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Introduction

Bayesian Variable Selection

I In the Bayesian context, fully Bayesian variable selection
involves proper prior elicitation for all of the parameters
arising from the various submodels in the model space.

I It requires numerical computation of the posterior model
probabilities (or Bayes factors) for all of the submodels.

I As is well known, for posterior model probabilities to be well
defined, one needs to define proper priors for all of the model
parameters arising from all of the submodels in the model
space.

I This leads to the issue of specifying proper priors that are
sufficiently noninformative so that the data can drive the
inference, as is desired in most variable selection problems.

I Thus, in these types of problems, it becomes extremely
attractive to have “semiautomatic” priors that are proper and
require minimal elicitation.
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Introduction

Who is Harold Jeffreys?

I Sir Harold Jeffreys is a British Astronomer and Geophysicist.

I As a statistician, he re-established the statistical theory of his
time on Bayesian foundations.

I His classical book is Theory of Probability, Third Edition,
Oxford: Oxford University Press, 1961.
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Introduction

Jeffreys’s Prior

I Jeffreys’s prior is perhaps the most widely used noninformative
prior in Bayesian analysis.

I In the context of binomial regression, Jeffreys’s prior is proper
for this model under very mild conditions (see Ibrahim and
Laud, 1991)

I Jeffrey’s prior is simply the determinant of the square root of
the Fisher information matrix.
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Introduction

Literature on Jeffrey’s prior

I There has been an enormous literature on Jeffrey’s prior and
its properties for a wide variety of applications and models, as
well as its connections to various reference priors proposed in
the literature.

I Two excellent books discussing Jeffreys’s prior include Box
and Tiao (1973) and Berger (1985).
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Introduction

Literature on Jeffrey’s prior

Other relevant key references include Jeffreys (1946, 1961),
Bernardo (1979), Eaves (1983), Kass (1989, 1990), Ibrahim and
Laud (1991), Ye and Berger (1991), Berger and Bernardo (1989,
1992), McCulloch and Rossi (1992), Firth (1993), Mallick and
Gelfand (1994), Gelfand and Mallick (1995), Kass and Raftery
(1995), Raftery (1996), Kass and Wasserman (1996), Daniels
(1999), Natarajan and Kass (2000), Berger, De Olivera, and Sansó
(2001), Berger (2000, 2006), and Komaki (2006).
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Introduction

Unknown Properties of Jeffrey’s prior

I What are the potential connections to normal or t
distributions?

I What are the tail behavior of Jeffreys’s prior, unimodality and
symmetry properties?

I What are techniques for sampling from Jeffreys’s prior?

I How does it perform in variable selection problems?
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Binomial Regression Model and Jeffreys’s Prior

Logistic Regression Model

I Suppose that {(xi , yi , ni ), i = 1, 2, . . . , n} are independent
observations

I yi is the binomial response variable taking a value between 0
and ni (≥ 1)

I xi = (1, xi1, · · · , xik)
′

is a (k + 1) × 1 random vector of
covariates.

I The binomial regression model assumed for [yi |xi ] has the
conditional density:

f (yi |xi , ni , β) =

(

ni

yi

)

[F (x′iβ)]yi [1−F (x′iβ)]ni−yi , i = 1, 2, . . . , n,

where β = (β0, β1, . . . , βk)′ denotes a (k + 1) vector of
regression coefficients, F (·) denotes a cumulative distribution
function (cdf), and F−1 is called the link function.
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I We assume throughout that F (·) is twice differentiable and
f (z) = dF (z)/dz denotes the probability density function
(pdf).
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Binomial Regression Model

I We assume throughout that F (·) is twice differentiable and
f (z) = dF (z)/dz denotes the probability density function
(pdf).

I The likelihood function of β is

L(β|X , y) =
n

∏

i=1

(

ni

yi

)

[F (x′iβ)]yi [1 − F (x′iβ)]ni−yi ,

where y = (y1, y2, . . . , yn)
′ and X = (x1, x2, . . . , xn)

′ is the
n × (k + 1) design matrix.
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Binomial Regression Model and Jeffreys’s Prior

The Jeffreys’s Prior

The Jeffreys’s prior for β under the logistic regression model is
given by

π(β|X ) ∝ |X ′W (β)X |1/2, (1)

where |X ′W (β)X | denotes the determinant of the matrix X ′WX ,

W (β) = diag(w1(β), w2(β), . . . ,wn(β)),

and

wi (β) =
ni{f (x′iβ)}2

F (x′iβ){1 − F (x′iβ)}
for i = 1, 2, . . . , n.
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I Proposition 1: For the binomial regression model (??),
assume that X is of full rank. Then the Jeffreys’s prior (1) for
β is proper and the corresponding moment generating
function of β exists.
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Binomial Regression Model and Jeffreys’s Prior

Useful Propositions

I Proposition 1: For the binomial regression model (??),
assume that X is of full rank. Then the Jeffreys’s prior (1) for
β is proper and the corresponding moment generating
function of β exists.

I Proposition 2: Assume that F (z) is symmetric in the sense
that F (−z) = 1 − F (z) and f (−z) = f (z). Then, the
Jeffreys’s prior π(β|X ) in (1) is symmetric about 0, i.e.,

π(−β|X ) = π(β|X ) ∀ β ∈ Rk+1,

where Rk+1 denotes the (k + 1)-dimensional Euclidean space.
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]

= 2 log f (z)−log F (z)−log{1−F (z)}.
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Binomial Regression Model and Jeffreys’s Prior

Four Key Theorems

I Let

q(z) = log
[ {f (z)}2

F (z){1 − F (z)}
]

= 2 log f (z)−log F (z)−log{1−F (z)}.

I Theorem 1: Assume that (i) X is full rank, (ii) q(z) has a
unique mode zmod , and (iii) q′(z) < 0 if z > zmod ,
q′(zmod) = 0, and q′(z) > 0 if z < zmod . Then the Jeffreys’s
prior π(β|X ) in (1) is unimodal and its unique mode is
βmod = (zmod , 0, . . . , 0)′.
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Binomial Regression Model and Jeffreys’s Prior

Four Key Theorems

Theorem 2: The assumptions (ii) and (iii) in Theorem 1 hold for
F (z) = exp(z)/{1 + exp(z)}, F (z) = Φ(z) (the N(0, 1) cdf), and
F (z) = 1 − exp{− exp(z)}, corresponding to logistic, probit, and
complementary log-log regressions, respectively. Furthermore, the
Jeffreys’s prior π(β|X ) has unique mode βmod = 0 for logistic and
probit regression models and βmod = (0.466, 0, . . . , 0)′ for
complementary log-log regression model.
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Four Key Theorems

I Let g(β|Σ, ν) denote the pdf of a (k + 1)-dimensional
multivariate t-distribution defined by

g(β|Σ, ν) =
Γ{(ν + k + 1)/2}
Γ(ν/2)(νπ)(k+1)/2

|Σ|−1/2
(

1+
1

ν
β′Σ−1β

)−(ν+k+1)/2
.
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Four Key Theorems

I Let g(β|Σ, ν) denote the pdf of a (k + 1)-dimensional
multivariate t-distribution defined by

g(β|Σ, ν) =
Γ{(ν + k + 1)/2}
Γ(ν/2)(νπ)(k+1)/2

|Σ|−1/2
(

1+
1

ν
β′Σ−1β

)−(ν+k+1)/2
.

I Theorem 3: Assume that X is of full rank. Assume that X is
of full rank. Then, the Jeffreys’s prior π(β|X ) in (1) under
logistic regerssion, probit regression, and complementary
log-log regressions has lighter tails than g(β|Σ, ν) for any
ν > 0, that is,

lim
||β||→∞

π(β|X )

g(β|Σ, ν)
= 0.
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Four Key Theorems

Theorem 4: Let φk+1(β|ΣN) denote the probability density
function of the (k + 1)-dimensional normal distribution
Nk+1(0, ΣN), where ΣN is a (k + 1) × (k + 1) positive definite
matrix.
(i) Under logistic regression, we have

lim
||β||→∞

π(β|X )

φk+1(β|ΣN)
= ∞,

which implies that the Jeffreys’s prior π(β|X ) under logistic
regression always has heavier tails than the normal distribution,
regardless of n.
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Four Key Theorems

Theorem 4 (continued):
(ii) Let X ∗

i1i2...ik+1
= (xi1 , xi2 , . . . , xik+1

)′ be a (k + 1) × (k + 1)
submatrix of X . If there exists (i1, i2, . . . , ik+1) such that X ∗

i1i2...ik+1

is full rank and Σ−1
N − 1

2(X ∗
i1i2...ik+1

)′X ∗
i1i2...ik+1

> 0 (i.e., positively
defenite), then the normal distribution Nk+1(0, ΣN) has lighter
tails than the Jeffreys’s prior π(β|X ) under probit regression. If
Σ−1

N − 1
2(X ∗

i1i2...ik+1
)′X ∗

i1i2...ik+1
< 0 (i.e., negatively definite) for all

(k + 1) × (k + 1) full rank submatrices X ∗
i1i2...ik+1

of X , the
Jeffreys’s prior π(β|X ) under probit regression has lighter tails
than the normal distribution Nk+1(0, ΣN).
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Binomial Regression Model and Jeffreys’s Prior

Four Key Theorems

Theorem 4 (continued):
(iii) Let β = rd, where r ≥ 0 and d = (d0, d1, d2, . . . , dk)′ denotes
a (k + 1)-dimensional vector of the unit direction such that
||d|| =

√
d′d = 1. Under complementary log-log regression, the

Jeffreys’s prior π(β|X ) has lighter tails than Nk+1(0, ΣN) in
certain directions d such as d = (1, 0, 0, . . . , 0)′ and heavier tails
than Nk+1(0, ΣN) in some other directions d such as
d = (−1, 0, 0, . . . , 0)′.
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Four Key Theorems

Proposition 3:
For Jeffreys’s prior π(β|X ) given in (1) for general binomial
regression, the conditional prior distribution of β0 (the intercept)
given β1 = · · · = βk = 0 is given by

π(β0|β1 = · · · = βk = 0, X ) ∝
[

f 2(β0)

F (β0){1 − F (β0)}

]
k+1

2

and the conditional posterior distribution of β0 given
β1 = · · · = βk = 0 is given by π(β0|β1 = · · · = βk = 0, X , y) ∝
{f (β0)}k+1{F (β0)}

Pn
i=1 yi−

k+1
2 {1 − F (β0)}

Pn
i=1(ni−yi )−

k+1
2 .

The results given in Proposition 3 imply that the conditional
Jeffreys’s prior distribution of β0 does not depend on the sample
size n, but the conditional posterior does.
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I Since Jeffreys’s prior is proper for the binomial model, it can
therefore be considered as the default prior in computing
posterior model probabilities.
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Bayesian Variable Selection with Jeffreys’s Prior

I Since Jeffreys’s prior is proper for the binomial model, it can
therefore be considered as the default prior in computing
posterior model probabilities.

I As the dimension of a submodel in the model space varies
from one model to another, Jeffreys’s prior adjusts the
dimensionality in an automatic fashion.

I Since Jeffreys’s prior is a noninformative prior, it leads to
“objective” Bayesian variable selection as discussed in
Bernardo (1979) and Berger and Bernardo (1992).
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Bayesian Variable Selection with Jeffreys’s Prior

Let M denote the model space. We enumerate the models in M
by m = 1, 2, . . . ,K, where K = 2k is the dimension of M and
model K denotes the full model.
Under model m, the likelihood function is given by

L(β(m)|X (m)
, y, m) =

n
Y

i=1

 

ni

yi

!

{F ((x
(m)
i )′β(m))}yi {1 − F ((x

(m)
i )′β(m))}ni−yi ,

where X (m) =
(

x
(m)
1 , x

(m)
2 , . . . , x

(m)
n

)′
is the n × km design matrix.

The corresponding Jeffreys’s prior for β(m) is given by

π(β(m)|X (m), m) ∝
∣

∣

∣
(X (m))′W (m)(β(m))X (m)

∣

∣

∣

1/2
.
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Bayesian Variable Selection with Jeffreys’s Prior

Let

C0m =

∫

Rkm

∣

∣

∣
(X (m))′W (m)(β(m))X (m)

∣

∣

∣

1/2
dβ(m)

and

Cm =

∫

Rkm

L(β(m)|X (m), y, m)
∣

∣

∣
(X (m))′W (m)(β(m))X (m)

∣

∣

∣

1/2
dβ(m).

Suppose that we take a uniform prior on the model space M, that
is, the prior probability of model m is p(m) = 1

K for m ∈ M. Let
D = (y, X ) denote the observed data. Then, by Bayes theorem,
the posterior probability of model m given the observed data D is
given by

p(m|D) =
Cm/C0m

∑K
m∗=1 Cm∗/C0m∗

. (2)

Model choice is then based on selecting the model which yields the
largest posterior model probability p(m|D).
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Bayesian Variable Selection with Jeffreys’s Prior

Let x̃
(m)
j = (x

(m)
1j , x

(m)
2j , . . . , x

(m)
nj )′, which is the (j + 1)th column

vector of the design matrix X (m), for j = 1, 2, . . . , km − 1. Write

C0m = C0m(x̃
(m)
1 , x̃

(m)
2 , . . . , x̃

(m)
km−1) and

Cm = Cm(x̃
(m)
1 , x̃

(m)
2 , . . . , x̃

(m)
km−1).

Theorem 5: The prior and posterior normalizing constants C0m

and Cm are scale-invariant in the covariates. Specifically, we have

C0m(x̃
(m)
1 , x̃

(m)
2 , . . . , x̃

(m)
km−1) = C0m(a1x̃

(m)
1 , a2x̃

(m)
2 , . . . , akm

x̃
(m)
km−1)

and

Cm(x̃
(m)
1 , x̃

(m)
2 , . . . , x̃

(m)
km−1) = Cm(a1x̃

(m)
1 , a2x̃

(m)
2 , . . . , akm−1x̃

(m)
km−1)

for all a1 > 0, a2 > 0, . . . , akm−1 > 0.
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Properties and Computation under Logistic Regression

Prior and Posterior Normalizing Constants

I For the logistic regression model, the prior normalizing
constant is given by

C0 =

∫

Rk+1

∣

∣X ′W (β)X
∣

∣

1/2
dβ,

where W (β) = diag(w1(β), w2(β), . . . , wn(β)), and
wi (β) = ni exp(x′iβ)/{1 + exp(x′iβ)}2.
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Properties and Computation under Logistic Regression

Prior and Posterior Normalizing Constants

I For the logistic regression model, the prior normalizing
constant is given by

C0 =

∫

Rk+1

∣

∣X ′W (β)X
∣

∣

1/2
dβ,

where W (β) = diag(w1(β), w2(β), . . . , wn(β)), and
wi (β) = ni exp(x′iβ)/{1 + exp(x′iβ)}2.

I The posterior normalizing constant can be written as

C =

∫

Rk+1

L(β|X , y)
∣

∣X ′W (β)X
∣

∣

1/2
dβ,

where L(β|X , y) =
∏n

i=1

(

ni

yi

)

[exp(yix
′
iβ)/{1 + exp(x′iβ)}ni ].
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I We consider a saturated logistic regression model with s main
binary covariates xi1, xi2, . . . , xis , each of which takes values
of 0 or 1.
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I We consider a saturated logistic regression model with s main
binary covariates xi1, xi2, . . . , xis , each of which takes values
of 0 or 1.

I We assume that in addition to an intercept and s main binary
covariates, the model includes all possible interactions: xijxij ′

(j < j ′), xijxij ′xij ′′ (j < j ′ < j ′′), . . . , xi1xi2 . . . xis .
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Properties and Computation under Logistic Regression

Logistic Regression Models with Binary Covariates

I We consider a saturated logistic regression model with s main
binary covariates xi1, xi2, . . . , xis , each of which takes values
of 0 or 1.

I We assume that in addition to an intercept and s main binary
covariates, the model includes all possible interactions: xijxij ′

(j < j ′), xijxij ′xij ′′ (j < j ′ < j ′′), . . . , xi1xi2 . . . xis .

I In this case, k = 2s − 1 and the total number of parameters
including the intercept is 2s .
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Logistic Regression Models with Binary Covariates

For notational simplicity, we write

px1x2...xs (β)

=

exp
“

β0 +

s
X

j=1

βjxj +
X

j<j′

xjxj′βjj′ +
X

j<j′<j′′

xjxj′βjj′ + + · · · + x1x2 . . . xsβ12···s

”

1 + exp
“

β0 +

s
X

j=1

βjxj +
X

j<j′

xjxj′βjj′ +
X

j<j′<j′′

xjxj′xj′′βjj′j′′ + · · · + x1x2 . . . xsβ12···s

”

,

where xj takes the values 0 or 1 for j = 1, 2, . . . , s and
β = (β0, β1, . . . , βs , βjj ′ , 1 ≤ j < j ′ ≤ s, . . . , β12...s)

′. Then, we
have wi (β) = nipxi1xi2...xis

(β){1 − pxi1xi2...xis
(β)}.
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∑n

i=1 ni1{xi1 = j1, xi2 = j2, . . . , xis = js} for
jl = 0, 1 and l = 1, 2, . . . , s
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Jeffreys’s Prior with Binary Covariates

I Let n(j1j2...js) =
∑n

i=1 ni1{xi1 = j1, xi2 = j2, . . . , xis = js} for
jl = 0, 1 and l = 1, 2, . . . , s

I Theorem 6: Under the saturated logistic regression model,
Jeffreys’s prior is proper if and only if n(j1j2...js) ≥ 1 for all
jl = 0, 1, l = 1, 2, . . . , s and the kernel of the Jeffreys’s prior
in (1) reduces to

|X ′W (β)X |1/2 =

(

1
∏

j1=0

1
∏

j2=0

· · ·
1

∏

js=0

[

n(j1j2...js)

pj1j2...js (β){1 − pj1j2...js (β)}
]

)1/2

. (3)
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Prior and Posterior Normalizing Constants

The normalizing constant for Jeffreys’s prior has a closed form
expression given by

C0 =

"

1
Y

j1=0

1
Y

j2=0

· · ·
1
Y

js=0

n(j1j2...js )

#1/2
h

B(
1

2
,
1

2
)
i2s

= π
2s

"

1
Y

j1=0

1
Y

j2=0

· · ·
1
Y

js=0

n(j1j2...js )

#1/2

.

The posterior normalizing constant based on Jeffreys’s prior also
has a closed form given as follows:

C =

Z

R2

L(β|X , y)|X ′

W (β)X |1/2
dβ =

h

n
Y

i=1

 

ni

yi

!

i

"

1
Y

j1=0

1
Y

j2=0

· · ·
1
Y

js=0

n(j1j2...js )

#1/2

×

(

1
Y

j1=0

1
Y

j2=0

· · ·
1
Y

js=0

B
h1

2
+ n

y

(j1j2...js )
,
1

2
+ n(j1j2...js ) − n

y

(j1j2...js )

i

)

,

where ny

(j1j2...js)
=

∑n
i=1 yi1{xi1 = j1, xi2 = j2, . . . , xis = js}.
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Connection between BIC and Normalizing Constants

Let N =
∑n

i=1 ni and

α̂(j1j2...js) =
n(j1j2...js)

N
and µ̂(j1j2...js) =

ny

(j1j2...js)

N
.

for jl = 0, 1, l = 1, 2, . . . , s. Also, let β̂ denote the maximum
likelihood estimate of β.
BIC is given by

BIC = − 2 log L(β̂|X , y) + 2s log(N)

= − 2 log
h

n
Y

i=1

 

ni

yi

!

i

− 2

1
X

j1

1
X

j2=0

· · ·
1
X

js=0

"

n
y

(j1j2...js )
log
nn

y

(j1j2...js )

n(j1j2...js )

o

+ {n(j1j2...js ) − n
y

(j1j2...js )
} log

nn(j1j2...js ) − n
y

(j1j2...js )

n(j1j2...js )

o

#

+ 2s log(N).
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Connection between BIC and Normalizing Constants

I Theorem 7: Assume that (i) limN→∞ α̂(j1j2...js) = α(j1j2...js)

and limN→∞ µ̂(j1j2...js) = µ(j1j2...js) exist and (ii)
0 < α(j1j2...js) < 1 and 0 < µ(j1j2...js) < α(j1j2...js) for all
jl = 0, 1, l = 1, 2, . . . , s. Then, for large N, we have

−2(log C−log C0) = BIC+

1
∑

j1

1
∑

j2=0

· · ·
1

∑

js=0

log
[π

2
α̂(j1j2...js)

]

+o
( 1

N

)

.



Objective Bayesian Variable Selection for Binomial Regression Models with Jeffreys’s Prior

Properties and Computation under Logistic Regression

Connection between BIC and Normalizing Constants

I Theorem 7: Assume that (i) limN→∞ α̂(j1j2...js) = α(j1j2...js)

and limN→∞ µ̂(j1j2...js) = µ(j1j2...js) exist and (ii)
0 < α(j1j2...js) < 1 and 0 < µ(j1j2...js) < α(j1j2...js) for all
jl = 0, 1, l = 1, 2, . . . , s. Then, for large N, we have

−2(log C−log C0) = BIC+

1
∑

j1

1
∑

j2=0

· · ·
1

∑

js=0

log
[π

2
α̂(j1j2...js)

]

+o
( 1

N

)

.

I −2(log C − log C0) acts very similarly to BIC.
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Connection between BIC and Normalizing Constants

I Theorem 7: Assume that (i) limN→∞ α̂(j1j2...js) = α(j1j2...js)

and limN→∞ µ̂(j1j2...js) = µ(j1j2...js) exist and (ii)
0 < α(j1j2...js) < 1 and 0 < µ(j1j2...js) < α(j1j2...js) for all
jl = 0, 1, l = 1, 2, . . . , s. Then, for large N, we have

−2(log C−log C0) = BIC+

1
∑

j1

1
∑

j2=0

· · ·
1

∑

js=0

log
[π

2
α̂(j1j2...js)

]

+o
( 1

N

)

.

I −2(log C − log C0) acts very similarly to BIC.

I In addition to a dimensional penalty 2s log N in BIC, the
dimensional penalty term in −2(log C − log C0) also depends
on the “joint distribution” of covariates (xi1, xi2, . . . , xis).
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Computation: Importance Sampling

I First we consider a more general form of the multivariate
t-distribution with density

g(β|µ, Σ, ν) =
Γ{(ν + k + 1)/2}
Γ(ν/2)(νπ)(k+1)/2

|Σ|−1/2

×
(

1 +
1

ν
(β − µ)′Σ−1(β − µ)

)−(ν+k+1)/2
.

II For computing the prior normalizing constant, we specify
µ = 0 and match the curvatures of the Jeffreys’s prior and the
t-distribution at 0 as follows:

κ0
∂2 log π(β|X )

∂β∂β′

∣

∣

∣

β=0
=

∂2 log g(β|µ = 0, Σ, ν)

∂β∂β′

∣

∣

∣

β=0
,

where κ0 > 0 is a fixed scale-adjustment parameter.
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Computation: Importance Sampling

I First we consider a more general form of the multivariate
t-distribution with density

g(β|µ, Σ, ν) =
Γ{(ν + k + 1)/2}
Γ(ν/2)(νπ)(k+1)/2

|Σ|−1/2

×
(

1 +
1

ν
(β − µ)′Σ−1(β − µ)

)−(ν+k+1)/2
.

II For computing the prior normalizing constant, we specify
µ = 0 and match the curvatures of the Jeffreys’s prior and the
t-distribution at 0 as follows:

κ0
∂2 log π(β|X )

∂β∂β′

∣

∣

∣

β=0
=

∂2 log g(β|µ = 0, Σ, ν)

∂β∂β′

∣

∣

∣

β=0
,

where κ0 > 0 is a fixed scale-adjustment parameter.
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Importance Sampling (continued)

I For computing the posterior normalizing constant, we specify

µ = µ̂ = argmax
β∈Rk+1

{log[L(β|X , y)π(β|X )]}

and

Σ−1 = −κ1
ν

ν + k + 1

∂2 log L(β|X , y)π(β|X )

∂β∂β′

∣

∣

∣

β=µ̂
,

where κ1 > 0 is a fixed scale-adjustment parameter.
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Importance Sampling (continued)

I To specify ν by matching a t-distribution to the square-root
of the logistic distribution with a density that is proportional
to

√

exp(u)/{1 + exp(u)}2. To do so, we match the
curvatures at 0 and the percentiles of these two distributions,
which gives ν = 3.37.
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Importance Sampling (continued)

I To specify ν by matching a t-distribution to the square-root
of the logistic distribution with a density that is proportional
to

√

exp(u)/{1 + exp(u)}2. To do so, we match the
curvatures at 0 and the percentiles of these two distributions,
which gives ν = 3.37.

I We propose to use ν = 3.37 as a guide value for ν in
g(β|µ = 0, Σ, ν) for computing the prior normalizing
constant.
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Importance Sampling (continued)

I To specify ν by matching a t-distribution to the square-root
of the logistic distribution with a density that is proportional
to

√

exp(u)/{1 + exp(u)}2. To do so, we match the
curvatures at 0 and the percentiles of these two distributions,
which gives ν = 3.37.

I We propose to use ν = 3.37 as a guide value for ν in
g(β|µ = 0, Σ, ν) for computing the prior normalizing
constant.

I For the posterior normalizing constant, we specify ν ≥ 3.37
such as ν = 5.
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The Importance Sampling Algorithm for C0

Step 1: Generate a random sample {β1, β2, . . . ,βQ)′ of size
Q from g(β|µ = 0, Σ, ν), where for each q,
independently

(i) generate λq ∼ G
(

ν
2 , ν

2

)

; and

(ii) generate βq ∼ Nk+1

(

0, Σ/λq

)

.

Step 2: Compute the Monte Carlo estimate of C0 as

Ĉ0 =
1

Q

Q
∑

q=1

|X ′W (βq)X |1/2

g(βq|µ = 0, Σ, ν)
.
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I In Step 2, we may also calculate log(Ĉ0) instead of Ĉ0.
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Comments

I In Step 2, we may also calculate log(Ĉ0) instead of Ĉ0.

I In addition, we shall compute the relative MC standard error
(RSE) as follows:

RSE(Ĉ0) =
1

Ĉ0

{

1

Q(Q − 1)

Q
∑

q=1

[ |X ′W (βq)X |1/2

g(βq|µ = 0, Σ, ν)
−Ĉ0

]2
}1/2

.
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An Illustrative Example

We consider the logistic regression model with a binary covariate.
We generate a simulated dataset of size n = 100. A summary of
the simulated data is given as follows: n(0) =

∑n
i=1(1 − xi1) = 32,

n(1) =
∑n

i=1 xi1 = 68,
∑n

i=1(1 − yi ) = 29,
∑n

i=1 yi = 71,
∑n

i=1 yi (1 − xi1) = 19,
∑n

i=1(ni − yi )(1 − xi1) = 13,
∑n

i=1 yixi1 = 52, and
∑n

i=1(ni − yi )xi1 = 16. We implemented the
proposed importance sampling algorithm with various values of κ0

and κ15. The results are given in Table 1.



Objective Bayesian Variable Selection for Binomial Regression Models with Jeffreys’s Prior

Properties and Computation under Logistic Regression

Table 1. Monte Carlo estimates of log C0 and log C

Jeffreys’s Prior Posterior

ν MC Size (Q) κ0 log Ĉ0 MC SE κ1 log Ĉ MC SE
1 5,000 1 6.143 0.011 2 -56.905 0.009

10,000 6.137 0.008 -56.907 0.007
3.37 5,000 6.130 0.003 -56.906 0.005

10,000 6.131 0.002 -56.900 0.003
5 5,000 6.134 0.003 -56.896 0.004

10,000 6.133 0.002 -56.895 0.003
10 5,000 6.140 0.008 -56.879 0.006

10,000 6.143 0.006 -56.881 0.004
20 5,000 6.146 0.015 -56.877 0.009

10,000 6.139 0.012 -56.881 0.007
3.37 5,000 0.5 6.145 0.008 1 -56.883 0.008

10,000 6.144 0.005 -56.884 0.006
5,000 2 6.135 0.008 3 -56.914 0.006
10,000 6.127 0.005 -56.906 0.004

5 5,000 0.5 6.129 0.006 1 -56.901 0.006
10,000 6.129 0.004 -56.898 0.004
5,000 2 6.141 0.012 3 -56.889 0.007
10,000 6.139 0.008 -56.890 0.005

true values log C0 = 6.132 log C = −56.890
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Figure 1

I Figure 1 shows the densities of the Jeffreys’s prior and the
corresponding posterior distribution.
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and symmetric about 0.
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Figure 1

I Figure 1 shows the densities of the Jeffreys’s prior and the
corresponding posterior distribution.

I From Figure 1, we see that the Jeffreys’s prior is unimodal
and symmetric about 0.

I The height of the Jeffreys’s prior is quite small, indicating that
the prior is quite flat.
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The densities of the Jeffreys’s prior (left) and the posterior
distribution in (right).
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Simulation Design

I For each simulated data set, n independent Bernoulli
observations yi ’s are generated with success probability

pi =
exp {β0 + β1xi1 + β2xi2 + β3xi3 + β4xi4}

1 + exp {β0 + β1xi1 + β2xi2 + β3xi3 + β4xi4}
,
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Simulation Design

I For each simulated data set, n independent Bernoulli
observations yi ’s are generated with success probability

pi =
exp {β0 + β1xi1 + β2xi2 + β3xi3 + β4xi4}

1 + exp {β0 + β1xi1 + β2xi2 + β3xi3 + β4xi4}
,

I (x1i , x2i , x3i , x4i )
′ are i .i .d . random vectors such that

x1i ∼ Ber(p1i ), x2i |x1i ∼ Ber(p2i ), and

(x3i , x4i )
′|x1i , x2i ∼ N

{

(

µi1

µi2

)

,

(

1 ρ
ρ 1

)

}

.
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Simulation Design

I For each simulated data set, n independent Bernoulli
observations yi ’s are generated with success probability

pi =
exp {β0 + β1xi1 + β2xi2 + β3xi3 + β4xi4}

1 + exp {β0 + β1xi1 + β2xi2 + β3xi3 + β4xi4}
,

I (x1i , x2i , x3i , x4i )
′ are i .i .d . random vectors such that

x1i ∼ Ber(p1i ), x2i |x1i ∼ Ber(p2i ), and

(x3i , x4i )
′|x1i , x2i ∼ N

{

(

µi1

µi2

)

,

(

1 ρ
ρ 1

)

}

.

I We take p1i = 0.5, p2i = exp(0.5+0.6x1i )
1+exp(0.5+0.6x1i )

,
µ1i = 0.1x1i + 0.2x2i , µ2i = −0.2x1i − 0.1x2i .
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Two Simulations

I In Simulation I, we use ρ = 0.8, and β = (0.1, 0, 0.5, 0, 0)′,
β = (0.1, 0, 0.5,−1.0, 0)′, β = (0.1, 0, 0.5,−1.0, 2.5)′, and
β = (0.1, 1.5, 0.5,−1.0, 2.5)′, which correspond to the true
models (x2), (x2, x3), (x2, x3, x4), and (x1, x2, x3, x4) (full
model), respectively.
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A Simulation Study

Two Simulations

I In Simulation I, we use ρ = 0.8, and β = (0.1, 0, 0.5, 0, 0)′,
β = (0.1, 0, 0.5,−1.0, 0)′, β = (0.1, 0, 0.5,−1.0, 2.5)′, and
β = (0.1, 1.5, 0.5,−1.0, 2.5)′, which correspond to the true
models (x2), (x2, x3), (x2, x3, x4), and (x1, x2, x3, x4) (full
model), respectively.

I In Simulation II, we use ρ = 0.7, and β = (1.0, 0,−1.3, 0, 0)′,
β = (1.0, 0,−1.3, 1.0, 0)′, β = (1.0, 0,−1.3, 1.0, 1.7)′, and
β = (1.0, 1.5,−1.3, 1.0, 1.7)′, which correspond to the true
models (x2), (x2, x3), (x2, x3, x4), and (x1, x2, x3, x4) (full
model), respectively.
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A Simulation Study

Comments on Two Simulations

I The differences in the regression coefficients are greater in
Simulation II than in Simulation I.

I xi3 and xi4 are less correlated in Simulation II than in
Simulation I.

I We expect that the methods (criteria) should perform better
in Simulation II than in Simulation I.
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Other Details

I We use sample sizes of n = 100, n = 250, and n = 500.

I Under each simulation design, for each combination of (n, β),
we independently generate N = 500 datasets.

I For each simulated dataset, we fit 24 = 16 models.

I The Monte Carlo sample of size is Q = 20, 000.

I We compute posterior model probabilities under Jeffreys’s
prior and g -type prior (Zellner, 1986), which is defined as

πg (β|X) =
|X ′X |1/2

(2πτ0)(k+1)/2
exp

{

− 1

2τ0
β′(X ′X )β

}

.
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A Simulation Study

Other Details

I We use sample sizes of n = 100, n = 250, and n = 500.

I Under each simulation design, for each combination of (n, β),
we independently generate N = 500 datasets.

I For each simulated dataset, we fit 24 = 16 models.

I The Monte Carlo sample of size is Q = 20, 000.

I We compute posterior model probabilities under Jeffreys’s
prior and g -type prior (Zellner, 1986), which is defined as

πg (β|X) =
|X ′X |1/2

(2πτ0)(k+1)/2
exp

{

− 1

2τ0
β′(X ′X )β

}

.

I We also compute AIC and BIC.
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Table 2. Frequencies for Ranking the True Model as Best
Based on N = 500 Datasets

Simulation I
Jeffreys’s g -Type

n True model Prior Prior AIC BIC

100 (x2) 110 231 118 76
(x2, x3) 85 35 128 61
(x2, x3, x4) 47 7 110 33
(x1, x2, x3, x4) 29 1 118 19

250 (x2) 156 325 185 121
(x2, x3) 133 74 189 105
(x2, x3, x4) 93 37 191 77
(x1, x2, x3, x4) 95 26 258 66

500 (x2) 295 416 291 261
(x2, x3) 233 173 292 198
(x2, x3, x4) 179 127 304 163
(x1, x2, x3, x4) 179 118 359 152
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Table 2. Frequencies for Ranking the True Model as Best
Based on N = 500 Datasets (continued)

Simulation II
Jeffreys’s g -Type

n True model Prior Prior AIC BIC

100 (x2) 363 461 274 355
(x2, x3) 321 231 300 299
(x2, x3, x4) 179 59 244 141
(x1, x2, x3, x4) 106 26 255 92

250 (x2) 465 487 310 474
(x2, x3) 463 464 353 469
(x2, x3, x4) 420 347 398 400
(x1, x2, x3, x4) 388 274 481 362

500 (x2) 472 490 304 487
(x2, x3) 484 493 365 488
(x2, x3, x4) 487 485 421 486
(x1, x2, x3, x4) 489 478 499 486
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where a 1 denotes that the cancer has penetrated the prostate
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The Data

I Data are from a retrospective cohort study of men treated
with radical prostatectomy (n = 968) between 1988-2000
(D’Amico et al., 2002).

I The Binary response is PECE, which takes the values 0 and 1,
where a 1 denotes that the cancer has penetrated the prostate
wall and a 0 indicates otherwise.

I The covariates include age, Log(PSA), ppb (percent positive
prostate biopsies), biopsy Gleason score (GG7, GG8H), and
clinical tumor stage (T2b,T2c).
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Analysis of Prostate Cancer Data

Variable Selection

I We compare 32 models.

I The best model under BIC, and the model with the highest
posterior probability based on both the Jeffreys’s prior and the
g -type prior is (LogPSA, ppb, GG7, GG8H).

I For this best model, the posterior probability is 0.806 and
0.828 for the Jeffreys’s prior and the g -type prior, respectively.

I The AIC criterion selects the full model (age, LogPSA, ppb,
GG7, GG8H, T2b, T2c) as the best model.
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Computing HPD interval via Importance Sampling

I We use the Monte Carlo method proposed by Chen and Shao
(1999).

I Let {β1, β2, . . . ,βQ}, where βq = (βq0, βq1, . . . , βqk)′,
q = 1, 2, . . . ,Q, be a random sample of size Q from
g(β|µ, Σ, ν).

I The posterior density is π(β|X, y) ∝ π∗(β|X, y) =
L(β|X, y)|X ′W (β)X |.

I Let ωq =
π∗(βq |X,y)

g(βq |µ,Σ,ν)
for q = 1, 2, . . . ,Q.

I We compute the highest posterior density (HPD) interval of
βj .
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The Algorithm

I For 0 ≤ γ < 1, define

β̂
(γ)
j =

{

βj(1) if γ = 0,

βj(q) if
∑q−1

l ωl < γ ≤ ∑q
l=1 ωl ,

where βj(q) is the qth smallest of {βj(l), l = 1, 2, . . . ,Q}.
I To obtain a 100(1 − α)% HPD interval for βj , we let

Rq(Q) =
(

β̂
( q

Q
)

j , β̂
(

q+[(1−α)Q]
Q

)

j

)

for q = 1, 2, . . . ,Q − [(1 − α)Q], where [(1 − α)Q] denotes
the integer part of (1 − α)Q.

I Then, the 100(1 − α)% HPD interval is Rq∗(Q), which is the
interval that has the smallest width among all Rq(Q)’s.
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Table 3. Estimates of the βj ’s under Model (LogPSA, ppb,
GG7, GG8H)

Maximum Likelihood Estimates Posterior Estimates

Variable Estimate SE p-value Estimate SE
95% HPD
Interval

Intercept -3.895 0.304 <0.0001 -3.896 0.307 (-4.586, -3.222)
LogPSA 0.696 0.135 <0.0001 0.696 0.135 ( 0.400, 1.004)
ppb 2.376 0.355 <0.0001 2.376 0.356 ( 1.612, 3.201)
G7 0.705 0.182 0.0001 0.706 0.182 ( 0.283, 1.098)
G8H 1.420 0.337 <0.0001 1.420 0.337 ( 0.639, 2.156)
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Concluding Remarks

I We have undertaken a detailed theoretical investigation of
Jeffreys’s prior and have demonstrated its properties and
performance in variable selection.

I The prior has tails that are always in between multivariate t
and multivariate normal distributions under logistic regression,
regardless of the sample size or the dimension of β.

I The prior and posterior normalizing constants are scale
invariant with respect to the covariates.

I The prior only requires importance sampling to get accurate
estimates of posterior model probabilities.
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Thank You!
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