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1. Introduction and review

The “pretest-posttest” study: Ubiquitous in research in medicine,

public health, social science, etc. . .

• Subjects are randomized to two treatments

(“treatment ” and “control ”)

• Response is measured at baseline (“pretest ”) and at a pre-specified

follow-up time (“posttest ”)

• Focus of inference: “Difference in change of mean response from

baseline to follow-up between treatment and control ”
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1. Introduction and review

For example: AIDS Clinical Trials Group 175

• 2139 patients randomized to ZDV, ZDV+ddI, ZDV+zalcitabine, ddI

with equal probability (1/4)

• Primary analysis (time-to-event endpoint): ZDV inferior to other

three (no differences)

• Two groups: ZDV alone (“control ”) and other three (“treatment ”)

• Secondary analyses : Compare change in CD4 count (immunologic

status) from (i) baseline to 20±5 weeks and (ii) baseline to 96±5

weeks between control and treatment
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1. Introduction and review

Formally: Define

Y1 baseline (pretest) response (e.g., baseline CD4 count)

Y2 follow-up (posttest) response (e.g., 20±5 week CD4 count)

Z = 0 if control, = 1 if treatment, P (Z = 1) = δ

• By randomization, reasonable to assume

E(Y1|Z = 0) = E(Y1|Z = 1) = E(Y1) = µ1

Effect of interest: β, where

{E(Y2|Z = 1)− E(Y1|Z = 1)} − {E(Y2|Z = 0)− E(Y1|Z = 0)}

= {E(Y2|Z = 1)− µ1} − {E(Y2|Z = 0)− µ1)}

= E(Y2|Z = 1)− E(Y2|Z = 0)

= µ
(1)
2 − µ

(0)
2 = β
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1. Introduction and review

Basic data: (Y1i, Y2i, Zi), i = 1, . . . , n, iid

n0 =
n∑

i=1

(1− Zi) =
n∑

i=1

I(Zi = 0), n1 =
n∑

i=1

Zi =
n∑

i=1

I(Zi = 1)

Popular estimators for β:

• Two-sample t-test estimator

β̂2samp = n−1
1

n∑

i=1

ZiY2i − n−1
0

n∑

i=1

(1− Zi)Y2i

• “Paired t-test ” estimator (“change scores”)

β̂pair = D1 −D0, Dc = n−1
c

n∑

i=1

I(Zi = c)(Y2i − Y1i), c = 0, 1
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1. Introduction and review

Popular estimators for β:

• ANCOVA – Fit the model

E(Y2|Y1, Z) = α0 + α1Y1 + βZ

• ANCOVA II – Include interaction and estimate β as coefficient of

Z − Z in regression of Y2 − Y 2 on Y1 − Y 1, Z − Z, and

(Y1 − Y 1)(Z − Z)

• GEE – (Y1, Y2)
T is multivariate response with mean (µ1, µ2 + βZ)T

and (2× 2) unstructured covariance matrix

• Assume linear relationship between Y2 and Y1
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1. Introduction and review

ACTG 175: Y2 = CD4 at 20±5 weeks vs. Y1 = baseline CD4

(control and treatment groups)
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1. Introduction and review

Additional data: Baseline and intermediate covariates

X1 Baseline (pre-treatment) characteristics

X2 Characteristics observed after pretest but before posttest,

including intermediate responses

In ACTG 175:

• X1 includes weight, age, gender, Karnofsky score, prior ARV

therapy, CD8 count, sexual preference,. . .

• X2 includes off treatment indicator, intermediate CD4, CD8
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1. Introduction and review

Additional estimators:

• Fancier regression models, e.g.

E(Y2|Y1, Z) = α0 + α1Y1 + α2Y
2
1 + βZ

• Adjustment for baseline covariates, e.g.,

E(Y2|X1, Y1, Z) = α0 + α1Y1 + α2X1 + βZ

• Both

• Intuitively , adjustment for intermediate covariates buys nothing

without some assumptions (formally exhibited shortly. . . ) and could

be dangerous
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1. Introduction and review

Which estimator?

• In many settings, no consensus

• Is normality required?

• What if the relationship isn’t linear?

• What if a model for E(Y2|X1, Y1, Z) is wrong?

Further complication: Missing posttest response Y2

• In ACTG 175, no missing CD4 for any subject at 20±5 weeks. . .

• . . . but 797 (37%) of subjects were missing CD4 at 96±5 weeks

(almost entirely due to dropout from study)

• Common in practice – complete case analysis, which yields possibly

biased inference on β unless Y2 is missing completely at random
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Introduction and review

Missing at random (MAR) assumption: Posttest missingness

associated with (X1, Y1, X2, Z) but not Y2

• Often reasonable, but is an assumption

Full data: If no missingness, observe (X1, Y1, X2, Y2, Z)

Ordinarily: Models for (X1, Y1, X2, Y2, Z) may involve assumptions

• If Y2 not missing, widespread belief that normality of (Y1, Y2) is

required for validity of “popular” estimators

• When Y2 is MAR, maximum likelihood , imputation approaches

require assumptions on aspects of the joint distribution of

(X1, Y1, X2, Y2, Z)

• Consequences ?
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Introduction and review

Semiparametric models:

• May contain parametric and nonparametric components

• Nonparametric components – unable or unwilling to make specific

assumptions on aspects of (X1, Y1, X2, Y2, Z)

Here: Consider a semiparametric model for (X1, Y1, X2, Y2, Z)

• No assumptions on joint distribution of (X1, Y1, X2, Y2, Z) beyond

independence of (X1, Y1) and Z induced by randomization

(nonparametric)

• Interested in the functional of this distribution

β = µ
(1)
2 − µ

(0)
2 = E(Y2|Z = 1)− E(Y2|Z = 0)
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Introduction and review

Where we are going: Under this semiparametric model

• Find a class of consistent and asymptotically normal (CAN )

estimators for β when full data are available and identify the “best ”

(efficient ) estimator in the class

• As a by-product, show that “popular ” estimators are potentially

inefficient members of this class – can do better !

• When Y2 is MAR , find a class of CAN estimators for β and identify

the “best ”

• In both cases, translate the theory into practical techniques

What we will exploit: Theory in a landmark paper by Robins,

Rotnitzky, and Zhao (1994)
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2. Influence functions

Definition: For functional β in a parametric or semiparametric model,

an estimator β̂ based on iid random vectors Wi, i = 1, . . . , n, is

asymptotically linear if

n1/2(β̂ − β0) = n−1/2
n∑

i=1

ϕ(Wi) + op(1) for some ϕ(W )

β0 = true value of β (p× 1), E{ϕ(W )} = 0, E{ϕT (W )ϕ(W )} <∞

• ϕ(W ) is called the influence function of β̂

• If β̂ is also regular (not “pathological”), β̂ is CAN with asymptotic

covariance matrix E{ϕ(W )ϕT (W )}

• Efficient influence function ϕeff (W ) has “smallest ” covariance and

corresponds to the efficient , regular asymptotically linear (RAL )

estimator
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2. Influence functions

For example: It may be shown directly by manipulating the expression

for n1/2(β̂2samp − β) and using

n0/n→ 1− δ, n1/n→ δ as n→∞

that β̂2samp has influence function of the form

Z(Y2 − µ
(1)
2 )

δ
−

(1− Z)(Y2 − µ
(0)
2 )

1− δ
=

Z(Y2 − µ
(0)
2 − β)

δ
−

(1− Z)(Y2 − µ
(0)
2 )

1− δ

[depends on W = (X1, Y1, X2, Y2, Z)]

Why is this useful? There is a correspondence between CAN, RAL

estimators and influence functions

• By identifying influence functions, one can deduce estimators
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2. Influence functions

General principle: Solve
∑n

i=1 ϕ(Wi) = 0 for β

For example: Influence function for β̂2samp

0 =

n∑

i=1

{
Zi(Y2i − µ

(0)
2 − β)

δ
−

(1− Zi)(Y2i − µ
(0)
2 )

1− δ

}

• Substituting µ
(0)
2 = n−1

0

∑n
i=1(1− Zi)Y2i and solving for β yields

β = n−1
1

n∑

i=1

ZiY2i − n−1
0

n∑

i=1

(1− Zi)Y2i

• In general, closed form may not be possible
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3. Robins, Rotnitzky, and Zhao (1994)

What did RRZ do? Derived asymptotic theory based on influence

functions for inference on functionals in general semiparametric models

where some components of the full data are possibly MAR

Observed data: Data observed when some components of the full data

are potentially missing
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3. Robins, Rotnitzky, and Zhao (1994)

What did RRZ do, more specifically? For the functional of interest,

distinguished between

• Full-data influence functions – correspond to RAL estimators

calculable if full data were available; functions of the full data

• Observed-data influence functions – correspond to RAL estimators

calculable from the observed data under MAR; functions of the

observed data

• RRZ characterized the class of all observed-data influence functions

for a general semiparametric model, including the efficient one, . . .

• . . . and showed that observed-data influence functions may be

expressed in terms of full-data influence functions
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3. Robins, Rotnitzky, and Zhao (1994)

The main result: Generic full data D = (O,M), semiparametric model

for D, functional β

O Part of D that is always observed (never missing )

M Part of D that may be missing

R = 1 if M is observed, = 0 if M is missing

• Observed data are (O,R,RM)

• Let ϕF (D) be a full data influence function

• Let π(O) = P (R = 1|D) = P (R = 1|O) > ε (MAR assumption )

• All observed-data influence functions have form

RϕF (D)

π(O)
−
R− π(O)

π(O)
g(O), g(O) square-integrable
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3. Robins, Rotnitzky, and Zhao (1994)

Result: Strategy for deriving estimators for a semiparametric model

1. Characterize the class of full-data influence functions (which

correspond to full-data estimators)

2. Characterize the observed data under the particular MAR

mechanism and the class of observed-data influence functions

3. Identify observed-data estimators with influence functions in this

class

Our approach: Follow these steps for the semiparametric pretest-

posttest model

• Joint distribution of (X1, Y1, X2, Y2, Z) unspecified except (X1, Y1)

independent of Z
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4. Estimation with full data

Full-data influence functions: Can show (later) under the

semiparametric pretest-posttest model that all full-data influence

functions are of the form
{
Z(Y2 − µ

(1)
2 )

δ
−

(Z − δ)

δ
h

(1)(X1, Y1)

}
−

{
(1− Z)(Y2 − µ

(0)
2 )

1− δ
+

(Z − δ)

1− δ
h

(0)(X1, Y1)

}
,

for arbitrary h(c)(X1, Y1), c = 0, 1 with var{h(c)(X1, Y1)} <∞

• Difference of influence functions for estimators for µ
(1)
2 and µ

(0)
2

• Full-data estimators may depend on X1 (but not X2)

Efficient full-data influence function: Corresponding to efficient

full-data estimator; takes

h(c)(X1, Y1) = E(Y2|X1, Y1, Z = c)− µ
(c)
2 , c = 0, 1
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4. Estimation with full data

“Popular” estimators: Influence functions of β̂2samp, β̂pair, ANCOVA,

ANCOVA II, and GEE have

h(c)(X1, Y1) = ηc(Y1 − µ1), c = 0, 1, for constants ηc

• E.g., ηc = 0, c = 0, 1 for β̂2samp

• So popular estimators are in the class =⇒ are CAN even if (Y1, Y2)

are not normal

• Regression estimators incorporating baseline covariates are also in

the class, e.g., E(Y1|X1, Y1, Z) = α0 + α1Y1 + α2X1 + βZ

• Popular estimators are potentially inefficient among class of RAL

estimators for semiparametric model

How to use all this? Efficient estimator is “best !”
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4. Estimation with full data

Efficient estimator: Setting sum over i of efficient influence function =

0 and replacing δ by δ̂ = n1/n yields

β = n
−1
1

{
n∑

i=1

ZiY2i −

n∑

i=1

(Zi − δ̂)E(Y2i|X1i, Y1i, Zi = 1)

}

− n
−1
0

{
n∑

i=1

(1− Zi)Y2i +

n∑

i=1

(Zi − δ̂)E(Y2i|X1i, Y1i, Zi = 0)

}

• Practical use – replace E(Y2|X1, Y1, Z = c) by predicted values

êh(c)i, say, c = 0, 1, from parametric or nonparametric regression

modeling

• Can lead to substantial increase in precision over popular estimators

• Advantage – even if E(Y2|X1Y1, Z = c) are modeled incorrectly, β̂

is still consistent
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5. Estimation with posttest MAR

Observed data: (X1, Y1, X2, Z) are never missing, Y2 may be missing

for some subjects

• R = 1 if Y2 observed, R = 0 if Y2 missing

• Observed data are (X1, Y1, X2, Z,R,RY2)

• MAR assumption

P (R = 1|X1, Y1, X2, Y2, Z) = P (R = 1|X1, Y1, X2, Z)

= π(X1, Y1, X2, Z) ≥ ε > 0

π(X1, Y1, X2, Z) = Zπ(1)(X1, Y1, X2) + (1− Z)π(0)(X1, Y1, X2),

π(c)(X1, Y1, X2) = π(X1, Y1, X2, c), c = 0, 1
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5. Estimation with posttest MAR

Recall: Generic form of observed-data influence functions

RϕF (D)

π(O)
−
R− π(O)

π(O)
g(O)

For simplicity: Focus on influence functions for estimators for µ
(1)
2

• Those for estimators for µ
(0)
2 similar

• Influence functions for estimators for β: take the difference

Full-data influence functions for estimators for µ
(1)
2 : Have form

Z(Y2 − µ
(1)
2 )

δ
−

(Z − δ)

δ
h(1)(X1, Y1), var{h(1)(X1, Y1)} <∞
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5. Estimation with posttest MAR

Thus: Observed-data influence functions for estimators for µ
(1)
2 have

form

R{Z(Y2 − µ
(1)
2 )− (Z − δ)h(1)(X1, Y1)}

δπ(X1, Y1, X2, Z)
−
R− π(X1, Y1, X2, Z)

π(X1, Y1, X2, Z)
g(1)(X1, Y1, X2, Z)

var{h(1)(X1, Y1)} <∞, var{g(1)(X1, Y1, X2, Z)} <∞

• Choice of h(1) leading to the efficient observed-data influence

function need not be the same as that leading to the efficient

full-data influence function in general

• Turns out that the optimal h(1) is the same in the special case of

the pretest-posttest problem. . .
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5. Estimation with posttest MAR

Re-writing: Equivalently, observed-data influence functions are

RZ(Y2 − µ
(1)
2 )

δπ(X1, Y1, X2, Z)
−

(Z − δ)

δ
h(1)(X1, Y1)−

R− π(X1, Y1, X2, Z)

δπ(X1, Y1, X2, Z)
g(1)′(X1, Y1, X2, Z)

• Optimal choices (efficient influence function ) are

heff(1)(X1, Y1) = E(Y2|X1, Y1, Z = 1)− µ
(1)
2

geff(1)′(X1, Y1, X2, Z) = Z{E(Y2|X1, Y1, X2, Z)− µ
(1)
2 }

= Z{E(Y2|X1, Y1, X2, Z = 1)− µ
(1)
2 }

• Efficient influence function is of form

RZ(Y2 − µ
(1)
2 )

δπ(1)(X1, Y1, X2)
−

(Z − δ)

δ
h(1)(X1, Y1)−

{R− π(1)(X1, Y1, X2)}Z

δπ(1)(X1, Y1, X2)
q(1)(X1, Y1, X2)
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5. Estimation with posttest MAR

Result: With the optimal h(1), q(1), algebra yields

µ
(1)
2 = (nδ)−1

{
n∑

i=1

RiZiY2i

π(1)(X1i, Y1i, X2i)
−

n∑

i=1

(Zi − δ)E(Y2i|X1i, Y1i, Zi = 1)

−
n∑

i=1

{Ri − π(1)(X1i, Y1i, X2i)}Zi

π(1)(X1i, Y1i, X2i)
E(Y2i|X1i, Y1i, X2i, Zi = 1)

}

• Similarly for µ
(0)
2 depending on π(0), E(Y2|X1, Y1, Z = 0),

E(Y2|X1, Y1, X2, Z = 0)

• Estimator for β – take the difference

• Practical use – replace these quantities by predicted values from

regression modeling (coming up)
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5. Estimation with posttest MAR

Complication 1: π(c)(X1, Y1, X2) are not known, c = 0, 1

• Common strategy: adopt parametric models (e.g. logistic

regression) depending on parameter γ(c)

π(c)(X1, Y1, X2; γ
(c))

• Imposes an additional assumption on semiparametric model for

(X1, Y1, X2, Y1, Z)

• Substitute the MLE γ̂(c) for γ(c), obtain predicted values π̂
(c)
i

• As long as this model is correct, resulting estimators will be CAN
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5. Estimation with posttest MAR

Complication 2: Modeling E(Y2|X1, Y1, Z = c),

E(Y2|X1, Y1, X2, Z = c), c = 0, 1

• MAR =⇒ E(Y2|X1, Y1, X2, Z) = E(Y2|X1, Y1, X2, Z,R = 1)

(can base modeling/fitting on complete cases only)

• Obtain predicted values êq(c)i, c = 0, 1

• However, ideally require compatibility, i.e.

E(Y2|X1, Y1, Z) = E{E(Y2|X1, Y1, X2, Z)|X1, Y1, Z}

and no longer valid to fit using only complete cases

• Practically – go ahead and model directly and fit using complete

cases, obtain predicted values êh(c)i

• Estimation of parameters in these models does not affect

(asymptotic) variance of β̂ as long as π(c) models are correct
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5. Estimation with posttest MAR

Estimator: With δ̂ = n1/n

β̂ = n−1
1

{
n∑

i=1

RiZiY2i

π̂
(1)
i

−

n∑

i=1

(Zi − δ̂)êh(1)i −

n∑

i=1

(Ri − π̂
(1)
i )Ziêq(1)i

π̂
(1)
i

}

−n−1
0

{
n∑

i=1

Ri(1− Zi)Y2i

π̂
(0)
i

+

n∑

i=1

(Zi − δ̂)êh(0)i −

n∑

i=1

(Ri − π̂
(0)
i )(1− Zi)êq(1)i

π̂
(0)
i

}

• Efficient if modeling done correctly; otherwise, close to optimal

performance

• Taking êh(c)i = êq(c)i = 0 yields the simple inverse-weighted

complete case estimator (inefficient )

• Modeling E(Y2|X1, Y1, Z = c), E(Y2|X1, Y1, X2, Z = c)

“augments ” this, taking advantage of relationships among variables

to improve precision
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5. Estimation with posttest MAR

“Double Robustness:” Still consistent if

• π(c) are correctly modeled but E(Y2|X1, Y1, Z = c) and

E(Y2|X1, Y1, X2, Z = c) aren’t

• E(Y2|X1, Y1, Z = c) and E(Y2|X1, Y1, X2, Z = c) are correctly

modeled but π(c) aren’t

• No longer efficient

If both sets of models incorrect, inconsistent in general

Standard errors: Use the sandwich formula (follows from influence

function)
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5. Estimation with posttest MAR

Recap: This approach requires one to make an assumption about

π(c)(X1, Y1, X2), c = 0, 1

• No assumption is made about E(Y2|X1, Y1, X2, Z = c),

E(Y2|X1, Y1, Z = c)

• Model is still semiparametric

• . . . and double robustness holds

Alternative approach: Make an assumption instead about the

E(Y2|X1, Y1, X2, Z = c), E(Y2|X1, Y1, Z = c)

• Efficient estimator is maximum likelihood

• Don’t need to even worry about π(c)(X1, Y1, X2)

• But no double robustness property!
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6. Full data, revisited

How did we get the full-data influence functions?

• One way – use classical semiparametric theory

• Another way – View as a “fake missing data problem ” by casting

the full-data problem in terms of counterfactuals

Counterfactual representation:

• Y
(1)
2 , Y

(0)
2 are potential posttest responses if a subject were

assigned to control or treatment

• We observe Y2 = ZY
(1)
2 + (1− Z)Y

(0)
2

• “Fake full data ” (X1, Y1, X2, Y
(0)
2 , Y

(1)
2 , Z)

• “Fake observed data ” (X1, Y1, X2, Z, ZY
(1)
2 , (1− Z)Y

(0)
2 )

• Apply the RRZ theory
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7. Simulation evidence

Full-data problem:

• Substantial gains in efficiency over “popular” methods, especially

when there are nonlinear relationships among variables

• Parametric and nonparametric regression modeling work well

• Valid standard errors, confidence intervals

Observed-data problem:

• “Popular” methods with complete cases can exhibit substantial

biases

• Inverse-weighted complete case estimator is unbiased but inefficient

• Substantial gains in efficiency possible through modeling

• Valid standard errors, confidence intervals
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8. Application – ACTG 175

Recall: Y2 = CD4 at 20±5 weeks vs. Y1 = baseline CD4

(control and treatment groups)

• Apparent curvature
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8. Application – ACTG 175

Results: Models for E(Y2|X1, Y1, Z = c), c = 0, 1

Estimator β̂ SE

Parametric modeling 50.8 5.0

(quadratic in Y1)

Nonparametric modeling 50.0 5.1

(GAM)

ANCOVA 49.3 5.4

Paired t 50.1 5.7

Two-sample t 45.5 6.8
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8. Application – ACTG 175

Complete cases: Y2 = CD4 at 96±5 weeks vs. Y1 = baseline CD4

(control and treatment groups)

• 37% missing Y2
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8. Application – ACTG 175

Results: Logistic regression for π(c), c = 0, 1; parametric regression

modeling of E(Y2|X1, Y1, X2, Z = c), E(Y2|X1, Y1, Z = c)

Estimator β̂ SE

Parametric modeling 57.2 10.2

(quadratic in Y1)

Simple inverse-weighting 54.7 11.8

ANCOVA 64.5 9.3

Paired t 67.1 9.3

Pretest-Posttest Study 40



9. Discussion

• RRZ theory applied to a standard problem

• General framework for pretest-posttest analysis illuminating how

relationships among variables may be fruitfully exploited

• Practical estimators

• Can be extended to censored covariate information

• Results are equally applicable to baseline covariate adjustment in

comparison of two means (Y1 is just another baseline covariate)

• Lots of methods for this problem (likelihood , imputation

combinations thereof , . . . ); semiparametric theory provides a

framework for understanding commonalities and differences among

them
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9. Discussion
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