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Longitudinal Data

Data: From individual treatment effects over time.

Nature: Highly unbalanced, observing at irregular time points.

Time: ith individual observed at time tij, j = 1, · · · , Ji.

Collected data: covariate vector xi(t) along with its associated

response yi at time tij:

{(tij,xi(tij), y(tij)), j = 1, · · · , Ji}

Notation: yi = (yi(ti1), · · · , yi(tiJi
))T , Xi = (xi(ti1), · · · ,xi(tiJi

))T .
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Example 1 — CD4 data

Measurements (from multi-center AIDS cohort study): CD4-cell

percentages and other important covariates for 283 homosexual men

infected during 84-91 were measured over a period of time in order

to monitor AIDS progression (Kaslow et al. 1987).

Covariates: X1(t) = Smoking, X2(t) = age, X3(t) = preCD4.
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Missing data: Very heavy; fewer data points at the end

Question: — How to model X(t) and Y (t)?

— How to predict individual’s progression?
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Example 2 — Hormone Data

Measurements: urinary metabolite progesterone curves measured

over 21 conceptive and 70 nonconceptive women menstrual cycles.

Nesting:
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Alignment: aligned and truncated around the day of ovulation.

Data: Yijk(t) with missing values in some cycles.

Question: How to analyze nested functional data?
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Statistical models (I)

Classical Linear Models: [Diggle, Liang and Zeger (1994) and

Hand and Crowder (1996)]

y(t) = β0 + β1x1(t) + · · · + βpxp(t) + ε(t)

Coefficients are independent of time t

Method: Weighted LS using a working covariance matrix Wi:

n∑
i=1

(yi −αi −Xiβ)TWi(yi −αi −Xiβ)

A semiparametric model: allowing baseline to be time-

dependent

y(t) = β0(t) + β1x1(t) + · · · + βpxp(t) + ε(t)

See Moyeed and Diggle (1994), Zeger and Diggle (1994), Martinussen

and Scheike (1999), Lin and Ying (2001).
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Statistical models (II)

Functional linear model: (Varying-coefficient model)

Y (t) = β0(t) + β1(t)X1(t) + · · · + βp(t)Xp(t) + ε(t)

Hoover et al (1997), Brumback and Rice (1998) and Fan and Zhang

(2000), Chiang, Rice and Wu (2001), Chiang, Wu and Zhou (2002).

Comparisons:

— Linear model is too restrictive, can not capture time effect.

— Functional linear model is very flexible and understandable, but

its coefficients can not be well estimated (collinearity), and are

not as interpretable.

— The semiparametric model falls between these two. The β ad-

mits similar interpretation. It captures some time effect but not

as flexible as the FL model.
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Lin and Ying’s approach

Model: y(t) = α(t) + βTx(t) + ε(t).

Counting process: Ni(t) ≡
∑Ji

j=1 I(tij ≤ t)

Assumption’s:

(a) Observed time: Ni(t) = N ∗
i (t ∧ ci) (somewhat artificial)

(b) Noninform. censoring: E{yi(t)|xi(t), ci ≥ t} = E{yi(t)|xi(t)}.

(c) Observations: The trajectories [x(t), y(t)] are fully observ-

able until the censoring time ci. This is unrealistic, and can be

implemented by linear interpolation or constant inter-

polation

(d) Working independence: Wi is diagonal.

7



LY method — independence

Assumption: Observation times are independent of x(t).

Direct approach: Regarding α(t) as a parameter, minimize

n∑
i=1

∫ +∞

0

w(t){yi(t)−α(t)−βTxi(t)}2 dNi(t) =
∑

i


Ji∑

j=1

w(tij){yi(tij)− · · ·

Baseline est.: α̂(t; β) = ȳ(t)− βT x̄(t) with ξi(t) = I(ci ≥ t)

x̄(t) =

n∑
i=1

ξi(t)xi(t)/

n∑
i=1

ξi(t), ȳ(t) =

n∑
i=1

ξi(t)yi(t)/

n∑
i=1

ξi(t)

Parameter estimate: Minimize

n∑
i=1

∫ +∞

0

w(t)[{yi(t)− ȳ(t)} − βT{xi(t)− x̄(t)}]2 dNi(t).
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LY method — dependence

Intensity: E{dN ∗
i (t)|xi(t), yi(t), ci ≥ t} = λ(t) exp{γ ′xi(t)} (Cox

model). γ = 0 corresponds to the independence case.

Baseline estimation: α̂(t; β) = ȳ(t; γ)− βT x̄(t; γ) with

x̄(t,γ) =

∑n
i=1 ξi(t) exp{γTxi(t)}xi(t)∑n

i=1 ξi(t) exp{γTxi(t)}
,

Parameter estimation: Minimize

n∑
i=1

∫ +∞

0

w(t)[{yi(t)− ȳ(t; γ)} − βT{xi(t; γ)− x̄(t; γ)}]2 dNi(t).

Estimation of nuisance parameter: Solving the partial likeli-

hood equation (see Pepe and Cai, 1993):

n∑
i=1

∫ +∞

0

{xi(t)− x̄(t, γ)}dNi(t) = 0.
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Remarks

— LY method is simple and does not involve any smoothing.

— No smoothness is used in estimation. Hence, the efficiency can

be significantly improved.

— Interpolation can create large biases, making procedures in-

consistency.

— Counting process formulation and its nuisance parameters esti-

mation are cumbersome and artificial.

— The difference based estimator overcome all disadvantages and

does not involve any smoothing. It is useful for smoothing in the

profile least-squares estimator.
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Difference based method

Idea: From Fan and Huang (2001), Yatchew (1997). Order

{(tij,x(tij)
T ,y(tij)), j = 1, · · · , Ji, i = 1, · · · , n}

according to {tij} as {(ti,xT
i ,yi), i = 1, · · · , n∗}, with n∗ =

∑n
i=1 Ji.

Marginal model: yi = α(ti) + βTxi + εi.

Differencing: The nuisance function eliminated by differencing:

yi+1−yi = α(ti+1)−α(ti)+βT (xi+1−xi)+ei ≈ βT (xi+1−xi)+ei.

Parameter estimation: Applied weighted LS to

yi+1 − yi = α0 + α1(ti+1 − ti) + βT (xi+1 − xi) + ei.

Limited lost of efficiency: among working independence esti-

mators. Pretend independence. The data {y2i+1 − y2i} are indep.

Lose only {y2i+1 + y2i}, containing less information about β.
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Profile least-squares (I)

Nonparametric regression: Letting y∗(t) ≡ y(t)− βTx(t), we

have

y∗(t) = α(t) + ε(t).

Local linear fit: For each given t0, approximate

α(t) ≈ α(t0) + α′(t0)(t− t0) ≡ a + b(t− t0).

Minimize with respect to a and b

n∑
i=1

Ji∑
j=1

{y∗i (tij)− a− b(tij − t0)}2w(tij)Kh(tij − t0),

where Kh(·) = h−1K(·/h), K is a kernel and h is a bandwidth,

resulting in α̂(t0; β) = â.

Notation. y = (yT
1 , · · · ,yT

n ), X = (XT
1 , · · · ,XT

n )T and α =

(αT
1 , · · · , αT

n )T .
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Profile least-squares (II)

Marginal model: y = α + Xβ + ε.

Local linear estimator: linear in response y−Xβ. Hence, α̂ =

S(y−Xβ), where S is a smoothing matrix.

Synthetic model: (I− S)y = (I− S)Xβ + ε.

PLS: β̂ = {XT (I− S)TW(I− S)X}−1XT (I− S)TW(I− S)y

Estimated covariance matrix: cov{β̂|tij,xi(tij)} = D−1VD−1,

where D = XT (I−S)TW(I−S)X and V = cov{XT (I−S)TWε}.

The matrix V can be estimated as V̂ = XT (I−S)TWCWT (I−S)X

with C = diag{ε̂1ε̂
T
1 , · · · , ε̂nε̂

T
n}.
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Implementations

Sparsity: The function α(·) can not be estimated well at both

tails. We only estimate function at inter 90% of the data.

Bandwidth selection: Use DBE to get an estimate β̂DBE. Let-

ting y∗(t) = y(t)− β̂
T

DBEx(t), we have y∗(t) ≈ α(t) + ε(t). Apply a

bandwidth selection method to get an ĥ. Using this ĥ to obtain the

profile least-squares estimator and the estimator of α(·).

Methods: Cross-validation, pre-asymptotic substitution method

(Fan and Gijbels, 1995), asymptotic substitution method (Ruppert

et al, 1995), empirical bias method (Ruppert, 1997), among others.
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Simulation Models

Model: y(t) = α(t) + βTx(t) + ε(t), where α(t) = τ
√

t/τ or

τ sin(2πt/τ ), β = (3, 1.5, 0, 0, 2, 0, 0, 0)T

ε(t) is Gaussian proc. with cov. E{ε(s)ε(t)} = exp(−2|t− s|)

x ∼ N(0, Σ) with cov(xi, xj) = 0.5|i−j|.

Design of observation time

Case I : LY design — independence. The process N ∗(t) was gen-

erated from a random effect Poisson process with intensity

rate η, where η ∼ Gamma(1, 0.5). The censoring c ∼ unif(0, τ )

with τ = 4 or 20, resulting in, on average, 3 or 11 observations

per subject.

Case II : LY design — dependence. The intensity function is of form

η exp(0.5x1), instead of η.
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case III : Observation time to be tij = 0, 1, · · · , [ci], with ci ∼ unif(0, τ ),

where τ = 10 or 20. On average, 6 or 11 obs. per subject.

case IV Huang, Hu and Zhou (2002) design: Each subject has a set

of ‘scheduled’ time {0,1,3,...,29}, and each scheduled time has

a probability of being skipped 60%. For non-skipped time, a

uniform [-1, 1] is added to each scheduled time.

Objective: Performance comparison and accuracy of the

Sandwich formula.

Performance measure: MSE = E‖β̂ − β‖2.
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Numerical Results — performance comparison

Table 1: Relative Efficiency — Ratios of MSEs with respect to LY estimator

Case I n = 50 n = 75
α(t) τ DBE Profile LSE DBE Profile LSE

τ
√

t/τ 4 0.8481 0.6592 0.8407 0.6661

τ
√

t/τ 20 0.3450 0.2962 0.3963 0.3246
τ sin(2πt/τ) 4 0.6632 0.5065 0.6756 0.5377
τ sin(2πt/τ) 20 0.2798 0.2324 0.3001 0.2359

Case II

τ
√

t/τ 4 0.7868 0.6500 0.7209 0.6004

τ
√

t/τ 20 0.2518 0.2138 0.2438 0.2015
τ sin(2πt/τ) 4 0.5627 0.4641 0.5409 0.4502
τ sin(2πt/τ) 20 0.1705 0.1395 0.1623 0.1280

Case III

τ
√

t/τ 10 1.0785 0.7040 1.1299 0.7348

τ
√

t/τ 20 0.7748 0.5006 0.8316 0.5424
τ sin(2πt/τ) 10 1.2188 0.6818 1.2560 0.7347
τ sin(2πt/τ) 20 0.9868 0.5007 1.0721 0.5973

Case IV

30
√

t/30 0.9666 0.6842 1.0501 0.7086
30 sin(2πt/30) 0.1434 0.0953 0.1360 0.0869

Number of simulations: 400.

Remark: The deteriorated performance in case 3 is due to wide

gap between observation times.
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Numerical results— baseline estimation
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Remarks. Typical estimated baseline curves with n = 50 and τ =

20. Right panel α(t) = τ
√

t/τ for case I and case II, respectively.

Left panel for α(t) = τ sin(t/τ ) for Cases I and II, respectively.
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Numerical results — accuracy of SE

Table 2: Stds and SEs of Profile LSE for Case I with α(t) = τ
√

t/τ

(n, τ) β1 β2 β5

SD se (SD(se)) SD se (SD(se)) SD se (SD(se))

(50, 4) 0.1512 0.1377(0.0327) 0.1683 0.1579(0.0369) 0.1664 0.1543(0.0381)

(75, 4) 0.1200 0.1148(0.0211) 0.1262 0.1273(0.0243) 0.1274 0.1287(0.0240)

(50, 20) 0.0854 0.0820(0.0182) 0.1004 0.0910(0.0211) 0.1012 0.0933(0.0203)

(75, 20) 0.0651 0.0675(0.0130) 0.0718 0.0748(0.0144) 0.0708 0.0749(0.0149)

Note. — The relative Monte Carlo error is of size 1/
√

800 for the

sample SD. It is negligible.

— The discrepancy is less than half of SD(se).

— Results for other cases are similar.
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Asymptotic results

Formulation: The asymptotic result depends on the formulation.

Follow Lin and Ying’s formulation for comparison.

Notation. Let a⊗2 = aaT and

A = E

∫ ∞

0

{x(t)− Ex(t)}⊗2w(t)dN(t)

B = E

{∫ ∞

0

{x(t)− Ex(t)}ε(t)w(t)dN(t)

}⊗2

.

Results: If hn = bn−a, for 1/8 < a < 1/2, then as n →∞,

√
n(β̂ − β0)

L−→ N(0,A−1BA−1).

Consistency of Sandwich Formula: D−1V̂D−1 consistently

estimates A−1BA−1.
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Variable selection

Background: To reduce modeling biases, large parametric models

are introduced.

Questions: How to

— automatically select significant variables?

— construct confidence intervals?

— verify properties of data-driven procedures?

Challenge: Not yet studied neither in semiparametric models nor

longitudinal data.

Traditional Approaches: stepwise procedure, best subset, · · ·

Drawbacks: — hard to establish sampling properties;

— expensive in computation
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A viable solution

Setting: i.i.d samples first (see Fan and Li, 2001; 2002).

— Penalized likelihood: `(Xβ, Y ) −
∑

j pλ(|βj|) where e.g.

pλ(|βj|) = λ|βj|.

— Sandwich formula based on the penalized likelihood.

— Oracle property: Suppose that

Xβ = XT
1 β1 + XT

2 β2 with β2 = 0.

The oracle estimator: β̂2 = 0 and β̂1

being the MLE of submodel.

— What kind of pλ(·)?
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Penalty functions

Assumption: Normal likelihood with orthonormal X. Then,

PLK is equivalent to

‖y − xβ‖2 +
∑

j

pλ(|βj|) = c +
∑

j

{(zi − βj)
2 + pλ(|βj|)},

where z = xTy and c = ‖y− xz‖2.

Componentwise minimization: (zi − θ)2 + pλ(|θ|).

L2 penalty: pλ(|θ|) = λ|θ|2 =⇒ ridge regression

Entropy penalty: pλ(|θ|) = λI(|θ| 6= 0) =⇒ Best subset

Hard-thresholding penalty: pλ(|θ|) = λ2−(|θ|−λ)2I(|θ| < λ)

=⇒ Best subset.

L1-penalty: pλ(|θ|) = λ|θ| =⇒ soft-thresholding (Dohono and

Johnstone, 1994) and LASSO (Tibshirani 1996, 97, Knight and Fu,

2000).
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Other penalty functions

SCAD:p′λ(θ) = I(θ ≤ λ) + (aλ−θ)+
(a−1)λ I(θ > λ),

Transformed L1: pλ = λa|x|/(1+a|x|)

Lp-penalty: pλ = λ|x|p

x
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Desired Properties

— continuity: to avoid instability in model prediction

⇐⇒ argminθ{|θ| + p′λ(|θ|)} = 0

— sparsity: to reduce model complexity ⇐= p′λ(0+) > 0

— Unbiasedness: to avoid unnecessary modeling bias ⇐⇒

lim|θ|→∞ pλ(|θ|) = 0

Method Best subset Ridge LASSO SCAD

Continuity x x x

Sparsity x x x

Unbiasedness x x
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Variable Selection for Semiparametric Model

Weighted profile least-squares: Minimize

`(β) =
1

2
(y−Xβ)T (I− S)TW(I− S)(y−Xβ)

Variable selection: Penalized WPLSL(β) = `(β)+n
∑d

j=1 pλ(|βj|)

It can be obtained from the penalized likelihood via profiling.

Computation: Use the iterated ridge regression (modified Newton-

Raphson method)

Covariance matrix can be estimated from a modified sandwich

formula.

Choice of regularization parameter can be obtained by a form

of GCV.
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Sampling Properties

Notation: an = maxj{|p′λn
(|βj0|)| : βj0 6= 0}

and bn = maxj{|p′′λn
(|βj0|)| : βj0 6= 0}. Note that an = bn = 0 for

SCAD and hard-thresholding penalty and an = λn, bn = 0 for L1.

Rate of convergence: If an → 0 and bn → 0 then there exists a

local minimizer β̂ of L(β) such that ||β̂ − β0|| = OP (n−1/2 + an).

Significant Variables: WOLG β0 = (β10,0).

Oracle properties: If λn → 0 and
√

nλn → ∞, then the above

root-n consistent estimator satisfies

— (Sparsity) β̂2 = 0;

— (Normality)
√

n(β̂1 − β10) → Ns(0,A−1
11 B11A

−1
11 )

Remark. No oracle property of L1-penalty.
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Evaluation of the Procedure

Criterion — Prediction error. Letting {x̃(t), ỹ(t), Ñ(t)} be a new

observation,

PE(α̂, β̂) = E

∫ ∞

0

{ỹ(t)− α̂(t)− β̂
T
x̃(t)}2 dÑ(t).

PE = Noise error + error of α̂ + error of β̂ + ...

Generalize MSE: The effectiveness of β̂ is assessed via

GMSE = (β̂−β0)
T

{∫ ∞

0

Ex̃(t)⊗2 exp{γT x̃(t)}ξ(t) dΛ(t)

}
(β̂−β0).

The blacket term can be evaluated by the Monte Carlo method.

When x(t) is Gaussian, it has an analytic form.
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Effectiveness of PPLS

Table 3: Comparison of Variable Selection Procedures: Ratio of PPLS versus PLS based on
400 simulations

α(t) = τ
√

t/τ α(t) = τ sin(2πt/τ)
Method RGMSE Zero Coefficient RGMSE Zero Coefficient
Case I: n = 50, τ = 20
Method mean (std) C I mean (std) C I
L1 0.3936(0.2966) 4.9950 0 0.3923(0.2863) 4.9900 0
SCAD 0.3549(0.2453) 4.9950 0 0.3533(0.2453) 4.9925 0
Oracle 0.3502(0.2412) 5.0000 0 0.3480(0.2425) 5.0000 0
Case II: n = 75, τ = 4
L1 0.5772(0.2614) 4.3325 0 0.5733(0.2648) 4.3500 0
SCAD 0.5127(0.2101) 4.4275 0 0.5115(0.2107) 4.4250 0
Oracle 0.3939(0.2326) 5.0000 0 0.3915(0.2318) 5.0000 0
Case III: n = 50, τ = 20
L1 0.3975(0.2843) 4.9950 0 0.4002(0.2860) 4.9975 0
SCAD 0.3450(0.2278) 4.9975 0 0.3460(0.2279) 4.9975 0
Oracle 0.3438(0.2269) 5.0000 0 0.3450(0.2271) 5.0000 0
Case IV: n = 50, τ = 30
L1 0.4091 (0.2716) 4.9975 0 0.4074 (0.2717) 5.0000 0
SCAD 0.3554 (0.2210) 5.0000 0 0.3546 (0.2205) 5.0000 0
Oracle 0.3549 (0.2200) 5.0000 0 0.3542 (0.2199) 5.0000 0

Table 4: Accuracy of Standard Errors formula

β1 β2 β5

std se (std(se)) std se (std(se)) std se (std(se))
L1 0.0823 0.0798 (0.0176) 0.0826 0.0775 (0.0177) 0.0735 0.0702 (0.0166)
SCAD 0.0810 0.0808 (0.0180) 0.0821 0.0793 (0.0187) 0.0738 0.0708 (0.0169)
Oracle 0.0808 0.0808 (0.0181) 0.0810 0.0794 (0.0188) 0.0737 0.0709 (0.0169)

Based on case I design with n = 50, α(t) = τ
√

t/τ with τ = 20.

29



Application to the CD4 Data

Previous Analysis: Wu and Chiang (2000) and Fan and Zhang

(2000) used the model

y(t) = β0(t) + β1(t)Smoking + β2(t)Age(t) + β3(t)PreCD4(t) + ε(t).

Results of Huang, Wu and Zhou (2002) suggests that functions β1(·),

β3(·), and β3(·) are constant.

Our Analysis: Involve interactions

y(t) = α(t) + β1x1 + β2x2(t) + β3x3(t) + β4x
2
2(t) + β5x

2
3(t)

+β6x1x2(t) + β7x1x3(t) + β8x2(t)x3(t) + ε(t).

x2 and x3 are standardized age and PreCD4, resp.
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Results

Table 5: Estimated Coefficients

Variable Profile LS L1 SCAD

β̂(se(β̂)) β̂(se(β̂)) β̂(se(β̂))
Smoking 0.5333(1.0972) 0(0) 0(0)
Age -0.1010(0.9167) 0(0) 0(0)
PreCD4 2.8252(0.8244) 3.0932(0.5500) 3.1993(0.5699)
Age2 0.1171(0.4558) 0(0) 0(0)
PreCD42 -0.0333(0.3269) 0(0) 0(0)
Smoking*Age -1.7084(1.1192) -0.9684(0.4904) -1.0581(0.5221)
Smoking*PreCD4 1.3277(1.3125) 0(0) 0(0)
Age*PreCD4 -0.1360(0.5413) 0(0) 0(0)
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