missing data: Very heavy; fewer data points at the end

Question: — How to model X(¢) and Y (¢)?

— How to predict individual’s progression?



Example 2 — Hormone Data

Measurements: urinary metabolite progesterone curves measured

over 21 conceptive and 70 nonconceptive women menstrual cycles.
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Nesting: subject subject| subject subject
cycle cycle cycle cycle

d. Nonconceptive+Subjectlil+Cyclel e. Nonconce ptive+ Subjectl1+Cyclez2

Log-Progesterone
Log-Progesterone
B

3 o s
Day in Cycle Day in Cycle

Alignment: aligned and truncated around the day of ovulation.

Data: Y, (¢) with missing values in some cycles.

Question: How to analyze nested functional data?




Statistical models (I)

Classical Linear Models: [Diggle, Liang and Zeger (1994) and

Hand and Crowder (1996)]

y(t) = Bo+ fixa(t) + - - - + Gpxp(t) + £(t)

Coeflicients are independent of time ¢

Method: Weighted LS using a working covariance matrix W:

n

Z(Yz — o, = X;8)' Wily; — o — X, 8)

1=1

A semiparametric model: allowing baseline to be time-

dependent

y(t) = Bolt) + Bz (t) + - - + Bpxp(t) + £(t)

See Moyeed and Diggle (1994), Zeger and Diggle (1994), Martinussen

and Scheike (1999), Lin and Ying (2001).



Statistical models (IT)

Functional linear model: (Varying-coefficient model)

Y(t) = Go(t) + 5r(H) Xa(t) + - - - + Bp(8) X,p(t) +£(2)

Hoover et al (1997), Brumback and Rice (1998) and Fan and Zhang
(2000), Chiang, Rice and Wu (2001), Chiang, Wu and Zhou (2002).

Comparisons:

— Linear model is too restrictive, can not capture time effect.

— Functional linear model is very flexible and understandable, but
its coefficients can not be well estimated (collinearity), and are

not as interpretable.

— The semiparametric model falls between these two. The 3 ad-
mits similar interpretation. It captures some time effect but not

as flexible as the FL. model.



Lin and Ying’s approach

Model: y(t) = a(t) + B x(t) + (t).

Counting process: N;(t) = Z'j]i:l I(t;; <t)

Assumption’s:

(a) Observed time: N;(t) = N/ (t A ¢;) (somewhat artificial)

(b) Noninform. censoring: E{y;(t)|x;(t),c; >t} = E{y;(t)|x;(t)}.

(c) Observations: The trajectories [x(t),y(t)] are fully observ-
able until the censoring time ¢;. This is unrealistic, and can be
implemented by linear interpolation or constant inter-

polation

(d) Working independence: W; is diagonal.



LY method — independence

Assumption: Observation times are independent of x(t).

Direct approach: Regarding «(t) as a parameter, minimize

Z/o Oow(t){yi(t)—oz(t)—,Bsz( t)}* dN;(t) Z{Zw i) {vi(ti;)

l

Baseline est.: a(t; 3) = y(t) — B'x(t) with &(t) = I(¢; > t)

_ Z &)xi(t)/ Z &), glt) = Z ilt)yilt)/ Z &(t)

Parameter estimate: Minimize

> [ wifuto) - 50} - 8 (0 - %O} (o)



LY method — dependence

Intensity: E{dN;(t)|x;(t),yi(t),c; >t} = A(t) exp{¥'x;(t)} (Cox

model). v = 0 corresponds to the independence case.

Baseline estimation: a(t;3) = y(t;~) — B’ x(t; ) with

Doy &ilt) exp{yxi(t) }x(t)
> &ilt) exp{yTx(t)}

i(ta 7) -

Parameter estimation: Minimize

n

S [ Wiy ~ 3t} - B (ki) — x(6 )P AN,

i=1

Estimation of nuisance parameter: Solving the partial likeli-

hood equation (see Pepe and Cai, 1993):

n

S [ flt) - (6.7)} dNi(t) = 0.

i=1 /0



Remarks

— LY method is simple and does not involve any smoothing.

— No smoothness is used in estimation. Hence, the efficiency can

be significantly improved.

— Interpolation can create large biases, making procedures in-

consistency.

— Counting process formulation and its nuisance parameters esti-

mation are cumbersome and artificial.

— The difference based estimator overcome all disadvantages and
does not involve any smoothing. It is useful for smoothing in the

profile least-squares estimator.
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Difference based method
Idea: From Fan and Huang (2001), Yatchew (1997). Order
{(tha X(tij)T7 Y(tw))u? — 17 T, JZ,Z — 17 e ,TL}

according to {t;;} as {(t;,x!,y,), i = 1,- -, n*}, withn* = 3" J,.

Marginal model: y; = a(t;) + Brx; + ¢;.

Differencing: The nuisance function eliminated by differencing;:

Vi1 —Yi = altiv) —alt) + 8" (xi1 —xi) +e; &~ B (X1 —X;) €.

Parameter estimation: Applied weighted LS to

Yir1 — Yi = ap +aq(tiyr — ;) + /BT(XH—l —X;) + €.

Limited lost of efficiency: among working independence esti-

mators. Pretend independence. The data {y211 — y2;} are indep.

Lose only {y2i+1 + 99}, containing less information about 3.
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Profile least-squares (I)

Nonparametric regression: Letting y*(t) = y(t) — B x(t), we

have
y(t) = a(t) + ().

Local linear fit: For each given t;, approximate

a(t) ~ a(ty) + o/ (to)(t —to) = a +b(t —to).

Minimize with respect to a and b

n J;
DO {wi(ty) — a = b(ti; — to)Pw(ti;) Knlti; — to),

=1 j=1

where Kj(-) = h7'K(-/h), K is a kernel and h is a bandwidth,
resulting in &(tg; B) = a.

Notation. y = (y7,---,y)), X = (X!, X!)T and a =

n

(a?v T 7a£)T'
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Profile least-squares (II)

Marginal model: y = a + X3 + €.

Local linear estimator: linear in response y — X3. Hence, a =

S(y — X3), where S is a smoothing matrix.

Synthetic model: (I —S)y = (I —S)X3 +e.

PLS: 8= {X"(I-8)"W({I—-8)X}'X"(I-8)"W(I-8)y

Estimated covariance matrix: cov{B|t;;, x;(t;})} = D 'VD !,

where D = X7 (I-8)"W(I—-8)X and V = cov{X' (I-S)"We}.
The matrix V can be estimated as V = X7 (I-S)"WCWT(I-S)X

with C = diag{é&{,---, &, }.
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Implementations

Sparsity: The function «(-) can not be estimated well at both
tails. We only estimate function at inter 90% of the data.

Bandwidth selection: Use DBE to get an estimate 3 ppp- Let-

: * . T LS
ting y*(t) = y(t) — Bpppx(t), we have y*(t) ~ a(t) +£(t). Apply a
bandwidth selection method to get an h. Using this h to obtain the

profile least-squares estimator and the estimator of a(-).

Methods: Cross-validation, pre-asymptotic substitution method

(Fan and Gijbels, 1995), asymptotic substitution method (Ruppert

et al, 1995), empirical bias method (Ruppert, 1997), among others.
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Simulation Models

Model: y(t) = a(t) + B'x(t) + &(t), where a(t) = 7/t/T or
rsin(2nt/7), B = (3,1.5,0,0,2,0,0,0)"

e(t) is Gaussian proc. with cov. E{e(s)e(t)} = exp(—=2|t — s|)

x ~ N(0,%) with cov(x;, z;) = 0.5

Design of observation time

Case I : LY design — independence. The process N*(t) was gen-
erated from a random effect Poisson process with intensity
rate 1, where 7 ~ Gamma(1, 0.5). The censoring ¢ ~ unif(0, 7)
with 7 = 4 or 20, resulting in, on average, 3 or 11 observations

per subject.

Case II : LY design — dependence. The intensity function is of form

nexp(0.521), instead of 7.
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case III : Observation time to be ¢;; = 0,1, - - -, [¢;], with ¢; ~ unif(0, 7),

where 7 = 10 or 20. On average, 6 or 11 obs. per subject.

case IV Huang, Hu and Zhou (2002) design: Fach subject has a set
of ‘scheduled’” time {0,1,3,...,29}, and each scheduled time has
a probability of being skipped 60%. For non-skipped time, a

uniform [-1, 1] is added to each scheduled time.

Objective: Performance comparison and accuracy of the

Sandwich formula.

Performance measure: MSE = E||3 — 3]
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Numerical Results — performance comparison

Table 1: Relative Efficiency — Ratios of MSEs with respect to LY estimator

Case I n = 50 n="15
a(t) 7 | DBE Profile LSE | DBE Profile LSE
T\/t)T 4 | 0.8481 0.6592 0.8407 0.6661

T\/t/T 20 | 0.3450 0.2962 0.3963 0.3246
Tsin(27t/7) 4 | 0.6632 0.5065 0.6756 0.5377
Tsin(2wt/T) 20 | 0.2798 0.2324 0.3001 0.2359

Case 11

T\/t)T 4 | 0.7868 0.6500 0.7209 0.6004

T t/T 20 | 0.2518 0.2138 0.2438 0.2015
Tsin(27t/7) 4 | 0.5627 0.4641 0.5409 0.4502
Tsin(27t/T) 20 | 0.1705 0.1395 0.1623 0.1280

Case III

T\/t)T 10 | 1.0785 0.7040 1.1299 0.7348

T t/T 20 | 0.7748 0.5006 0.8316 0.5424
Tsin(2wt/T) 10 | 1.2188 0.6818 1.2560 0.7347
Tsin(2wt/T) 20 | 0.9868 0.5007 1.0721 0.5973

Case IV
30\/75/30 0.9666 0.6842 1.0501 0.7086
30 sin(2nt/30) 0.1434  0.0953 | 0.1360  0.0869

Number of simulations: 400.

Remark: The deteriorated performance in case 3 is due to wide

gap between observation times.
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Numerical results— baseline estimation

20

20

(©) (d)

Remarks. Typical estimated baseline curves with n = 50 and 7 =
20. Right panel a(t) = 74/t/7 for case I and case II, respectively.

Left panel for a(t) = 7sin(t/7) for Cases I and II, respectively.
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Numerical results — accuracy of SE

Table 2: Stds and SEs of Profile LSE for Case I with a(t) = 7+/t/T

(n, T ) 153} Ba Bs

SD se (SD(se)) SD se (SD(se)) SD se (SD(se))

(50, 4) | 0.1512 0.1377(0.0327) | 0.1683 0.1579(0.0369) | 0.1664 0.1543(0.0381)
(75,4) | 0.1200 0.1148(0.0211) | 0.1262 0.1273(0.0243) | 0.1274 0.1287(0.0240)
(50, 20) | 0.0854 0.0820(0.0182) | 0.1004 0.0910(0.0211) | 0.1012  0.0933(0.0203)

(75, 20) | 0.0651 0.0675(0.0130) | 0.0718 0.0748(0.0144) | 0.0708 0.0749(0.0149)

Note. — The relative Monte Carlo error is of size 1/+4/800 for the
sample SD. It is negligible.
— The discrepancy is less than half of SD(se).

— Results for other cases are similar.
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Asymptotic results

Formulation: The asymptotic result depends on the formulation.

Follow Lin and Ying’s formulation for comparison.

Notation. Let a® = aa’ and

A= E/ {x(t) — Ex(t)}*w(t)dN ()

B £ { [ ix(0) - Exti)eu(tay <t>}®2.

Results: If h, = bn™" for 1/8 < a < 1/2, then as n — oo,

V(B - By) = N(O,A'BA™Y).

Consistency of Sandwich Formula: D-'vD™! consistently

estimates ATTBA !
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Variable selection

Background: To reduce modeling biases, large parametric models

are introduced.

Questions: How to

— automatically select significant variables?

— construct confidence intervals?

— verify properties of data-driven procedures?

Challenge: Not yet studied neither in semiparametric models nor

longitudinal data.

Traditional Approaches: stepwise procedure, best subset, - - -

Drawbacks: — hard to establish sampling properties;

— expensive in computation
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A viable solution
Setting: i.i.d samples first (see Fan and Li, 2001; 2002).

— Penalized likelihood: {(X3,Y) — >, pa(|B;]) where e.g.

pA(135]) = AlB;1.
— Sandwich formula based on the penalized likelihood.

— Oracle property: Suppose that

,-\

V3=

X8 = X B, + X!, with 3, = 0. IEII
S\

The oracle estimator: 3, = 0 and 3, \ ‘ %/

ORACLE

SOFTWARE POWERS THE INTERNET ™

being the MLE of submodel.

— What kind of py(-)?
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Penalty functions

Assumption: Normal likelihood with orthonormal X. Then,

PLK is equivalent to

ly — B8 + ZPA(WJ'D =c+ Z{(Zz' — ;) + o161},

where z = x'y and ¢ = ||y — xz||*.

Componentwise minimization: (z; — 0)% + py(]0]).

Ly penalty: py(|0]) = \|f|*> = ridge regression

Entropy penalty: p)\(|0|) = M\ (]|0]| # 0) = Best subset

Hard-thresholding penalty: p,\(|0]) = \2—(|0] = A)2I(]0] < \)

— Best subset.

Li-penalty: p)\(|0|) = A|#| = soft-thresholding (Dohono and

Johnstone, 1994) and LASSO (Tibshirani 1996, 97, Knight and Fu,

2000).
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Other penalty functions

SCADp,(0) = I(0 < \) +

Transformed Li: p) = \a|z|/(1+a|z|)

L,-penalty: py = \|z|f

2.5

15
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Desired Properties

— continuity: to avoid instability in model prediction

= argming{[6] + g, (6])} = 0
— sparsity: to reduce model complexity <= p)(0+) > 0

— Unbiasedness: to avoid unnecessary modeling bias <=

limyg oo pA(6]) = 0

Method Best subset | Ridge | LASSO | SCAD
Continuity X X X
Sparsity X X X
Unbiasedness X X
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Variable Selection for Semiparametric Model

Weighted profile least-squares: Minimize

(8) = 5y — XB)" (1 - 8" W(I - S)(y — X)

Variable selection: Penalized WPLS L(3) = ¢(3)+n 25—1 pa(15;])
It can be obtained from the penalized likelihood via profiling.

Computation: Use the iterated ridge regression (modified Newton-

Raphson method)

Covariance matrix can be estimated from a modified sandwich

formula.

Choice of regularization parameter can be obtained by a form

of GCV.,
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Sampling Properties

Notation: a, = max;{|p) (|Bjol)| : Bjo # 0}

and b, = max;{|p\ ([Bjol)| : Bjo # 0}. Note that a, = b, = 0 for
SCAD and hard-thresholding penalty and a,, = A,,, b, = 0 for L;.

Rate of convergence: If a,, — 0 and b,, — 0 then there exists a

local minimizer B of £(8) such that ||8 — By|| = Op(n 12 + a,).

Significant Variables: WOLG 3, = (3,,0).

Oracle properties: If A\, — 0 and y/n\, — oo, then the above

root-n consistent estimator satisfies

— (Sparsity) 8, = 0:
— (Normality) \/E(B1 — Bio) — N:(0, A1 BiiA)

Remark. No oracle property of Li-penalty.
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Evaluation of the Procedure

Criterion — Prediction error. Letting {X(t), §(t), N(t)} be a new

observation,
- . A o7 -
PE(@.B) = E [ {5(t) - a(t) ~ B'x(0)} dN @)
0
PE = Noise error 4+ error of & + error of B + ...

Generalize MSE: The effectiveness of ,3 is assessed via

GMSE = <B—50>T {/OOO Ex(t) exp{y'x(t)}£(t) d/\@} (B—/Bo)-

The blacket term can be evaluated by the Monte Carlo method.

When x(t) is Gaussian, it has an analytic form.
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Effectiveness of PPLS

Table 3: Comparison of Variable Selection Procedures: Ratio of PPLS versus PLS based on
400 simulations

at) =1/t/T a(t) = Tsin(2nt/7)

Method | RGMSE Zero Coefficient | RGMSE Zero Coeflicient
Case I: n =50,7 =20

Method | mean (std) C I mean (std) C I
Ly 0.3936(0.2966)  4.9950 0 0.3923(0.2863)  4.9900 0
SCAD | 0.3549(0.2453)  4.9950 0 0.3533(0.2453)  4.9925 0
Oracle | 0.3502(0.2412)  5.0000 0 0.3480(0.2425)  5.0000 0
Case [I: n =757 =4

Ly 0.5772(0.2614)  4.3325 0 0.5733(0.2648)  4.3500 0
SCAD 0.5127(0.2101)  4.4275 0 0.5115(0.2107)  4.4250 0

Oracle | 0.3939(0.2326)  5.0000 0 0.3915(0.2318)  5.0000 0
Case I1I: n = 50,7 = 20
Ly 0.3975(0.2843)  4.9950 0 0.4002(0.2860)  4.9975 0
SCAD | 0.3450(0.2278)  4.9975 0 0.3460(0.2279)  4.9975 0
Oracle | 0.3438(0.2269)  5.0000 0 0.3450(0.2271)  5.0000 0
Case IV: n =50, 7 = 30
Ly 0.4091 (0.2716) 4.9975 0 0.4074 (0.2717) 5.0000 0
SCAD | 0.3554 (0.2210) 5.0000 0 0.3546 (0.2205) 5.0000 0
Oracle | 0.3549 (0.2200) 5.0000 0 0.3542 (0.2199) 5.0000 0

Table 4: Accuracy of Standard Errors formula

B o Bs
std se (std(se)) std se (std(se)) std se (std(se))
I 0.0823 0.0798 (0.0176) | 0.0826 0.0775 (0.0177) | 0.0735 0.0702 (0.0166)

SCAD | 0.0810 0.0808 (0.0180) | 0.0821 0.0793 (0.0187) | 0.0738 0.0708 (0.0169)
Oracle | 0.0808 0.0808 (0.0181) | 0.0810 0.0794 (0.0188) | 0.0737 0.0709 (0.0169)

Based on case I design with n = 50, a(t) = 74/t/7 with 7 = 20.
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Application to the CD4 Data

Previous Analysis: Wu and Chiang (2000) and Fan and Zhang

(2000) used the model

y(t) = Bo(t) + Bi(t)Smoking + B(t) Age(t) + B5(t)PreCDA(t) +&(t).

Results of Huang, Wu and Zhou (2002) suggests that functions 3;(-),
B3(+), and (3(+) are constant.

Our Analysis: Involve interactions

y(t) = Oé(t) + 121 + ﬁgIg(t) + 63563(15) + 6433%@) + @533‘%(75)

+06w172(t) + Brriws(t) + Bswa(t)zs(t) + &(t).

2o and x3 are standardized age and PreCD4, resp.

30



Results

Table 5: Estimated Coefficients

Variable Profile LS Ly SCAD
Blse(3)) Bise()) Blse(3))

Smoking 0.5333(1.0972) 0(0) 0(0)

Age -0.1010(0.9167) 0(0) 0(0)
PreCD4 2.8252(0.8244) | 3.0932(0.5500) | 3.1993(0.5699)
Age? 0.1171(0.4558) 0(0) 0(0)
PreCD4? -0.0333(0.3269) 0(0) 0(0)
Smoking*Age -1.7084(1.1192) | -0.9684(0.4904) | -1.0581(0.5221)
Smoking*PreCD4 | 1.3277(1.3125) 0(0) 0(0)
Age*PreCD4 -0.1360(0.5413) 0(0) 0(0)

70

Estimated Baseline Function

60

T T

T T
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