Semiparametric Estimation of Treatment Effect in a Pretest-Posttest Study

Marie Davidian Department of Statistics North Carolina State University

http://www.stat.ncsu.edu/~davidian

(Joint work with A.A. Tsiatis and S. Leon)

Outline

- 1. Introduction and review of popular methods
- 2. Influence functions
- 3. Robins, Rotnitzky, and Zhao (1994)
- 4. Estimation when full data are available
- 5. Estimation when posttest response is missing at random (MAR)
- 6. Full data influence functions, revisited
- 7. Simulation evidence
- 8. Application ACTG 175
- 9. Discussion

The "pretest-posttest" study: Ubiquitous in research in medicine, public health, social science, etc...

- Subjects are randomized to *two* treatments (*"treatment"* and *"control"*)
- Response is measured at *baseline* ("*pretest*") and at a pre-specified *follow-up* time ("*posttest*")
- Focus of inference: "Difference in change of mean response from baseline to follow-up between treatment and control"

For example: AIDS Clinical Trials Group 175

- 2139 patients randomized to ZDV, ZDV+ddI, ZDV+zalcitabine, ddl with equal probability (1/4)
- *Primary analysis* (time-to-event endpoint): ZDV inferior to other three (no differences)
- Two groups: ZDV alone ("control") and other three ("treatment")
- Secondary analyses: Compare change in CD4 count (immunologic status) from (i) baseline to 20±5 weeks and (ii) baseline to 96±5 weeks between control and treatment

Formally: Define

- Y_1 baseline (*pretest*) response (e.g., baseline CD4 count)
- Y_2 follow-up (*posttest*) response (e.g., 20 \pm 5 week CD4 count)
- Z = 0 if control, = 1 if treatment, $P(Z = 1) = \delta$
- By *randomization*, reasonable to assume

$$E(Y_1|Z=0) = E(Y_1|Z=1) = E(Y_1) = \mu_1$$

Effect of interest: β , where

$$\{E(Y_2|Z=1) - E(Y_1|Z=1)\} - \{E(Y_2|Z=0) - E(Y_1|Z=0)\}$$

= $\{E(Y_2|Z=1) - \mu_1\} - \{E(Y_2|Z=0) - \mu_1)\}$
= $E(Y_2|Z=1) - E(Y_2|Z=0)$
= $\mu_2^{(1)} - \mu_2^{(0)} = \beta$

Pretest-Posttest Study

Basic data: (Y_{1i}, Y_{2i}, Z_i) , i = 1, ..., n, iid

$$n_0 = \sum_{i=1}^n (1 - Z_i) = \sum_{i=1}^n I(Z_i = 0), \quad n_1 = \sum_{i=1}^n Z_i = \sum_{i=1}^n I(Z_i = 1)$$

Popular estimators for β **:**

• *Two-sample t-test* estimator

$$\widehat{\beta}_{2samp} = n_1^{-1} \sum_{i=1}^n Z_i Y_{2i} - n_0^{-1} \sum_{i=1}^n (1 - Z_i) Y_{2i}$$

• "*Paired t-test*" estimator ("change scores")

$$\widehat{\beta}_{pair} = \overline{D}_1 - \overline{D}_0, \quad \overline{D}_c = n_c^{-1} \sum_{i=1}^n I(Z_i = c)(Y_{2i} - Y_{1i}), \quad c = 0, 1$$

Popular estimators for β **:**

• *ANCOVA* – Fit the model

$$E(Y_2|Y_1, Z) = \alpha_0 + \alpha_1 Y_1 + \beta Z$$

- ANCOVA II Include interaction and estimate β as coefficient of $Z \overline{Z}$ in regression of $Y_2 \overline{Y}_2$ on $Y_1 \overline{Y}_1$, $Z \overline{Z}$, and $(Y_1 \overline{Y}_1)(Z \overline{Z})$
- $GEE (Y_1, Y_2)^T$ is multivariate response with mean $(\mu_1, \mu_2 + \beta Z)^T$ and (2×2) unstructured covariance matrix
- Assume *linear* relationship between Y_2 and Y_1

ACTG 175: $Y_2 = CD4$ at 20±5 weeks vs. $Y_1 =$ baseline CD4 (control and treatment groups)

Additional data: Baseline and intermediate *covariates*

- X_1 Baseline (pre-treatment) characteristics
- X_2 Characteristics observed after pretest but before posttest, including intermediate responses

In ACTG 175:

- X₁ includes weight, age, gender, Karnofsky score, prior ARV therapy, CD8 count, sexual preference,...
- X_2 includes off treatment indicator, intermediate CD4, CD8

Additional estimators:

• Fancier regression models, e.g.

$$E(Y_2|Y_1, Z) = \alpha_0 + \alpha_1 Y_1 + \alpha_2 Y_1^2 + \beta Z$$

• Adjustment for *baseline covariates*, e.g.,

$$E(Y_2|X_1, Y_1, Z) = \alpha_0 + \alpha_1 Y_1 + \alpha_2 X_1 + \beta Z$$

- Both
- Intuitively, adjustment for intermediate covariates buys nothing without some assumptions (formally exhibited shortly...) and could be dangerous

Which estimator?

- In many settings, no *consensus*
- Is *normality* required?
- What if the relationship isn't *linear*?
- What if a model for $E(Y_2|X_1, Y_1, Z)$ is wrong?

Which estimator?

- In many settings, no *consensus*
- Is *normality* required?
- What if the relationship isn't *linear*?
- What if a model for $E(Y_2|X_1, Y_1, Z)$ is *wrong*?

Further complication: *Missing* posttest response Y_2

- In ACTG 175, no missing CD4 for any subject at 20 \pm 5 weeks...
- ... but 797 (37%) of subjects were missing CD4 at 96±5 weeks (almost entirely due to dropout from study)
- Common in practice *complete case analysis*, which yields possibly *biased* inference on β unless Y_2 is *missing completely at random*

Missing at random (MAR) assumption: Posttest missingness associated with (X_1, Y_1, X_2, Z) but not Y_2

• Often reasonable, but is an *assumption*

Full data: If *no missingness*, observe (X_1, Y_1, X_2, Y_2, Z)

Ordinarily: Models for (X_1, Y_1, X_2, Y_2, Z) may involve *assumptions*

- If Y_2 not missing, *widespread belief* that normality of (Y_1, Y_2) is required for validity of "popular" estimators
- When Y₂ is MAR, maximum likelihood, imputation approaches require assumptions on aspects of the joint distribution of (X₁, Y₁, X₂, Y₂, Z)
- Consequences?

Semiparametric models:

- May contain *parametric* and *nonparametric* components
- Nonparametric components unable or unwilling to make specific assumptions on aspects of (X_1, Y_1, X_2, Y_2, Z)

Semiparametric models:

- May contain *parametric* and *nonparametric* components
- Nonparametric components unable or unwilling to make specific assumptions on aspects of (X_1, Y_1, X_2, Y_2, Z)

Here: Consider a *semiparametric model* for (X_1, Y_1, X_2, Y_2, Z)

- No assumptions on joint distribution of (X₁, Y₁, X₂, Y₂, Z) beyond *independence* of (X₁, Y₁) and Z induced by *randomization* (nonparametric)
- Interested in the *functional* of this distribution

$$\beta = \mu_2^{(1)} - \mu_2^{(0)} = E(Y_2 | Z = 1) - E(Y_2 | Z = 0)$$

Where we are going: Under this semiparametric model

- Find a class of *consistent and asymptotically normal* (*CAN*) estimators for β when *full data* are available and identify the "*best*" (*efficient*) estimator in the class
- As a by-product, show that "*popular*" estimators are potentially *inefficient* members of this class can do *better*!
- When Y_2 is *MAR*, find a class of *CAN* estimators for β and identify the "*best*"
- In both cases, translate the theory into *practical techniques*

Where we are going: Under this semiparametric model

- Find a class of *consistent and asymptotically normal* (*CAN*) estimators for β when *full data* are available and identify the "*best*" (*efficient*) estimator in the class
- As a by-product, show that "*popular*" estimators are potentially *inefficient* members of this class can do *better*!
- When Y_2 is *MAR*, find a class of *CAN* estimators for β and identify the "*best*"
- In both cases, translate the theory into *practical techniques*

What we will exploit: Theory in a *landmark* paper by Robins, Rotnitzky, and Zhao (1994)

Definition: For functional β in a parametric or semiparametric model, an estimator $\hat{\beta}$ based on iid random vectors W_i , i = 1, ..., n, is *asymptotically linear* if

$$n^{1/2}(\widehat{\beta}-\beta_0)=n^{-1/2}\sum_{i=1}^n \varphi(W_i)+o_p(1)$$
 for some $\varphi(W)$

 $\beta_0 = \text{ true value of } \beta \ (p \times 1), \quad E\{\varphi(W)\} = 0, \quad E\{\varphi^T(W)\varphi(W)\} < \infty$

Definition: For functional β in a parametric or semiparametric model, an estimator $\hat{\beta}$ based on iid random vectors W_i , i = 1, ..., n, is *asymptotically linear* if

$$n^{1/2}(\widehat{eta}-eta_0)=n^{-1/2}\sum_{i=1}^n arphi(W_i)+o_p(1) \ \ \mbox{for some} \ \ arphi(W)$$

 $\beta_0 = \text{ true value of } \beta \ (p \times 1), \quad E\{\varphi(W)\} = 0, \quad E\{\varphi^T(W)\varphi(W)\} < \infty$

- $\varphi(W)$ is called the *influence function* of $\widehat{\beta}$
- If $\widehat{\beta}$ is also *regular* (not "pathological"), $\widehat{\beta}$ is *CAN* with *asymptotic* covariance matrix $E\{\varphi(W)\varphi^T(W)\}$
- Efficient influence function $\varphi^{eff}(W)$ has "smallest" covariance and corresponds to the efficient, regular asymptotically linear (RAL) estimator

Pretest-Posttest Study

For example: It may be shown directly by manipulating the expression for $n^{1/2}(\hat{\beta}_{2samp} - \beta)$ and using

$$n_0/n
ightarrow 1-\delta, \ n_1/n
ightarrow \delta$$
 as $n
ightarrow \infty$

that $\widehat{\beta}_{2samp}$ has influence function of the form

$$\frac{Z(Y_2 - \mu_2^{(1)})}{\delta} - \frac{(1 - Z)(Y_2 - \mu_2^{(0)})}{1 - \delta} = \frac{Z(Y_2 - \mu_2^{(0)} - \beta)}{\delta} - \frac{(1 - Z)(Y_2 - \mu_2^{(0)})}{1 - \delta}$$

[depends on $W = (X_1, Y_1, X_2, Y_2, Z)$]

Why is this useful? There is a *correspondence* between *CAN*, *RAL* estimators and influence functions

• By identifying influence functions, one can deduce estimators

General principle: Solve $\sum_{i=1}^{n} \varphi(W_i) = 0$ for β

For example: Influence function for $\hat{\beta}_{2samp}$

$$0 = \sum_{i=1}^{n} \left\{ \frac{Z_i(Y_{2i} - \mu_2^{(0)} - \beta)}{\delta} - \frac{(1 - Z_i)(Y_{2i} - \mu_2^{(0)})}{1 - \delta} \right\}$$

• Substituting $\mu_2^{(0)} = n_0^{-1} \sum_{i=1}^n (1 - Z_i) Y_{2i}$ and solving for β yields

$$\beta = n_1^{-1} \sum_{i=1}^n Z_i Y_{2i} - n_0^{-1} \sum_{i=1}^n (1 - Z_i) Y_{2i}$$

• In general, *closed form* may not be possible

What did RRZ do? Derived *asymptotic theory* based on influence functions for inference on functionals in *general semiparametric models* where some components of the *full data* are possibly *MAR*

Observed data: Data observed when some components of the *full data* are *potentially missing*

What did RRZ do, more specifically? For the functional of interest, distinguished between

- *Full-data influence functions* correspond to RAL estimators calculable if full data were available; functions of the full data
- Observed-data influence functions correspond to RAL estimators calculable from the observed data under MAR; functions of the observed data
- RRZ characterized the class of *all observed-data influence functions* for a general semiparametric model, including the *efficient* one, ...
- ... and showed that observed-data influence functions may be expressed in terms of full-data influence functions

The main result: Generic *full data* D = (O, M), *semiparametric model* for D, *functional* β

- *O* Part of *D* that is *always observed* (*never missing*)
- M Part of D that may be *missing*
- R = 1 if M is observed, = 0 if M is missing
- Observed data are (O, R, RM)
- Let $\varphi^F(D)$ be a full data influence function
- Let $\pi(O) = P(R = 1|D) = P(R = 1|O) > \epsilon$ (MAR assumption)
- All observed-data influence functions have form

$$\frac{R\varphi^F(D)}{\pi(O)} - \frac{R - \pi(O)}{\pi(O)}g(O), \quad g(O) \text{ square-integrable}$$

Result: Strategy for deriving estimators for a *semiparametric model*

- 1. Characterize the class of *full-data influence functions* (which correspond to *full-data estimators*)
- 2. Characterize the *observed data* under the particular MAR mechanism and the class of *observed-data influence functions*
- **3**. Identify *observed-data estimators* with influence functions in this class

Our approach: Follow these steps for the *semiparametric pretest- posttest model*

• Joint distribution of (X_1, Y_1, X_2, Y_2, Z) unspecified except (X_1, Y_1) independent of Z

Full-data influence functions: Can show (later) under the *semiparametric pretest-posttest model* that all full-data influence functions are of the form

$$\left\{\frac{Z(Y_2-\mu_2^{(1)})}{\delta}-\frac{(Z-\delta)}{\delta}h^{(1)}(X_1,Y_1)\right\}-\left\{\frac{(1-Z)(Y_2-\mu_2^{(0)})}{1-\delta}+\frac{(Z-\delta)}{1-\delta}h^{(0)}(X_1,Y_1)\right\},\$$

for arbitrary $h^{(c)}(X_1,Y_1)$, c=0,1 with $\mathrm{var}\{h^{(c)}(X_1,Y_1)\}<\infty$

- Difference of influence functions for estimators for $\mu_2^{(1)}$ and $\mu_2^{(0)}$
- *Full-data estimators* may depend on X_1 (but not X_2)

Full-data influence functions: Can show (later) under the *semiparametric pretest-posttest model* that all full-data influence functions are of the form

$$\left\{\frac{Z(Y_2-\mu_2^{(1)})}{\delta}-\frac{(Z-\delta)}{\delta}h^{(1)}(X_1,Y_1)\right\}-\left\{\frac{(1-Z)(Y_2-\mu_2^{(0)})}{1-\delta}+\frac{(Z-\delta)}{1-\delta}h^{(0)}(X_1,Y_1)\right\},\$$

for arbitrary $h^{(c)}(X_1,Y_1)$, c=0,1 with $\operatorname{var}\{h^{(c)}(X_1,Y_1)\}<\infty$

- Difference of influence functions for estimators for $\mu_2^{(1)}$ and $\mu_2^{(0)}$
- *Full-data estimators* may depend on X_1 (but not X_2)

Efficient full-data influence function: Corresponding to *efficient full-data estimator*; takes

$$h^{(c)}(X_1, Y_1) = E(Y_2 | X_1, Y_1, Z = c) - \mu_2^{(c)}, \ c = 0, 1$$

"Popular" estimators: *Influence functions* of $\hat{\beta}_{2samp}$, $\hat{\beta}_{pair}$, ANCOVA, ANCOVA II, and GEE have

$$h^{(c)}(X_1, Y_1) = \eta_c(Y_1 - \mu_1), \quad c = 0, 1, \text{ for constants } \eta_c$$

• E.g.,
$$\eta_c = 0$$
, $c = 0, 1$ for $\widehat{\beta}_{2samp}$

- So popular estimators are in the class \implies are CAN even if (Y_1, Y_2) are not normal
- Regression estimators incorporating *baseline covariates* are also in the class, e.g., $E(Y_1|X_1, Y_1, Z) = \alpha_0 + \alpha_1 Y_1 + \alpha_2 X_1 + \beta Z$
- Popular estimators are potentially *inefficient* among class of RAL estimators for semiparametric model

"Popular" estimators: *Influence functions* of $\hat{\beta}_{2samp}$, $\hat{\beta}_{pair}$, ANCOVA, ANCOVA II, and GEE have

$$h^{(c)}(X_1, Y_1) = \eta_c(Y_1 - \mu_1), \quad c = 0, 1, \text{ for constants } \eta_c$$

• E.g.,
$$\eta_c = 0$$
, $c = 0, 1$ for $\widehat{\beta}_{2samp}$

- So popular estimators are in the class \implies are CAN even if (Y_1, Y_2) are not normal
- Regression estimators incorporating *baseline covariates* are also in the class, e.g., $E(Y_1|X_1, Y_1, Z) = \alpha_0 + \alpha_1 Y_1 + \alpha_2 X_1 + \beta Z$
- Popular estimators are potentially *inefficient* among class of RAL estimators for semiparametric model

How to use all this? *Efficient estimator* is "best!"

Pretest-Posttest Study

Efficient estimator: Setting sum over *i* of *efficient influence function* = 0 and replacing δ by $\hat{\delta} = n_1/n$ yields

$$\beta = n_1^{-1} \left\{ \sum_{i=1}^n Z_i Y_{2i} - \sum_{i=1}^n (Z_i - \hat{\delta}) E(Y_{2i} | X_{1i}, Y_{1i}, Z_i = 1) \right\}$$
$$- n_0^{-1} \left\{ \sum_{i=1}^n (1 - Z_i) Y_{2i} + \sum_{i=1}^n (Z_i - \hat{\delta}) E(Y_{2i} | X_{1i}, Y_{1i}, Z_i = 0) \right\}$$

- Practical use replace E(Y₂|X₁, Y₁, Z = c) by predicted values ê_{h(c)i}, say, c = 0, 1, from parametric or nonparametric regression modeling
- Can lead to substantial *increase in precision* over popular estimators
- Advantage even if $E(Y_2|X_1Y_1, Z = c)$ are modeled *incorrectly*, $\widehat{\beta}$ is still *consistent*

Observed data: (X_1, Y_1, X_2, Z) are *never missing*, Y_2 *may* be missing for some subjects

- R = 1 if Y_2 observed, R = 0 if Y_2 missing
- Observed data are $(X_1, Y_1, X_2, Z, R, RY_2)$
- MAR assumption

$$P(R = 1 | X_1, Y_1, X_2, Y_2, Z) = P(R = 1 | X_1, Y_1, X_2, Z)$$
$$= \pi(X_1, Y_1, X_2, Z) \ge \epsilon > 0$$

$$\pi(X_1, Y_1, X_2, Z) = Z\pi^{(1)}(X_1, Y_1, X_2) + (1 - Z)\pi^{(0)}(X_1, Y_1, X_2),$$
$$\pi^{(c)}(X_1, Y_1, X_2) = \pi(X_1, Y_1, X_2, c), \ c = 0, 1$$

Recall: Generic form of *observed-data influence functions*

$$\frac{R\varphi^F(D)}{\pi(O)} - \frac{R - \pi(O)}{\pi(O)}g(O)$$

For simplicity: Focus on influence functions for estimators for $\mu_2^{(1)}$

- Those for estimators for $\mu_2^{(0)}$ similar
- Influence functions for estimators for β : take the *difference*

Recall: Generic form of *observed-data influence functions*

$$\frac{R\varphi^F(D)}{\pi(O)} - \frac{R - \pi(O)}{\pi(O)}g(O)$$

For simplicity: Focus on influence functions for estimators for $\mu_2^{(1)}$

- Those for estimators for $\mu_2^{(0)}$ similar
- Influence functions for estimators for β : take the *difference*

Full-data influence functions for estimators for $\mu_2^{(1)}$: Have form

$$\frac{Z(Y_2 - \mu_2^{(1)})}{\delta} - \frac{(Z - \delta)}{\delta} h^{(1)}(X_1, Y_1), \quad \mathsf{var}\{h^{(1)}(X_1, Y_1)\} < \infty$$

Thus: Observed-data influence functions for estimators for $\mu_2^{(1)}$ have form

$$\frac{R\{Z(Y_2 - \mu_2^{(1)}) - (Z - \delta)h^{(1)}(X_1, Y_1)\}}{\delta\pi(X_1, Y_1, X_2, Z)} - \frac{R - \pi(X_1, Y_1, X_2, Z)}{\pi(X_1, Y_1, X_2, Z)}g^{(1)}(X_1, Y_1, X_2, Z)$$

$$\operatorname{var}\{h^{(1)}(X_1, Y_1)\} < \infty, \quad \operatorname{var}\{g^{(1)}(X_1, Y_1, X_2, Z)\} < \infty$$

- Choice of $h^{(1)}$ leading to the *efficient* observed-data influence function *need not be the same* as that leading to the *efficient full-data* influence function *in general*
- Turns out that the optimal $h^{(1)}$ is the same in the special case of the pretest-posttest problem...

Re-writing: Equivalently, *observed-data influence functions* are

$$\frac{RZ(Y_2 - \mu_2^{(1)})}{\delta\pi(X_1, Y_1, X_2, Z)} - \frac{(Z - \delta)}{\delta}h^{(1)}(X_1, Y_1) - \frac{R - \pi(X_1, Y_1, X_2, Z)}{\delta\pi(X_1, Y_1, X_2, Z)}g^{(1)'}(X_1, Y_1, X_2, Z)$$

• Optimal choices (efficient influence function) are

$$h^{eff(1)}(X_1, Y_1) = E(Y_2|X_1, Y_1, Z = 1) - \mu_2^{(1)}$$

$$g^{eff(1)'}(X_1, Y_1, X_2, Z) = Z\{E(Y_2|X_1, Y_1, X_2, Z) - \mu_2^{(1)}\}$$

= $Z\{E(Y_2|X_1, Y_1, X_2, Z = 1) - \mu_2^{(1)}\}$

• *Efficient influence function* is of form

$$\frac{RZ(Y_2 - \mu_2^{(1)})}{\delta\pi^{(1)}(X_1, Y_1, X_2)} - \frac{(Z - \delta)}{\delta}h^{(1)}(X_1, Y_1) - \frac{\{R - \pi^{(1)}(X_1, Y_1, X_2)\}Z}{\delta\pi^{(1)}(X_1, Y_1, X_2)}q^{(1)}(X_1, Y_1, X_2)$$

Result: With the *optimal* $h^{(1)}$, $q^{(1)}$, algebra yields

$$\mu_{2}^{(1)} = (n\delta)^{-1} \left\{ \sum_{i=1}^{n} \frac{R_{i}Z_{i}Y_{2i}}{\pi^{(1)}(X_{1i}, Y_{1i}, X_{2i})} - \sum_{i=1}^{n} (Z_{i} - \delta)E(Y_{2i}|X_{1i}, Y_{1i}, Z_{i} = 1) - \sum_{i=1}^{n} \frac{\{R_{i} - \pi^{(1)}(X_{1i}, Y_{1i}, X_{2i})\}Z_{i}}{\pi^{(1)}(X_{1i}, Y_{1i}, X_{2i})} E(Y_{2i}|X_{1i}, Y_{1i}, X_{2i}, Z_{i} = 1) \right\}$$

- Similarly for $\mu_2^{(0)}$ depending on $\pi^{(0)}$, $E(Y_2|X_1, Y_1, Z = 0)$, $E(Y_2|X_1, Y_1, X_2, Z = 0)$
- Estimator for β take the difference
- Practical use replace these quantities by predicted values from regression modeling (coming up)

Complication 1: $\pi^{(c)}(X_1, Y_1, X_2)$ are *not known*, c = 0, 1

• Common strategy: adopt *parametric models* (e.g. *logistic regression*) depending on parameter $\gamma^{(c)}$

 $\pi^{(c)}(X_1, Y_1, X_2; \gamma^{(c)})$

- Imposes an *additional assumption* on semiparametric model for (X_1, Y_1, X_2, Y_1, Z)
- Substitute the MLE $\widehat{\gamma}^{(c)}$ for $\gamma^{(c)}$, obtain predicted values $\widehat{\pi}_i^{(c)}$
- As long as *this model* is *correct*, resulting estimators will be CAN

Complication 2: Modeling $E(Y_2|X_1, Y_1, Z = c)$, $E(Y_2|X_1, Y_1, X_2, Z = c)$, c = 0, 1

- $MAR \implies E(Y_2|X_1, Y_1, X_2, Z) = E(Y_2|X_1, Y_1, X_2, Z, R = 1)$ (can base modeling/fitting on *complete cases* only)
- Obtain predicted values $\hat{e}_{q(c)i}$, c = 0, 1
- However, *ideally* require compatibility, i.e.

 $E(Y_2|X_1, Y_1, Z) = E\{E(Y_2|X_1, Y_1, X_2, Z)|X_1, Y_1, Z\}$

and *no longer valid* to fit using only complete cases

- Practically go ahead and model directly and fit using complete cases, obtain predicted values $\hat{e}_{h(c)i}$
- Estimation of parameters in these models *does not affect* (asymptotic) *variance* of $\hat{\beta}$ as long as $\pi^{(c)}$ models are *correct*

Estimator: With $\hat{\delta} = n_1/n$

$$\widehat{\beta} = n_1^{-1} \left\{ \sum_{i=1}^n \frac{R_i Z_i Y_{2i}}{\widehat{\pi}_i^{(1)}} - \sum_{i=1}^n (Z_i - \widehat{\delta}) \widehat{e}_{h(1)i} - \sum_{i=1}^n \frac{(R_i - \widehat{\pi}_i^{(1)}) Z_i \widehat{e}_{q(1)i}}{\widehat{\pi}_i^{(1)}} \right\} - n_0^{-1} \left\{ \sum_{i=1}^n \frac{R_i (1 - Z_i) Y_{2i}}{\widehat{\pi}_i^{(0)}} + \sum_{i=1}^n (Z_i - \widehat{\delta}) \widehat{e}_{h(0)i} - \sum_{i=1}^n \frac{(R_i - \widehat{\pi}_i^{(0)}) (1 - Z_i) \widehat{e}_{q(1)i}}{\widehat{\pi}_i^{(0)}} \right\}$$

- *Efficient* if modeling done *correctly*; otherwise, *close to optimal* performance
- Taking $\hat{e}_{h(c)i} = \hat{e}_{q(c)i} = 0$ yields the simple inverse-weighted complete case estimator (inefficient)
- Modeling E(Y₂|X₁, Y₁, Z = c), E(Y₂|X₁, Y₁, X₂, Z = c)
 "augments" this, taking advantage of relationships among variables to improve precision

"Double Robustness:" Still consistent if

- $\pi^{(c)}$ are correctly modeled but $E(Y_2|X_1, Y_1, Z = c)$ and $E(Y_2|X_1, Y_1, X_2, Z = c)$ aren't
- $E(Y_2|X_1, Y_1, Z = c)$ and $E(Y_2|X_1, Y_1, X_2, Z = c)$ are correctly modeled but $\pi^{(c)}$ aren't
- No longer *efficient*

If both sets of models incorrect, inconsistent in general

"Double Robustness:" Still consistent if

- $\pi^{(c)}$ are correctly modeled but $E(Y_2|X_1, Y_1, Z = c)$ and $E(Y_2|X_1, Y_1, X_2, Z = c)$ aren't
- $E(Y_2|X_1, Y_1, Z = c)$ and $E(Y_2|X_1, Y_1, X_2, Z = c)$ are *correctly* modeled but $\pi^{(c)}$ aren't
- No longer *efficient*

If *both* sets of models *incorrect*, *inconsistent* in general

Standard errors: Use the *sandwich* formula (follows from influence function)

Recap: This approach requires one to make an assumption about $\pi^{(c)}(X_1, Y_1, X_2)$, c = 0, 1

- No assumption is made about $E(Y_2|X_1, Y_1, X_2, Z = c)$, $E(Y_2|X_1, Y_1, Z = c)$
- Model is *still semiparametric*
- ... and *double robustness* holds

Recap: This approach requires one to make an assumption about $\pi^{(c)}(X_1, Y_1, X_2)$, c = 0, 1

- No assumption is made about $E(Y_2|X_1, Y_1, X_2, Z = c)$, $E(Y_2|X_1, Y_1, Z = c)$
- Model is *still semiparametric*
- ... and *double robustness* holds

Alternative approach: Make an assumption *instead* about the $E(Y_2|X_1, Y_1, X_2, Z = c)$, $E(Y_2|X_1, Y_1, Z = c)$

- Efficient estimator is maximum likelihood
- Don't need to even worry about $\pi^{(c)}(X_1, Y_1, X_2)$
- But no double robustness property!

6. Full data, revisited

How did we get the full-data influence functions?

- One way use *classical semiparametric theory*
- Another way View as a "fake missing data problem" by casting the full-data problem in terms of counterfactuals

6. Full data, revisited

How did we get the full-data influence functions?

- One way use *classical semiparametric theory*
- Another way View as a "fake missing data problem" by casting the full-data problem in terms of counterfactuals

Counterfactual representation:

- $Y_2^{(1)}$, $Y_2^{(0)}$ are *potential posttest responses* if a subject were assigned to control or treatment
- We observe $Y_2 = ZY_2^{(1)} + (1-Z)Y_2^{(0)}$
- "Fake full data" $(X_1, Y_1, X_2, Y_2^{(0)}, Y_2^{(1)}, Z)$
- "Fake observed data" $(X_1, Y_1, X_2, Z, ZY_2^{(1)}, (1-Z)Y_2^{(0)})$
- Apply the *RRZ theory*

7. Simulation evidence

Full-data problem:

- Substantial *gains in efficiency* over "popular" methods, especially when there are *nonlinear* relationships among variables
- Parametric and nonparametric regression modeling work well
- *Valid* standard errors, confidence intervals

7. Simulation evidence

Full-data problem:

- Substantial *gains in efficiency* over "popular" methods, especially when there are *nonlinear* relationships among variables
- Parametric and nonparametric regression modeling work well
- *Valid* standard errors, confidence intervals

Observed-data problem:

- "Popular" methods with complete cases can exhibit substantial biases
- Inverse-weighted complete case estimator is unbiased but inefficient
- Substantial *gains in efficiency* possible through modeling
- *Valid* standard errors, confidence intervals

Recall: $Y_2 = CD4$ at 20 \pm 5 weeks vs. $Y_1 =$ baseline CD4 (control and treatment groups)

• Apparent *curvature*

Results: Models for $E(Y_2|X_1, Y_1, Z = c)$, c = 0, 1

Estimator	\widehat{eta}	SE
Parametric modeling	50.8	5.0
(quadratic in Y_1)		
Nonparametric modeling	50.0	5.1
(GAM)		
ANCOVA	49.3	5.4
Paired t	50.1	5.7
Two-sample t	45.5	6.8

Complete cases: $Y_2 = CD4$ at 96±5 weeks vs. $Y_1 =$ baseline CD4 (control and treatment groups)

• 37% missing Y_2

Results: Logistic regression for $\pi^{(c)}$, c = 0, 1; parametric regression modeling of $E(Y_2|X_1, Y_1, X_2, Z = c)$, $E(Y_2|X_1, Y_1, Z = c)$

Estimator	\widehat{eta}	SE
Parametric modeling	57.2	10.2
(quadratic in Y_1)		
Simple inverse-weighting	54.7	11.8
ANCOVA	64.5	9.3
Paired t	67.1	9.3

9. Discussion

- *RRZ theory* applied to a standard problem
- *General framework* for pretest-posttest analysis illuminating how relationships among variables may be fruitfully *exploited*
- Practical estimators
- Can be extended to censored covariate information
- Results are equally applicable to baseline covariate adjustment in comparison of two means $(Y_1 \text{ is just another baseline covariate})$
- Lots of methods for this problem (*likelihood*, *imputation* combinations thereof, ...); semiparametric theory provides a framework for understanding commonalities and differences among them

9. Discussion

References: Gory details available in

- Leon, S., Tsiatis, A.A., and Davidian, M. (2003) Semiparametric estimation of treatment effect in a pretest-posttest study. *Biometrics* 59, 1048–1057.
- Davidian, M., Tsiatis, A.A., and Leon, S. (2005) Semiparametric estimation of treatment effect in a pretest-posttest study with missing data. *Statistical Science*, to appear.

Forthcoming:

Tsiatis, A.A. (200X) Semiparametrics and Missing Data. New York: Springer.