Semiparametric Estimation of Treatment Effect in a Pretest-Posttest Study

Marie Davidian
Department of Statistics
North Carolina State University

http://www.stat.ncsu.edu/~davidian
(Joint work with A.A. Tsiatis and S. Leon)

Outline

1. Introduction and review of popular methods
2. Influence functions
3. Robins, Rotnitzky, and Zhao (1994)
4. Estimation when full data are available
5. Estimation when posttest response is missing at random (MAR)
6. Full data influence functions, revisited
7. Simulation evidence
8. Application - ACTG 175
9. Discussion

1. Introduction and review

The "pretest-posttest" study: Ubiquitous in research in medicine, public health, social science, etc...

- Subjects are randomized to two treatments ("treatment" and "control")
- Response is measured at baseline ("pretest") and at a pre-specified follow-up time ("posttest")
- Focus of inference: "Difference in change of mean response from baseline to follow-up between treatment and control"

1. Introduction and review

For example: AIDS Clinical Trials Group 175

- 2139 patients randomized to ZDV, ZDV+ddI, ZDV+zalcitabine, ddl with equal probability (1/4)
- Primary analysis (time-to-event endpoint): ZDV inferior to other three (no differences)
- Two groups: ZDV alone ("control") and other three ("treatment")
- Secondary analyses: Compare change in CD4 count (immunologic status) from (i) baseline to 20 ± 5 weeks and (ii) baseline to 96 ± 5 weeks between control and treatment

1. Introduction and review

Formally: Define
Y_{1} baseline (pretest) response (e.g., baseline CD4 count)
Y_{2} follow-up (posttest) response (e.g., 20 ± 5 week CD4 count)
$Z \quad=0$ if control, $=1$ if treatment, $P(Z=1)=\delta$

- By randomization, reasonable to assume

$$
E\left(Y_{1} \mid Z=0\right)=E\left(Y_{1} \mid Z=1\right)=E\left(Y_{1}\right)=\mu_{1}
$$

Effect of interest: β, where

$$
\begin{aligned}
\left\{E\left(Y_{2} \mid Z=1\right)\right. & \left.-E\left(Y_{1} \mid Z=1\right)\right\}-\left\{E\left(Y_{2} \mid Z=0\right)-E\left(Y_{1} \mid Z=0\right)\right\} \\
& \left.=\left\{E\left(Y_{2} \mid Z=1\right)-\mu_{1}\right\}-\left\{E\left(Y_{2} \mid Z=0\right)-\mu_{1}\right)\right\} \\
& =E\left(Y_{2} \mid Z=1\right)-E\left(Y_{2} \mid Z=0\right) \\
& =\mu_{2}^{(1)}-\mu_{2}^{(0)}=\beta
\end{aligned}
$$

1. Introduction and review

Basic data: $\left(Y_{1 i}, Y_{2 i}, Z_{i}\right), i=1, \ldots, n$, iid

$$
n_{0}=\sum_{i=1}^{n}\left(1-Z_{i}\right)=\sum_{i=1}^{n} I\left(Z_{i}=0\right), \quad n_{1}=\sum_{i=1}^{n} Z_{i}=\sum_{i=1}^{n} I\left(Z_{i}=1\right)
$$

Popular estimators for β :

- Two-sample t-test estimator

$$
\widehat{\beta}_{2 s a m p}=n_{1}^{-1} \sum_{i=1}^{n} Z_{i} Y_{2 i}-n_{0}^{-1} \sum_{i=1}^{n}\left(1-Z_{i}\right) Y_{2 i}
$$

- "Paired t-test" estimator ("change scores")

$$
\widehat{\beta}_{p a i r}=\bar{D}_{1}-\bar{D}_{0}, \quad \bar{D}_{c}=n_{c}^{-1} \sum_{i=1}^{n} I\left(Z_{i}=c\right)\left(Y_{2 i}-Y_{1 i}\right), \quad c=0,1
$$

1. Introduction and review

Popular estimators for β :

- ANCOVA - Fit the model

$$
E\left(Y_{2} \mid Y_{1}, Z\right)=\alpha_{0}+\alpha_{1} Y_{1}+\beta Z
$$

- ANCOVA II - Include interaction and estimate β as coefficient of $Z-\bar{Z}$ in regression of $Y_{2}-\bar{Y}_{2}$ on $Y_{1}-\bar{Y}_{1}, Z-\bar{Z}$, and $\left(Y_{1}-\bar{Y}_{1}\right)(Z-\bar{Z})$
- GEE - $\left(Y_{1}, Y_{2}\right)^{T}$ is multivariate response with mean $\left(\mu_{1}, \mu_{2}+\beta Z\right)^{T}$ and (2×2) unstructured covariance matrix
- Assume linear relationship between Y_{2} and Y_{1}

1. Introduction and review

ACTG 175: $Y_{2}=$ CD4 at 20 ± 5 weeks vs. $Y_{1}=$ baseline CD4 (control and treatment groups)

1. Introduction and review

Additional data: Baseline and intermediate covariates
$X_{1} \quad$ Baseline (pre-treatment) characteristics
X_{2} Characteristics observed after pretest but before posttest, including intermediate responses

In ACTG 175:

- X_{1} includes weight, age, gender, Karnofsky score, prior ARV therapy, CD8 count, sexual preference,...
- X_{2} includes off treatment indicator, intermediate CD4, CD8

1. Introduction and review

Additional estimators:

- Fancier regression models, e.g.

$$
E\left(Y_{2} \mid Y_{1}, Z\right)=\alpha_{0}+\alpha_{1} Y_{1}+\alpha_{2} Y_{1}^{2}+\beta Z
$$

- Adjustment for baseline covariates, e.g.,

$$
E\left(Y_{2} \mid X_{1}, Y_{1}, Z\right)=\alpha_{0}+\alpha_{1} Y_{1}+\alpha_{2} X_{1}+\beta Z
$$

- Both
- Intuitively, adjustment for intermediate covariates buys nothing without some assumptions (formally exhibited shortly...) and could be dangerous

1. Introduction and review

Which estimator?

- In many settings, no consensus
- Is normality required?
- What if the relationship isn't linear?
- What if a model for $E\left(Y_{2} \mid X_{1}, Y_{1}, Z\right)$ is wrong?

1. Introduction and review

Which estimator?

- In many settings, no consensus
- Is normality required?
- What if the relationship isn't linear?
- What if a model for $E\left(Y_{2} \mid X_{1}, Y_{1}, Z\right)$ is wrong?

Further complication: Missing posttest response Y_{2}

- In ACTG 175, no missing CD4 for any subject at 20 ± 5 weeks. . .
- ... but 797 (37\%) of subjects were missing CD4 at 96 ± 5 weeks (almost entirely due to dropout from study)
- Common in practice - complete case analysis, which yields possibly biased inference on β unless Y_{2} is missing completely at random

Introduction and review

Missing at random (MAR) assumption: Posttest missingness associated with $\left(X_{1}, Y_{1}, X_{2}, Z\right)$ but not Y_{2}

- Often reasonable, but is an assumption

Full data: If no missingness, observe $\left(X_{1}, Y_{1}, X_{2}, Y_{2}, Z\right)$

Ordinarily: Models for $\left(X_{1}, Y_{1}, X_{2}, Y_{2}, Z\right)$ may involve assumptions

- If Y_{2} not missing, widespread belief that normality of $\left(Y_{1}, Y_{2}\right)$ is required for validity of "popular" estimators
- When Y_{2} is MAR, maximum likelihood, imputation approaches require assumptions on aspects of the joint distribution of $\left(X_{1}, Y_{1}, X_{2}, Y_{2}, Z\right)$
- Consequences?

Introduction and review

Semiparametric models:

- May contain parametric and nonparametric components
- Nonparametric components - unable or unwilling to make specific assumptions on aspects of ($X_{1}, Y_{1}, X_{2}, Y_{2}, Z$)

Introduction and review

Semiparametric models:

- May contain parametric and nonparametric components
- Nonparametric components - unable or unwilling to make specific assumptions on aspects of ($X_{1}, Y_{1}, X_{2}, Y_{2}, Z$)

Here: Consider a semiparametric model for $\left(X_{1}, Y_{1}, X_{2}, Y_{2}, Z\right)$

- No assumptions on joint distribution of ($X_{1}, Y_{1}, X_{2}, Y_{2}, Z$) beyond independence of $\left(X_{1}, Y_{1}\right)$ and Z induced by randomization (nonparametric)
- Interested in the functional of this distribution

$$
\beta=\mu_{2}^{(1)}-\mu_{2}^{(0)}=E\left(Y_{2} \mid Z=1\right)-E\left(Y_{2} \mid Z=0\right)
$$

Introduction and review

Where we are going: Under this semiparametric model

- Find a class of consistent and asymptotically normal (CAN) estimators for β when full data are available and identify the "best" (efficient) estimator in the class
- As a by-product, show that "popular" estimators are potentially inefficient members of this class - can do better!
- When Y_{2} is $M A R$, find a class of CAN estimators for β and identify the "best"
- In both cases, translate the theory into practical techniques

Introduction and review

Where we are going: Under this semiparametric model

- Find a class of consistent and asymptotically normal (CAN) estimators for β when full data are available and identify the "best" (efficient) estimator in the class
- As a by-product, show that "popular" estimators are potentially inefficient members of this class - can do better!
- When Y_{2} is MAR, find a class of CAN estimators for β and identify the "best"
- In both cases, translate the theory into practical techniques

What we will exploit: Theory in a landmark paper by Robins, Rotnitzky, and Zhao (1994)

2. Influence functions

Definition: For functional β in a parametric or semiparametric model, an estimator $\widehat{\beta}$ based on iid random vectors $W_{i}, i=1, \ldots, n$, is asymptotically linear if

$$
n^{1 / 2}\left(\widehat{\beta}-\beta_{0}\right)=n^{-1 / 2} \sum_{i=1}^{n} \varphi\left(W_{i}\right)+o_{p}(1) \text { for some } \varphi(W)
$$

$\beta_{0}=$ true value of $\beta(p \times 1), \quad E\{\varphi(W)\}=0, \quad E\left\{\varphi^{T}(W) \varphi(W)\right\}<\infty$

2. Influence functions

Definition: For functional β in a parametric or semiparametric model, an estimator $\widehat{\beta}$ based on iid random vectors $W_{i}, i=1, \ldots, n$, is asymptotically linear if

$$
n^{1 / 2}\left(\widehat{\beta}-\beta_{0}\right)=n^{-1 / 2} \sum_{i=1}^{n} \varphi\left(W_{i}\right)+o_{p}(1) \text { for some } \varphi(W)
$$

$\beta_{0}=$ true value of $\beta(p \times 1), \quad E\{\varphi(W)\}=0, \quad E\left\{\varphi^{T}(W) \varphi(W)\right\}<\infty$

- $\varphi(W)$ is called the influence function of $\widehat{\beta}$
- If $\widehat{\beta}$ is also regular (not "pathological"), $\widehat{\beta}$ is CAN with asymptotic covariance matrix $E\left\{\varphi(W) \varphi^{T}(W)\right\}$
- Efficient influence function $\varphi^{e f f}(W)$ has "smallest" covariance and corresponds to the efficient, regular asymptotically linear ($R A L$) estimator

2. Influence functions

For example: It may be shown directly by manipulating the expression for $n^{1 / 2}\left(\widehat{\beta}_{2 \text { samp }}-\beta\right)$ and using

$$
n_{0} / n \rightarrow 1-\delta, n_{1} / n \rightarrow \delta \quad \text { as } n \rightarrow \infty
$$

that $\widehat{\beta}_{2 \text { samp }}$ has influence function of the form
$\frac{Z\left(Y_{2}-\mu_{2}^{(1)}\right)}{\delta}-\frac{(1-Z)\left(Y_{2}-\mu_{2}^{(0)}\right)}{1-\delta}=\frac{Z\left(Y_{2}-\mu_{2}^{(0)}-\beta\right)}{\delta}-\frac{(1-Z)\left(Y_{2}-\mu_{2}^{(0)}\right)}{1-\delta}$
[depends on $W=\left(X_{1}, Y_{1}, X_{2}, Y_{2}, Z\right)$]
Why is this useful? There is a correspondence between CAN, RAL estimators and influence functions

- By identifying influence functions, one can deduce estimators

2. Influence functions

General principle: Solve $\sum_{i=1}^{n} \varphi\left(W_{i}\right)=0$ for β
For example: Influence function for $\widehat{\beta}_{2 s a m p}$

$$
0=\sum_{i=1}^{n}\left\{\frac{Z_{i}\left(Y_{2 i}-\mu_{2}^{(0)}-\beta\right)}{\delta}-\frac{\left(1-Z_{i}\right)\left(Y_{2 i}-\mu_{2}^{(0)}\right)}{1-\delta}\right\}
$$

- Substituting $\mu_{2}^{(0)}=n_{0}^{-1} \sum_{i=1}^{n}\left(1-Z_{i}\right) Y_{2 i}$ and solving for β yields

$$
\beta=n_{1}^{-1} \sum_{i=1}^{n} Z_{i} Y_{2 i}-n_{0}^{-1} \sum_{i=1}^{n}\left(1-Z_{i}\right) Y_{2 i}
$$

- In general, closed form may not be possible

3. Robins, Rotnitzky, and Zhao (1994)

What did RRZ do? Derived asymptotic theory based on influence functions for inference on functionals in general semiparametric models where some components of the full data are possibly MAR

Observed data: Data observed when some components of the full data are potentially missing

3. Robins, Rotnitzky, and Zhao (1994)

What did RRZ do, more specifically? For the functional of interest, distinguished between

- Full-data influence functions - correspond to RAL estimators calculable if full data were available; functions of the full data
- Observed-data influence functions - correspond to RAL estimators calculable from the observed data under MAR; functions of the observed data
- RRZ characterized the class of all observed-data influence functions for a general semiparametric model, including the efficient one, ...
- ... and showed that observed-data influence functions may be expressed in terms of full-data influence functions

3. Robins, Rotnitzky, and Zhao (1994)

The main result: Generic full data $D=(O, M)$, semiparametric model for D, functional β
$O \quad$ Part of D that is always observed (never missing)
M Part of D that may be missing
$R=1$ if M is observed, $=0$ if M is missing

- Observed data are $(O, R, R M)$
- Let $\varphi^{F}(D)$ be a full data influence function
- Let $\pi(O)=P(R=1 \mid D)=P(R=1 \mid O)>\epsilon$ (MAR assumption)
- All observed-data influence functions have form

$$
\frac{R \varphi^{F}(D)}{\pi(O)}-\frac{R-\pi(O)}{\pi(O)} g(O), \quad g(O) \text { square-integrable }
$$

3. Robins, Rotnitzky, and Zhao (1994)

Result: Strategy for deriving estimators for a semiparametric model

1. Characterize the class of full-data influence functions (which correspond to full-data estimators)
2. Characterize the observed data under the particular MAR mechanism and the class of observed-data influence functions
3. Identify observed-data estimators with influence functions in this class

Our approach: Follow these steps for the semiparametric pretestposttest model

- Joint distribution of ($X_{1}, Y_{1}, X_{2}, Y_{2}, Z$) unspecified except (X_{1}, Y_{1}) independent of Z

4. Estimation with full data

Full-data influence functions: Can show (later) under the semiparametric pretest-posttest model that all full-data influence functions are of the form

$$
\left\{\frac{Z\left(Y_{2}-\mu_{2}^{(1)}\right)}{\delta}-\frac{(Z-\delta)}{\delta} h^{(1)}\left(X_{1}, Y_{1}\right)\right\}-\left\{\frac{(1-Z)\left(Y_{2}-\mu_{2}^{(0)}\right)}{1-\delta}+\frac{(Z-\delta)}{1-\delta} h^{(0)}\left(X_{1}, Y_{1}\right)\right\}
$$

for arbitrary $h^{(c)}\left(X_{1}, Y_{1}\right), c=0,1$ with $\operatorname{var}\left\{h^{(c)}\left(X_{1}, Y_{1}\right)\right\}<\infty$

- Difference of influence functions for estimators for $\mu_{2}^{(1)}$ and $\mu_{2}^{(0)}$
- Full-data estimators may depend on X_{1} (but not X_{2})

4. Estimation with full data

Full-data influence functions: Can show (later) under the semiparametric pretest-posttest model that all full-data influence functions are of the form

$$
\left\{\frac{Z\left(Y_{2}-\mu_{2}^{(1)}\right)}{\delta}-\frac{(Z-\delta)}{\delta} h^{(1)}\left(X_{1}, Y_{1}\right)\right\}-\left\{\frac{(1-Z)\left(Y_{2}-\mu_{2}^{(0)}\right)}{1-\delta}+\frac{(Z-\delta)}{1-\delta} h^{(0)}\left(X_{1}, Y_{1}\right)\right\}
$$

for arbitrary $h^{(c)}\left(X_{1}, Y_{1}\right), c=0,1$ with $\operatorname{var}\left\{h^{(c)}\left(X_{1}, Y_{1}\right)\right\}<\infty$

- Difference of influence functions for estimators for $\mu_{2}^{(1)}$ and $\mu_{2}^{(0)}$
- Full-data estimators may depend on X_{1} (but not X_{2})

Efficient full-data influence function: Corresponding to efficient full-data estimator; takes

$$
h^{(c)}\left(X_{1}, Y_{1}\right)=E\left(Y_{2} \mid X_{1}, Y_{1}, Z=c\right)-\mu_{2}^{(c)}, c=0,1
$$

4. Estimation with full data

"Popular" estimators: Influence functions of $\widehat{\beta}_{2 \text { samp }}, \widehat{\beta}_{\text {pair }}$, ANCOVA, ANCOVA II, and GEE have

$$
h^{(c)}\left(X_{1}, Y_{1}\right)=\eta_{c}\left(Y_{1}-\mu_{1}\right), \quad c=0,1, \text { for constants } \eta_{c}
$$

- E.g., $\eta_{c}=0, c=0,1$ for $\widehat{\beta}_{2 s a m p}$
- So popular estimators are in the class \Longrightarrow are CAN even if $\left(Y_{1}, Y_{2}\right)$ are not normal
- Regression estimators incorporating baseline covariates are also in the class, e.g., $E\left(Y_{1} \mid X_{1}, Y_{1}, Z\right)=\alpha_{0}+\alpha_{1} Y_{1}+\alpha_{2} X_{1}+\beta Z$
- Popular estimators are potentially inefficient among class of RAL estimators for semiparametric model

4. Estimation with full data

"Popular" estimators: Influence functions of $\widehat{\beta}_{2 \text { samp }}, \widehat{\beta}_{\text {pair }}$, ANCOVA, ANCOVA II, and GEE have

$$
h^{(c)}\left(X_{1}, Y_{1}\right)=\eta_{c}\left(Y_{1}-\mu_{1}\right), \quad c=0,1, \text { for constants } \eta_{c}
$$

- E.g., $\eta_{c}=0, c=0,1$ for $\widehat{\beta}_{2 s a m p}$
- So popular estimators are in the class \Longrightarrow are CAN even if $\left(Y_{1}, Y_{2}\right)$ are not normal
- Regression estimators incorporating baseline covariates are also in the class, e.g., $E\left(Y_{1} \mid X_{1}, Y_{1}, Z\right)=\alpha_{0}+\alpha_{1} Y_{1}+\alpha_{2} X_{1}+\beta Z$
- Popular estimators are potentially inefficient among class of RAL estimators for semiparametric model

How to use all this? Efficient estimator is "best!"

4. Estimation with full data

Efficient estimator: Setting sum over i of efficient influence function $=$ 0 and replacing δ by $\widehat{\delta}=n_{1} / n$ yields

$$
\begin{aligned}
\beta & =n_{1}^{-1}\left\{\sum_{i=1}^{n} Z_{i} Y_{2 i}-\sum_{i=1}^{n}\left(Z_{i}-\widehat{\delta}\right) E\left(Y_{2 i} \mid X_{1 i}, Y_{1 i}, Z_{i}=1\right)\right\} \\
& -n_{0}^{-1}\left\{\sum_{i=1}^{n}\left(1-Z_{i}\right) Y_{2 i}+\sum_{i=1}^{n}\left(Z_{i}-\widehat{\delta}\right) E\left(Y_{2 i} \mid X_{1 i}, Y_{1 i}, Z_{i}=0\right)\right\}
\end{aligned}
$$

- Practical use - replace $E\left(Y_{2} \mid X_{1}, Y_{1}, Z=c\right)$ by predicted values $\widehat{e}_{h(c) i}$, say, $c=0,1$, from parametric or nonparametric regression modeling
- Can lead to substantial increase in precision over popular estimators
- Advantage - even if $E\left(Y_{2} \mid X_{1} Y_{1}, Z=c\right)$ are modeled incorrectly, $\widehat{\beta}$ is still consistent

5. Estimation with posttest MAR

Observed data: $\left(X_{1}, Y_{1}, X_{2}, Z\right)$ are never missing, Y_{2} may be missing for some subjects

- $R=1$ if Y_{2} observed, $R=0$ if Y_{2} missing
- Observed data are ($X_{1}, Y_{1}, X_{2}, Z, R, R Y_{2}$)
- MAR assumption

$$
\begin{aligned}
& P\left(R=1 \mid X_{1}, Y_{1}, X_{2}, Y_{2}, Z\right)=P\left(R=1 \mid X_{1}, Y_{1}, X_{2}, Z\right) \\
&=\pi\left(X_{1}, Y_{1}, X_{2}, Z\right) \geq \epsilon>0 \\
& \pi\left(X_{1}, Y_{1}, X_{2}, Z\right)=Z \pi^{(1)}\left(X_{1}, Y_{1}, X_{2}\right)+(1-Z) \pi^{(0)}\left(X_{1}, Y_{1}, X_{2}\right), \\
& \pi^{(c)}\left(X_{1}, Y_{1}, X_{2}\right)=\pi\left(X_{1}, Y_{1}, X_{2}, c\right), c=0,1
\end{aligned}
$$

5. Estimation with posttest MAR

Recall: Generic form of observed-data influence functions

$$
\frac{R \varphi^{F}(D)}{\pi(O)}-\frac{R-\pi(O)}{\pi(O)} g(O)
$$

For simplicity: Focus on influence functions for estimators for $\mu_{2}^{(1)}$

- Those for estimators for $\mu_{2}^{(0)}$ similar
- Influence functions for estimators for β : take the difference

5. Estimation with posttest MAR

Recall: Generic form of observed-data influence functions

$$
\frac{R \varphi^{F}(D)}{\pi(O)}-\frac{R-\pi(O)}{\pi(O)} g(O)
$$

For simplicity: Focus on influence functions for estimators for $\mu_{2}^{(1)}$

- Those for estimators for $\mu_{2}^{(0)}$ similar
- Influence functions for estimators for β : take the difference

Full-data influence functions for estimators for $\mu_{2}^{(1)}$: Have form

$$
\frac{Z\left(Y_{2}-\mu_{2}^{(1)}\right)}{\delta}-\frac{(Z-\delta)}{\delta} h^{(1)}\left(X_{1}, Y_{1}\right), \quad \operatorname{var}\left\{h^{(1)}\left(X_{1}, Y_{1}\right)\right\}<\infty
$$

5. Estimation with posttest MAR

Thus: Observed-data influence functions for estimators for $\mu_{2}^{(1)}$ have form

$$
\begin{gathered}
\frac{R\left\{Z\left(Y_{2}-\mu_{2}^{(1)}\right)-(Z-\delta) h^{(1)}\left(X_{1}, Y_{1}\right)\right\}}{\delta \pi\left(X_{1}, Y_{1}, X_{2}, Z\right)}-\frac{R-\pi\left(X_{1}, Y_{1}, X_{2}, Z\right)}{\pi\left(X_{1}, Y_{1}, X_{2}, Z\right)} g^{(1)}\left(X_{1}, Y_{1}, X_{2}, Z\right) \\
\operatorname{var}\left\{h^{(1)}\left(X_{1}, Y_{1}\right)\right\}<\infty, \quad \operatorname{var}\left\{g^{(1)}\left(X_{1}, Y_{1}, X_{2}, Z\right)\right\}<\infty
\end{gathered}
$$

- Choice of $h^{(1)}$ leading to the efficient observed-data influence function need not be the same as that leading to the efficient full-data influence function in general
- Turns out that the optimal $h^{(1)}$ is the same in the special case of the pretest-posttest problem...

5. Estimation with posttest MAR

Re-writing: Equivalently, observed-data influence functions are

$$
\frac{R Z\left(Y_{2}-\mu_{2}^{(1)}\right)}{\delta \pi\left(X_{1}, Y_{1}, X_{2}, Z\right)}-\frac{(Z-\delta)}{\delta} h^{(1)}\left(X_{1}, Y_{1}\right)-\frac{R-\pi\left(X_{1}, Y_{1}, X_{2}, Z\right)}{\delta \pi\left(X_{1}, Y_{1}, X_{2}, Z\right)} g^{(1)^{\prime}}\left(X_{1}, Y_{1}, X_{2}, Z\right)
$$

- Optimal choices (efficient influence function) are

$$
\begin{aligned}
h^{e f f(1)}\left(X_{1}, Y_{1}\right) & =E\left(Y_{2} \mid X_{1}, Y_{1}, Z=1\right)-\mu_{2}^{(1)} \\
g^{e f f(1)^{\prime}}\left(X_{1}, Y_{1}, X_{2}, Z\right) & =Z\left\{E\left(Y_{2} \mid X_{1}, Y_{1}, X_{2}, Z\right)-\mu_{2}^{(1)}\right\} \\
& =Z\left\{E\left(Y_{2} \mid X_{1}, Y_{1}, X_{2}, Z=1\right)-\mu_{2}^{(1)}\right\}
\end{aligned}
$$

- Efficient influence function is of form

$$
\frac{R Z\left(Y_{2}-\mu_{2}^{(1)}\right)}{\delta \pi^{(1)}\left(X_{1}, Y_{1}, X_{2}\right)}-\frac{(Z-\delta)}{\delta} h^{(1)}\left(X_{1}, Y_{1}\right)-\frac{\left\{R-\pi^{(1)}\left(X_{1}, Y_{1}, X_{2}\right)\right\} Z}{\delta \pi^{(1)}\left(X_{1}, Y_{1}, X_{2}\right)} q^{(1)}\left(X_{1}, Y_{1}, X_{2}\right)
$$

5. Estimation with posttest MAR

Result: With the optimal $h^{(1)}, q^{(1)}$, algebra yields

$$
\begin{aligned}
\mu_{2}^{(1)} & =(n \delta)^{-1}\left\{\sum_{i=1}^{n} \frac{R_{i} Z_{i} Y_{2 i}}{\pi^{(1)}\left(X_{1 i}, Y_{1 i}, X_{2 i}\right)}-\sum_{i=1}^{n}\left(Z_{i}-\delta\right) E\left(Y_{2 i} \mid X_{1 i}, Y_{1 i}, Z_{i}=1\right)\right. \\
& \left.-\sum_{i=1}^{n} \frac{\left\{R_{i}-\pi^{(1)}\left(X_{1 i}, Y_{1 i}, X_{2 i}\right)\right\} Z_{i}}{\pi^{(1)}\left(X_{1 i}, Y_{1 i}, X_{2 i}\right)} E\left(Y_{2 i} \mid X_{1 i}, Y_{1 i}, X_{2 i}, Z_{i}=1\right)\right\}
\end{aligned}
$$

- Similarly for $\mu_{2}^{(0)}$ depending on $\pi^{(0)}, E\left(Y_{2} \mid X_{1}, Y_{1}, Z=0\right)$, $E\left(Y_{2} \mid X_{1}, Y_{1}, X_{2}, Z=0\right)$
- Estimator for β - take the difference
- Practical use - replace these quantities by predicted values from regression modeling (coming up)

5. Estimation with posttest MAR

Complication 1: $\pi^{(c)}\left(X_{1}, Y_{1}, X_{2}\right)$ are not known, $c=0,1$

- Common strategy: adopt parametric models (e.g. logistic regression) depending on parameter $\gamma^{(c)}$

$$
\pi^{(c)}\left(X_{1}, Y_{1}, X_{2} ; \gamma^{(c)}\right)
$$

- Imposes an additional assumption on semiparametric model for $\left(X_{1}, Y_{1}, X_{2}, Y_{1}, Z\right)$
- Substitute the MLE $\widehat{\gamma}^{(c)}$ for $\gamma^{(c)}$, obtain predicted values $\widehat{\pi}_{i}^{(c)}$
- As long as this model is correct, resulting estimators will be CAN

5. Estimation with posttest MAR

Complication 2: Modeling $E\left(Y_{2} \mid X_{1}, Y_{1}, Z=c\right)$,
$E\left(Y_{2} \mid X_{1}, Y_{1}, X_{2}, Z=c\right), c=0,1$

- $M A R \Longrightarrow E\left(Y_{2} \mid X_{1}, Y_{1}, X_{2}, Z\right)=E\left(Y_{2} \mid X_{1}, Y_{1}, X_{2}, Z, R=1\right)$ (can base modeling/fitting on complete cases only)
- Obtain predicted values $\widehat{e}_{q(c) i}, c=0,1$
- However, ideally require compatibility, i.e.

$$
E\left(Y_{2} \mid X_{1}, Y_{1}, Z\right)=E\left\{E\left(Y_{2} \mid X_{1}, Y_{1}, X_{2}, Z\right) \mid X_{1}, Y_{1}, Z\right\}
$$

and no longer valid to fit using only complete cases

- Practically - go ahead and model directly and fit using complete cases, obtain predicted values $\widehat{e}_{h(c) i}$
- Estimation of parameters in these models does not affect (asymptotic) variance of $\widehat{\beta}$ as long as $\pi^{(c)}$ models are correct

5. Estimation with posttest MAR

Estimator: With $\widehat{\delta}=n_{1} / n$

$$
\begin{aligned}
\widehat{\beta} & =n_{1}^{-1}\left\{\sum_{i=1}^{n} \frac{R_{i} Z_{i} Y_{2 i}}{\widehat{\pi}_{i}^{(1)}}-\sum_{i=1}^{n}\left(Z_{i}-\widehat{\delta}\right) \widehat{e}_{h(1) i}-\sum_{i=1}^{n} \frac{\left(R_{i}-\widehat{\pi}_{i}^{(1)}\right) Z_{i} \widehat{e}_{q(1) i}}{\widehat{\pi}_{i}^{(1)}}\right\} \\
& -n_{0}^{-1}\left\{\sum_{i=1}^{n} \frac{R_{i}\left(1-Z_{i}\right) Y_{2 i}}{\widehat{\pi}_{i}^{(0)}}+\sum_{i=1}^{n}\left(Z_{i}-\widehat{\delta}\right) \widehat{e}_{h(0) i}-\sum_{i=1}^{n} \frac{\left(R_{i}-\widehat{\pi}_{i}^{(0)}\right)\left(1-Z_{i}\right) \widehat{e}_{q(1) i}}{\widehat{\pi}_{i}^{(0)}}\right\}
\end{aligned}
$$

- Efficient if modeling done correctly; otherwise, close to optimal performance
- Taking $\widehat{e}_{h(c) i}=\widehat{e}_{q(c) i}=0$ yields the simple inverse-weighted complete case estimator (inefficient)
- Modeling $E\left(Y_{2} \mid X_{1}, Y_{1}, Z=c\right), E\left(Y_{2} \mid X_{1}, Y_{1}, X_{2}, Z=c\right)$ "augments" this, taking advantage of relationships among variables to improve precision

5. Estimation with posttest MAR

"Double Robustness:" Still consistent if

- $\pi^{(c)}$ are correctly modeled but $E\left(Y_{2} \mid X_{1}, Y_{1}, Z=c\right)$ and $E\left(Y_{2} \mid X_{1}, Y_{1}, X_{2}, Z=c\right)$ aren't
- $E\left(Y_{2} \mid X_{1}, Y_{1}, Z=c\right)$ and $E\left(Y_{2} \mid X_{1}, Y_{1}, X_{2}, Z=c\right)$ are correctly modeled but $\pi^{(c)}$ aren't
- No longer efficient

If both sets of models incorrect, inconsistent in general

5. Estimation with posttest MAR

"Double Robustness:" Still consistent if

- $\pi^{(c)}$ are correctly modeled but $E\left(Y_{2} \mid X_{1}, Y_{1}, Z=c\right)$ and $E\left(Y_{2} \mid X_{1}, Y_{1}, X_{2}, Z=c\right)$ aren't
- $E\left(Y_{2} \mid X_{1}, Y_{1}, Z=c\right)$ and $E\left(Y_{2} \mid X_{1}, Y_{1}, X_{2}, Z=c\right)$ are correctly modeled but $\pi^{(c)}$ aren't
- No longer efficient

If both sets of models incorrect, inconsistent in general
Standard errors: Use the sandwich formula (follows from influence function)

5. Estimation with posttest MAR

Recap: This approach requires one to make an assumption about $\pi^{(c)}\left(X_{1}, Y_{1}, X_{2}\right), c=0,1$

- No assumption is made about $E\left(Y_{2} \mid X_{1}, Y_{1}, X_{2}, Z=c\right)$, $E\left(Y_{2} \mid X_{1}, Y_{1}, Z=c\right)$
- Model is still semiparametric
- ... and double robustness holds

5. Estimation with posttest MAR

Recap: This approach requires one to make an assumption about $\pi^{(c)}\left(X_{1}, Y_{1}, X_{2}\right), c=0,1$

- No assumption is made about $E\left(Y_{2} \mid X_{1}, Y_{1}, X_{2}, Z=c\right)$, $E\left(Y_{2} \mid X_{1}, Y_{1}, Z=c\right)$
- Model is still semiparametric
- ... and double robustness holds

Alternative approach: Make an assumption instead about the $E\left(Y_{2} \mid X_{1}, Y_{1}, X_{2}, Z=c\right), E\left(Y_{2} \mid X_{1}, Y_{1}, Z=c\right)$

- Efficient estimator is maximum likelihood
- Don't need to even worry about $\pi^{(c)}\left(X_{1}, Y_{1}, X_{2}\right)$
- But no double robustness property!

6. Full data, revisited

How did we get the full-data influence functions?

- One way - use classical semiparametric theory
- Another way - View as a "fake missing data problem" by casting the full-data problem in terms of counterfactuals

6. Full data, revisited

How did we get the full-data influence functions?

- One way - use classical semiparametric theory
- Another way - View as a "fake missing data problem" by casting the full-data problem in terms of counterfactuals

Counterfactual representation:

- $Y_{2}^{(1)}, Y_{2}^{(0)}$ are potential posttest responses if a subject were assigned to control or treatment
- We observe $Y_{2}=Z Y_{2}^{(1)}+(1-Z) Y_{2}^{(0)}$
- "Fake full data" $\left(X_{1}, Y_{1}, X_{2}, Y_{2}^{(0)}, Y_{2}^{(1)}, Z\right)$
- "Fake observed data" $\left(X_{1}, Y_{1}, X_{2}, Z, Z Y_{2}^{(1)},(1-Z) Y_{2}^{(0)}\right)$
- Apply the RRZ theory

7. Simulation evidence

Full-data problem:

- Substantial gains in efficiency over "popular" methods, especially when there are nonlinear relationships among variables
- Parametric and nonparametric regression modeling work well
- Valid standard errors, confidence intervals

7. Simulation evidence

Full-data problem:

- Substantial gains in efficiency over "popular" methods, especially when there are nonlinear relationships among variables
- Parametric and nonparametric regression modeling work well
- Valid standard errors, confidence intervals

Observed-data problem:

- "Popular" methods with complete cases can exhibit substantial biases
- Inverse-weighted complete case estimator is unbiased but inefficient
- Substantial gains in efficiency possible through modeling
- Valid standard errors, confidence intervals

8. Application - ACTG 175

Recall: $Y_{2}=$ CD4 at 20 ± 5 weeks vs. $Y_{1}=$ baseline CD4 (control and treatment groups)

- Apparent curvature

8. Application - ACTG 175

Results: Models for $E\left(Y_{2} \mid X_{1}, Y_{1}, Z=c\right), c=0,1$

Estimator	$\widehat{\beta}$	SE
Parametric modeling	50.8	5.0
(quadratic in Y_{1})		
Nonparametric modeling	50.0	5.1
(GAM)		
ANCOVA	49.3	5.4
Paired t	50.1	5.7
Two-sample t	45.5	6.8

8. Application - ACTG 175

Complete cases: $Y_{2}=\mathrm{CD} 4$ at 96 ± 5 weeks vs. $Y_{1}=$ baseline CD4 (control and treatment groups)

- 37% missing Y_{2}

8. Application - ACTG 175

Results: Logistic regression for $\pi^{(c)}, c=0,1$; parametric regression modeling of $E\left(Y_{2} \mid X_{1}, Y_{1}, X_{2}, Z=c\right), E\left(Y_{2} \mid X_{1}, Y_{1}, Z=c\right)$

Estimator	$\widehat{\beta}$	SE
Parametric modeling	57.2	10.2
(quadratic in Y_{1})		
Simple inverse-weighting	54.7	11.8
ANCOVA	64.5	9.3
Paired t	67.1	9.3

9. Discussion

- RRZ theory applied to a standard problem
- General framework for pretest-posttest analysis illuminating how relationships among variables may be fruitfully exploited
- Practical estimators
- Can be extended to censored covariate information
- Results are equally applicable to baseline covariate adjustment in comparison of two means (Y_{1} is just another baseline covariate)
- Lots of methods for this problem (likelihood, imputation combinations thereof, ...); semiparametric theory provides a framework for understanding commonalities and differences among them

9. Discussion

References: Gory details available in
Leon, S., Tsiatis, A.A., and Davidian, M. (2003) Semiparametric estimation of treatment effect in a pretest-posttest study. Biometrics 59, 1048-1057.

Davidian, M., Tsiatis, A.A., and Leon, S. (2005) Semiparametric estimation of treatment effect in a pretest-posttest study with missing data. Statistical Science, to appear.

Forthcoming:
Tsiatis, A.A. (200X) Semiparametrics and Missing Data. New York: Springer.

