Inference for (Prediction Using ?) Functional Regression Models

R. L. Eubank ${ }^{1}$
Department of Statistics
Texas A \& M University

[^0]
Texas Lottery: Background

- Texas Lottery Commission established in 1992
- Four on-line games and scratch-offs
- Ticket terminals and sales monitoring by GTECH
- Capstone game is Lotto Texas
- Drawings on Wednesday and Saturday night (10 P.M.)
- Select 6 from 54 ball game
- Chance of winning jackpot prize is about 1 in 26 Million
- Overall chance of winning are 1 in 71

Lotto Texas Jackpots

- State retains 50% of sale: Prize Pool is remaining 50%
- Jackpot tier gets 64% of the Prize Pool
- Jackpot tier funds accumulate until there is a winner

- Terminology:

* A Hit occurs when there is one or more winner.
* A Run is a sequence of consecutive draws without a Hit
- Jackpots start at $\$ 4$ Million
- Advertised Jackpots during a Run are (ideally) the annuitized (over 25 years) value of the accumulated money in the Jackpot tier. The idealize formula is:

Jackpot $=.5 \times(.64) \times($ annuity factor $) \times($ cumulative sales for the Run $)$

- Cumulative sales at draw time are not known

Problems: For a prospective Jackpot value, predict

- cumulative sales up to Saturday using information only up to Wednesday afternoon
- cumulative sales up to Wednesday using information only up to Friday afternoon

Methodology

- Current Approach:
- "nearest" neighbor * Advantages:
* Very Simple
* Works very well
- Disadvantages * Ad Hoc
* No prediction error assessment
- Possible Statistical Alternatives
- Simple linear regression of sales on Jackpot
- Nonparametric estimation of the mean function
- FDA analysis of runs as sample paths

Typical Run Sequence Thursday Start

Registration Issues

- Sales peek on the day of a Lotto draw
- Runs that start on Thursday and Sunday are on different time scales
- Time Rescaling: Aligning Landmarks

Time Index	1	2		3	4	$42 / 3$	$51 / 3$	6
Thurs. Start	Thurs.	Fri.		Sat.	Sun.	Mon.	Tues.	Wed.
Sun. Start	Sun.	Mon.	Tues.	Wed.	Thurs.	Fri.	Sat.	
Time Index	1	$12 / 3$	$21 / 3$	3	4	5	6	

Modeling the Sample Path "Mean" Function

- Lotto Texas sales are driven by Jackpots
- Shapira and Venezia (1992) Organizational Behavior and Human Decision Processes 50
- There is a Lottomania effect (i.e., rollover has more effect than would be expected from just the Jackpot increase)
- Beenstock and Haitovsky (2001) Journal of Economic Psychology 22
$\underline{\text { Possible Statistical Implications: }}$
- Relevant predictor variables are length of Run and Jackpot size
- A candidate mean function model might be the functional regression/time-varying coefficient model

$$
\mu\left(t, z_{t}\right)=\beta_{0}+\beta_{1}(t) z_{t}
$$

with t the day scale position in the $R u n$ and z_{t} the associated Jackpot

Relationship of Sample Paths to Mean Function

- Sales for a given Run have a tendency to lie above or below the "average" trend

A model that could describe this is

$$
y(t)=a+b \mu\left(t, z_{t}\right)+\varepsilon_{t}, \quad t=1, \ldots, n
$$

where

- $y(t)=$ cumulative sales at day index t
- $(a, b)^{T} \sim \mathrm{~N}\left(\left[\begin{array}{l}0 \\ 1\end{array}\right],\left[\begin{array}{cc}\sigma_{a}^{2} & 0 \\ 0 & \sigma_{b}^{2}\end{array}\right]\right)$,
- $\varepsilon_{t} \sim \operatorname{NID}\left(0, \sigma^{2}\right)$
- $\varepsilon_{t}, t=1, \ldots, n$, and $(a, b)^{T}$ are independent

Prediction: Step 1

Suppose that $\mu(\cdot, \cdot), \sigma_{a}^{2}, \sigma_{b}^{2}, \sigma^{2}$ were known. Then, the best estimator of

$$
\mathrm{E}\left[y\left(t^{*}\right) \mid(a, b)\right]=a+b \mu\left(t^{*}, z_{t^{*}}\right)
$$

given $\mathbf{y}=\left(y\left(t_{1}\right), \ldots, y\left(t_{n}\right)\right)^{T}$ is $\hat{a}+\hat{b} \mu\left(t^{*}, z_{t^{*}}\right)$ where

- $(\hat{a}, \hat{b})^{T}=\left[\begin{array}{l}0 \\ 1\end{array}\right]+\left(X^{T} X+\Lambda^{-1}\right)^{-1} X^{T}[\mathbf{y}-\boldsymbol{\mu}]$,
- with $\boldsymbol{\mu}=\left(\mu\left(t_{1}, z_{t_{1}}\right), \ldots, \mu\left(t_{n}, z_{t_{n}}\right)\right)^{T}$,
- $X=\left[\mathbf{1}_{n} \mid \boldsymbol{\mu}\right]$ and
- $\Lambda=\left[\begin{array}{cc}\sigma_{a}^{2} / \sigma^{2} & 0 \\ 0 & \sigma_{b}^{2} / \sigma^{2}\end{array}\right]$

This gives

$$
\hat{y}\left(t^{*}\right)=\hat{a}+\hat{b} \mu\left(t^{*}, z_{t^{*}}\right),
$$

with

$$
\operatorname{Var}\left[\hat{y}\left(t^{*}\right) \mid \mathbf{y}\right]=\sigma^{2}\left(1, \mu\left(t^{*}, z_{t^{*}}\right)\right)\left(X^{T} X+\Lambda^{-1}\right)^{-1}\binom{1}{\mu\left(t^{*}, z_{t^{*}}\right)} .
$$

Prediction: Step 2. Estimation of the "Variance Components"

If $\mu(\cdot, \cdot)$ is known then the past Run data

$$
y_{j}\left(t_{i j}\right)=a_{j}+b_{j} \mu\left(t_{i j}, z_{t_{i j}}\right)+\varepsilon_{i j}, \quad i=1, \ldots, r_{j}, \quad j=1, \ldots, k,
$$

gives us predictors of the a_{j}, b_{j} and estimators of σ^{2} as follows:

- $\hat{b}_{j}=\sum_{i=1}^{r_{j}} y_{j}\left(t_{i j}\right)\left(\mu\left(t_{i j}, z_{t_{i j}}\right)-\bar{\mu}_{j}\right) / \mathrm{SS}_{j}$,
- $\hat{a}_{j}=\bar{y}_{j}-\hat{b}_{j} \bar{\mu}_{j}$,
- $\hat{\sigma}_{j}^{2}=\left(r_{j}-2\right)^{-1} \sum_{i=1}^{r_{j}}\left(y_{j}\left(t_{i j}\right)-\hat{a}_{j}-\hat{b}_{j} \mu\left(t_{i j}, z_{t_{i j}}\right)\right)^{2}$ with
- $\bar{y}_{j}=r_{j}^{-1} \sum_{i=1}^{r_{j}} y_{j}\left(t_{i j}\right), \bar{\mu}_{j}=r_{j}^{-1} \sum_{i=1}^{r_{j}} \mu\left(t_{i j}, z_{i j}\right)$, and

$$
\mathrm{SS}_{j}=\sum_{i=1}^{r_{j}}\left(\mu\left(t_{i j}, z_{t_{i j}}\right)-\bar{\mu}_{j}\right)^{2} .
$$

Method of moments estimators are then obtained from

- $\mathrm{E} \sum_{j=1}^{k}\left(\hat{b}_{j}-1\right)^{2}=k \sigma_{b}^{2}+\sigma^{2} \sum_{j=1}^{k} \frac{1}{\mathrm{SS}_{j}}$,
- $\mathrm{E} \sum_{j=1}^{k} \hat{a}_{j}^{2}=k \sigma_{a}^{2}+\sigma^{2} \sum_{j=1}^{k}\left[\frac{1}{r_{j}}+\frac{1}{\mathrm{SS}_{j}}\right]$ and
- $\mathrm{E} \sum_{j=1}^{k} \hat{\sigma}_{j}^{2}=k \sigma^{2}$.

Prediction: Step 3. Estimation of the mean function

A partially linear, varying coefficient, smoothing spline estimator, $\mu_{\lambda}(\cdot, \cdot)$, for $\mu(\cdot, \cdot)$ is obtained by minimization of

$$
\sum_{j=1}^{k} \sum_{i=1}^{r_{j}}\left(y_{j}\left(t_{i j}\right)-b-g\left(t_{i j}\right) z_{t i j}\right)^{2}+\lambda \int\left(g^{(m)}(t)\right)^{2} d t
$$

Form of the Estimator:

- the fitted values are

$$
\hat{\mathbf{y}}_{\lambda}=A(\lambda) \mathbf{y}
$$

with

$$
A(\lambda)=I-\left(M^{-1}-M^{-1} V\left(V^{T} M^{-1} V\right)^{-1} V^{T} M^{-1}\right)
$$

for

$$
V=[H T \mid \mathbf{1}]
$$

and

$$
M=H Q H^{T}+I
$$

- The coefficient estimators are in $\boldsymbol{\beta}_{\lambda}=C(\lambda) \mathbf{y}$, where

$$
C(\lambda)=Q H^{T} M^{-1}-\left(Q H^{T} M^{-1} V-[T \mid \mathbf{0}]\right)\left(V^{T} M^{-1} V\right)^{-1} V^{T} M^{-1}
$$

Efficient Computation:

- For any n-vector \mathbf{u} it is possible to compute

$$
\begin{gathered}
M^{-1} \mathbf{u} \\
Q H^{T} M^{-1} \mathbf{u}
\end{gathered}
$$

and the diagonal elements of M^{-1} and $Q H^{T} M^{-1} H Q$ all in $O(n)$ operations using the ordinary (i.e., non-diffuse) Kalman filter.

- λ can be selected using GML, etc.
- C++ code available in March

Typical Run Sequence Thursday Start

Typical run sequence: Thursday and Saturday Starts

Typical Run Sequences: Thursday and Saturday Starts

Sample Paths for 24 Lotto Texas Runs

Registered sample paths

Does the starting day matter?

Sales versus Jackpot for Lotto Texas

Fitted and Actual Sales

"Smoothed" Coefficient Curve Estimator

Estimated Intercepts

Estimated Slope

Typical Run from November 2003

Projection for Jackpot at $\$ 19$ Million

[^0]: ${ }^{1}$ Research supported by NSF

