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• Some soft classification problems.
• Mixed membership models.
• Principal Applications:

• NLTCS disability survey data
Erosheva (2002); Erosheva-Fienberg (2005)

• PNAS text and references data
•Erosheva-Fienberg-Lafferty (2004)

• Generalizations and extensions to account
for longitudinal structures.

Outline



3

• National Long Term Care Survey assesses
disability in U.S. elderly population.
• 216 contingency table with data on
functional disability from 1982, 1984, 1989,
1994 waves.

– 6 ADLs and 10 IADLs:
eating, getting in/out of bed, getting around
inside, dressing, bathing, using a toilet, doing
heavy house work, doing light house work,
doing laundry, cooking, grocery shopping,
getting about outside, traveling, managing
money, taking medicine, telephoning

Ex. 1: NLTCS Disability Data
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• Nielsen scanner panel data.
• 488 households over 4715 choice occasions (at

least 5 per HH) for 8 top brands of peanut
butter.

• For each choice occasion we have:
– Shelf price.
– Information on display/feature promotion.

• Household characteristics used to define
“market segments.”

Seetharaman, Feinberg, and Chintagunta (2002)
Varki and Chitgunta (2003)
Cooil and Varki (2003)

Ex. 2: Peanut Butter Brand
Choice
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Ex 3:Matching Words & Pictures
•  Modeling multi-modal data sets, focusing

on segmented images with associated text.

Blei and
Jordan (SIGIR,
2003)
Barnard, et al.
(J. Machine
Learning
Research, 2003)
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Ex. 4: Population Genetic Structure
• Data on human population structure using

genotypes at 377 autosomal microsatellite
loci in 1056 individuals from 52 populations.
Rosenberg, Pritchard, et al. (2002, Science)
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• Proceedings of the National Academy
of Sciences U S A.

• Biological Sciences articles: 92.53%
research publications.
– 19 subtopics for biological science

classification.
• Volumes 94-98 (1997-2001):

– 39,616 unique words in abstracts.
– 77,115 unique references in bibliographies.
Erosheva, Fienberg, Lafferty (PNAS, 2004)
Griffiths and Styvers (PNAS, 2004)

Ex. 5:  PNAS Articles
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Longitudinal Nature of
Examples

• NLTCS Disability Data
– 6 waves of panel data

• Brand choice scanner data
• Genetics

– looking at multigenerational information
• PNAS articles
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Mixed Membership Models

• Traditional mixture models assume each
object belongs exclusively to one of K
groups or latent classes.

• When attributes have mixed origins
from different groups, e.g.,
- individual responses in attitude survey,
- words in a scientific article,
- racial origins of people,

    we have mixed membership.
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• Hierarchical Bayesian model
“membership” represented in terms of
weighted combinations of subpopulations
[ “pure types” or “aspects”].

• Assumptions at 4 levels:
– Population level.
– Unit level.
– Latent variable level.
– Sampling scheme.

Mixed Membership Models
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Assumption 1: Population
Level

•  Population contains K subpopulations,
with J distinct characteristics observed on
replicates:
•  Observed response pattern                  for

subpopulation k is characterized by
distribution

• Response patterns                  are independent
within  each subpopulation.
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• We characterize population units by
their membership scores:
- Given membership scores, responses

are independent;
• Unit’s conditional probabilities are

convex combination of corresponding
probabilities for K subpopulations:

! 

" = ("1 ,...,"K );
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k
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Assumption 2: Unit Level
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! 

Pr(z j = k | ") = "k .

! 

Pr(x j | z j = k) = f (x j |"k ).

! 
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% .

• Combination of first two levels or
assumptions is equivalent to two-stage
process:
• First stage: Draw latent classification

variable zj:
• Second stage: Determine distribution of xij

given value of latent classification variable,
zj:

• Averaging over distribution of zj  yields:

Unit and Population Levels
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•  Random-effects approach: membership
scores are random, i.e.,
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Assumption 3: Latent Variable
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•  Observations on N independent units:
-  J  = # of observed distinct characteristics,
-  Rj = # of replications for jth characteristic.

•If membership scores are independent
and drawn  at random

    

! 

Pr  x1

(r)
,...,xJ

(r){ }
r= 1

R j

" ,#
$ 

% 
& 

' 

( 
) 

    = "k

k

*
r

+
j

+ f (x j

(r)
|#kj )

$ 

% 
& & 

' 

( 
) ) ,  dD- "( ).

Assumption  4:  Sampling
Scheme
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• Grade of Membership (GoM) model:
– Membership scores define how close

individual is to each subpopulations (extreme
profiles);

– J dichotomous items, no replications (R=1).
– Probability distribution of jth response, given

full membership in kth extreme profile, is

• Model has interesting geometric representation.
– Erosheva (2005).

    

! 

f (xij | " ik = 1;#kj ) = Binomial (#kj ) . 

Model for “Survey” Data



18

•  216 contingency table with functional
disability data from 1982, 1984, 1989, 1994.

– 6 ADLs and 10 IADLs:
– J=16; R=1; N=21,574.
– 65,536 cells (3,152 non-zero) :

– 82% of cell counts < 5.
– 4% of cell counts > 20.
– 18% with no disabilities.
– 3% with all 16.

3000

2000

1000

151050

NLTCS Disability Data
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• Full MCMC to get posterior distribution
using Metropolis-Hastings within Gibbs.

• Fit GoM model with K=2,3,4, 5 and 9
profiles.

• Parameters of interest:
– Conditional response probabilities λ,
– Dirichlet hyperparameters α0 and ξ.

GOM Implementation
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GoM Results for 24 Large Cells
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• DIC for GoM model:

• AIC, BIC, and DIC all continue to decrease
for latent class model for K= 6,7,8.

• LCM estimation problems occur for K=8.
• We are in process of implementing an

approximation to BIC for GoM model.

2217606
2253235
2292964
2435243
2669122

DICK

NLTCS: Choosing K

21014810
2108479
2121088
2155487
DICK
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• Mixed membership for words and
references:

- Membership scores are proportions of
document’s context originating from each
aspect.
- J=2 characteristics (words and reference).
- Ri replications vary from document to
document.

Model for Scientific Publications
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Unique words:
39,615

Unique references:
77,115

Years 1997-2001

PNAS Topical Distribution
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 Abstract and references:

 Heading:

Example 1: PNAS 98(19), 10757-10762.
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Example 2: PNAS 98(20), 11503-11508.
 Heading:

 Abstract and some references:
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• Goal: find internal categories of publications
that share same research areas.
• Two sources of interconnections:

(1) Words (title, keywords, abstract, body).
(2) References.

• Assumptions:
- Mixed membership in K internal categories.
- Independent “bag of words” and “bag of
references” drawings, conditional on membership
scores.

Organizing Scientific
Publications
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• In our mixed membership model for
scientific publications, documents
                              are generated according to:

• We give distribution to α and then estimate
value from data.
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Generative Model
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5
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6

= 0.0363,"
7
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= 0.0255.    

• Fix number of aspects, K. For each aspect:
- 39,615 word multinomial parameters,
- 77,114 reference multinomial parameters,
- 1 Dirichlet parameter.

• We obtained comparable results from
variational approximation and Expectation-
Propagation algorithms for 8 aspects.

• Dirichlet parameter estimates for K=8:

PNAS Results
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! 

0.0001,  0.9990,  0.0002,  0.0001,  0.0001,  0.0002,  0.0002,  0.0001

• Given estimated model parameters, can
obtain posterior distribution of article’s
membership scores via Bayes’ theorem
(untractable to compute exactly).

• Posterior mean membership scores for
examples:

Ex.1 Reward and punishment. [Evolution]

Ex. 2 Targeted adenovirus-induced expression of
IL-10 decreases thymic apoptosis and improves
survival in murine sepsis. [Immunology]

   0.0001 , 0.0001, 0.0001, 0.0001, 0.0002, , 0.0001, 0.46190.5373

Posterior Membership Scores
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1. Intracellular signal transaction, neurobiology.
2. Evolution, molecular evolution.
3. Plant molecular biology.
4. Developmental biology; brain development.
5. Biochemistry, molecular biology; protein

structural biology.
6. Genetics, molecular biology; DNA repair,

mutagenesis, cell cycle.
7. Tumor immunology; HIV infection.
8. Endocrinology, reporting of experimental

results; molecular mechanisms of obesity.

Aspect Interpretations
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- for 13 highest frequency original classification headings

Mean Decomposition of Loadings
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Mean Decomposition of Loadings
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Single or Multiple Classification?
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Griffiths and Steyvers (2004) used related
version of model on PNAS abstracts only
for 1991-2001.

• Used words from 28,154 abstracts.
• 20,551 words occurring in at least five abstracts, not

on “stop” list.
Employed Gibbs sampler:
• Dirichlet(α) distribution for membership scores λ;
• Fix α at 50/K, where K is the number of aspects;
• Dirichlet(β) distribution for aspect word

probabilities θ;
• Fix β at 0.1.
• Sample word-aspect assignments and θ.

Choosing Number of Aspects
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• Used Pr(data|K) for K = 50, 100, 200, 300, 400,
500, 600, (1000), integrating out over latent
variable, to choose K  (T in their notation).

Focus on Number of Aspects
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• Aspects function at two different levels in
different implementations:
– In word-references model we used K=8 and K=10

(high level); choice somewhat ad hoc:

– For word model, Griffiths/Steyvers (2004) like K=300!
• Perhaps we need hierarchical structure for

aspects, also with mixed membership.

Hierarchical Aspect Structure?
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Features of Longitudinal
Models for NLTCS Data

• Real panel structure (but irregular spacing
because of 1982).
– Disability  doesn’t simply increase over time:

• Frailty-like or trajectory models.
• Role for marginal modeling????
• Causal models linked to specific illnesses.

• Attrition, death, and new entering cohorts.
– Proxy responses are form of informative partial

missingness.
• Age, Period, and cohort features.
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Features of “Longitudinal”
Model for PNAS Articles

• Syntactic structure.
• References and articles have a time

stamp!
– Alternative to “bag of references” to reflect

time availability of references.
• Evolving scientific topics.
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• Mixed membership approach allows:
– Identification of internal classification

categories (unsupervised learning).
– Soft or mixed classifications.
– Combination of characteristics.

• Simple idea, complicated estimation:
– Implementation, even in high dimensions.

• Challenges remain:
• Full Bayesian calculations;  choosing K.
• Hierarchical structure for latent categories.
• Modeling longitudinal structure.

Concluding Remarks
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The End
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