Hierarchical Functional Data With Correlated Functions

Raymond J. Carroll
Department of Statistics
Center for Statistical Bioinformatics
Institute for Applied Mathematics and Computational Science

Texas A\&M University http://stat.tamu.edu/~carroll

BCS History

- 2006 season: Florida win BCS beating Ohio State, 41-14
- 2006: Carroll gives Challis Lectures, University of Florida

BCS History

- 2007 season: Florida goes 9-4
- 2007: Carroll does not visit the University of Florida

BCS History

- 2008 season: Florida win BCS beating Oklahoma, 24-14
- 2008: Carroll invited to speak at Winter Workshop, University of Florida

BCS History

- 2009 season: Florida -----???
- 2009: Carroll speaks at the University of Florida Winter Workshop

Outline

- Problem: Hierarchical functional data where the functions at the deepest level of the hierarchy are correlated
- Functions might be spatially correlated
- Biological background and motivating example
- Fixed effects methods
- Random Effects methods

Basic Background

- Apoptosis: Programmed cell death
- Cell Proliferation: Effectively the opposite
- p27: Differences in this marker are thought to stimulate and be predictive of apoptosis and cell proliferation
- Our experiment: understand some of the structure of p27 in the colon when animals are exposed to a carcinogen

Data Collection

- Structure of Colon
- Note the finger-like projections
- These are colonic crypts
- We measure expression of cells within colonic crypts

Another View

- Structure of Colon
- Note the finger-like projections
- These are colonic crypts
- We measure expression of cells within colonic crypts

Another View

- p27 expression: Measured by staining techniques
- Brighter intensity $=$ higher expression
- Done on a cell by cell basis within selected colonic crypts
- Very time intensive

Spatial Layout of Crypts

Top View of the colon.

White dots are crypts

Sampling is done in a very small part of the colon

Data Collection

- Animals sacrificed at 4 times: $0=$ control, 12hr, 24hr and 48hr after exposure
- Rats: 12 at each time period, split into 4 diets
- Crypts: 20 are selected
- Cells: all cells collected, about 30 per crypt
- p27: measured on each cell, with logarithmic transformation

Nominal Cell Position

- $X=$ nominal cell position
- Differentiated cells: at top, $\mathrm{X}=$ 1.0
- Proliferating cells: in middle, $\mathrm{X}=0.5$
- Stem cells: at bottom, $\mathrm{X}=0$

Standard Model

- Hierarchical structure: cells within crypts within rats within times

$$
\begin{aligned}
& \mathbf{Y}_{\mathrm{trc}}(\mathbf{x})=\mu_{\mathrm{t}}(\mathbf{x})+\mathrm{Z}_{\mathrm{tr}}(\mathbf{x})+\mathrm{Q}_{\mathrm{trc}}(\mathbf{x})+\varepsilon_{\mathrm{trc}}(\mathbf{x}) \\
& \mu_{\mathrm{t}}(\mathbf{x})+Z_{\mathrm{tr}}(\mathbf{x})=\text { rat-level function }
\end{aligned}
$$

$\mathrm{Q}_{\text {trc }}(\mathbf{x})=$ crypt-level functions, typically assumed independent

Standard Model

- Hierarchical structure: cell locations within crypts within rats within times/diets
- In our experiment, the residuals from fits at the crypt level are essentially white noise
- However, we also measured the location of the colonic crypts

Crypt Distances to a nominal zero

Crypt Locations, Rats at hour 48

Scale: 1000's of microns

Our interest: relationships at between 25-200 microns

Standard Model

- Hypothesis: it is biologically plausible that the nearer the crypts to one another, the greater the relationship of overall p27 expression.
- Expectation: The effect of the carcinogen might well alter the relationship over diet
- Technically: What is different is that this is functional data where the functions are themselves correlated

Fixed Effect Methods

- Fixed Effects: Treat the rat-level functions as fixed effects
- Residualize: to get at the crypt level structure

$$
\begin{aligned}
& \mathbf{Y t r e}(\mathbf{x})=\mu_{\mathrm{t}}(\mathbf{x})+\mathrm{Z}_{\mathrm{tr}}(\mathbf{x})+\mathrm{Q}_{\mathrm{trc}}(\mathbf{x})+\varepsilon_{\mathrm{trc}}(\mathbf{x}) \\
& \mu_{\mathrm{t}}(\mathbf{x})+\mathrm{Z}_{\mathrm{tr}}(\mathbf{x})=\text { rat-level function } \\
& \mathbf{Q}_{\mathrm{trc}}(\mathbf{x})=\text { crypt-level functions, } \\
& \text { typically assumed independent }
\end{aligned}
$$

Fixed Effect Methods

- Nonparametrically: (with Yehua Li and Naisyin Wang) We developed kernel-based methods
- These methods assume that there are lots of data to estimate each rat-level function
- In our case, we have 600 observations per rat

Yehua Li as a student

Naisyin Wang, Marcia Ory and Raymond Carroll in Taiwan, January 1, 2008

Nonparametric Fits

- Define: $V\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}\right)=$ covariance between cryptlevel functions that are Δ apart, one at cell depth x_{1} and the other at cell depth x_{2}.
- Assumed not to depend on the rat, of course
- Often convenient to assume separable covariance structure as well

$$
V\left(x_{1}, x_{2}, \Delta\right)=G\left(x_{1}, x_{2}\right) \rho(\Delta)
$$

Nonparametric Fits

- Define the rat-level deviations at cell depth x and crypt spatial location δ for crypt c as

$$
\mathbf{R}_{\mathrm{tr}}(\mathbf{x}, \delta)=\mathrm{Q}_{\mathrm{trc}}(\mathbf{x})+\varepsilon_{\mathrm{trc}}(\mathbf{x})
$$

- Then when $\quad\left|\delta_{1}-\delta_{2}\right|=\Delta$ our function is just

$$
\mathbf{V}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \Delta\right)=E\left\{\mathbf{R}_{\mathrm{tr}}\left(\mathbf{x}_{1}, \delta_{1}\right) \mathbf{R}_{\mathrm{tr}}\left(\mathbf{x}_{2}, \delta_{2}\right)| | \delta_{1}-\delta_{2} \mid=\Delta\right\}
$$

Nonparametric Fits

- Note what we want:

$$
E\left\{\mathbf{R}_{\mathrm{tr}}\left(\mathbf{x}_{1}, \delta_{1}\right) \mathbf{R}_{\mathrm{tr}}\left(\mathbf{x}_{2}, \delta_{2}\right)| | \delta_{1}-\delta_{2} \mid=\Delta\right\}
$$

- This target is just a regression function on the distances among crypts within a subject, given cells at x_{1} for one crypt and at x_{2} for the other crypt.

$$
V\left(x_{1}, x_{2}, \Delta\right)=G\left(x_{1}, x_{2}\right) \rho(\Delta)
$$

Nonparametric Fits

- Note what we want:

$$
\mathbf{E}\left\{\mathbf{R}_{\mathrm{tr}}\left(\mathbf{x}_{1}, \delta_{1}\right) \mathbf{R}_{\mathrm{tr}}\left(\mathbf{x}_{2}, \delta_{2}\right)\left|\delta_{1}-\delta_{2}\right|=\Delta\right\}
$$

- Nonparametric methods (kernels for theory, splines, etc.) are then simple to construct
- For kernels, one takes all crypts that are Δ plus or minus a target bandwidth apart
- Crossvalidation to estimate the bandwidth

Nonparametric Fits

- Discrete Version: Pretend Δ, x_{1} and x_{2} take on a small discrete set of values (we actually use a kernel-version of this idea)
- Form the sample covariance matrix per rat at Δ, x_{1} and x_{2}, then average across rats.
- Call this estimate

$$
\hat{\mathbf{V}}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \Delta\right)
$$

Nonparametric Fits

- Separability: Now use the separability to get a rough estimate of the correlation surface.

$$
\begin{aligned}
& \mathbf{V}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \Delta\right)=\mathbf{G}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right) \rho(\Delta) \\
& \tilde{\rho}(\Delta)=\frac{\sum_{\mathbf{x}_{1}, x_{2}} \hat{\mathbf{V}}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \Delta\right)}{\sum_{x_{1}, x_{2}} \hat{\mathbf{V}}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, 0\right)}
\end{aligned}
$$

Nonparametric Fits

- The estimate $\tilde{\mathfrak{\rho}(\Delta)}$ is not a proper correlation function
- We fixed it up using a trick due to Peter Hall (1994, Annals), thus forming $\hat{\boldsymbol{\rho}(\Delta)}$, a real correlation function
- Basic idea is to do a Fourier transform, force it to be non-negative, then invert
- Actually improves the look of the correlation function and lowers MSE
- Asymptotic theory worked out

Nonparametric Fits, 24 hours

Fixed Effect Methods

- Some conclusions:
- Up to 100 microns, the estimate correlations are all above 0.4
- The estimated correlation is non-monotone, quite odd
- We have generated data with a non-monotone shape in the correlation function, and the method captures it

Fixed Effect Methods

- Many methods: There are also many parametric ways to get at the crypt-level structure after residualizing

$$
\mathbf{Y}_{\mathrm{trc}}(\mathbf{x})-\mu_{\mathrm{t}}(\mathbf{x})-Z_{\mathrm{tr}}(\mathbf{x})=\mathrm{Q}_{\mathrm{trc}}(\mathbf{x})+\varepsilon_{\mathrm{trc}}(\mathbf{x})
$$

- We have done more or less clever things such as spline structure on the crypt functions with separable Matern correlations of the coefficients

Fixed Effect Methods

- Scaling: The operative feature though of fixed effects methods is that they require enough data per rat to estimate the marginal ratlevel functions
- This works for our example, maybe not for others
- Plus we lose the "borrow strength" aspects of hierarchical models

Random Effect Methods

- Random Effects: We have developed a variety of random effect methods that deal with the entire structure of the data
- One method is completely Bayesian (with Veera Baladandayuthapani and Bani Mallick)
- All functions are treated as regression splines, with fixed or random coefficients

Bani Mallick

Veera

Baladandayuthapani as a student

Bayesian Model

- Crypt-Level: A regression spline, with few knots, in a parametric mixed-model formulation

$$
\begin{aligned}
& Q_{\mathrm{trc}}(\mathbf{x})=\mathbf{C}(\mathbf{x}) \beta_{\mathrm{trc}} \\
& \mathbf{C}(\mathbf{x})=\text { spline basis functions }
\end{aligned}
$$

$$
\operatorname{cov}\left(\beta_{\mathrm{trc}}\right)=\Sigma_{\mathrm{s}}
$$

Bayesian Model

- Crypt-Level: regression spline, few knots
- Separable covariance structure with a parametric (Matern) correlation structure

$$
\begin{aligned}
& \mathbf{Q}_{\mathrm{trc}}(\mathbf{x})=\mathbf{C}(\mathbf{x}) \beta_{\mathrm{trc}} \\
& \operatorname{cov}\left(\beta_{\mathrm{tri}}, \beta_{\mathrm{trj}}\right)=\left(\begin{array}{cc}
1 & \rho\left(\Delta_{\mathrm{ij}}\right) \\
\rho\left(\Delta_{\mathrm{ij}}\right) & \mathbf{1}
\end{array}\right) \otimes \Sigma_{\mathrm{S}}
\end{aligned}
$$

Bayesian Model

- Correlation: The correlation is directly interpretable and at same cell positions, identical

$$
\begin{aligned}
& \mathbf{Q}_{\mathrm{trc}}(\mathbf{x})=\mathbf{C}(\mathbf{x}) \beta_{\mathrm{trc}} \\
& \operatorname{corr}\left\{\mathbf{C}(\mathbf{x}) \beta_{\mathrm{tri}}, \mathbf{C}(\mathbf{x}) \beta_{\mathrm{trj}}\right\}=\rho(\Delta)
\end{aligned}
$$

Bayesian Model

- Correlation: However, the correlation is not the same across arbitrary cell locations

$$
\begin{aligned}
& Q_{t r c}(\mathbf{x})=\mathbf{C}(\mathbf{x}) \beta_{\mathrm{trc}} \\
& \operatorname{corr}\left\{\mathbf{C}(\mathbf{x}) \beta_{\mathrm{tri}}, \mathbf{C}(\mathbf{t}) \beta_{\mathrm{trj}}\right\} \\
& =\rho(\Delta) \frac{\mathbf{C}(\mathbf{x}) \Sigma_{\mathrm{S}} \mathbf{C}^{\mathrm{T}}(\mathbf{t})}{\sqrt{\mathbf{C}(\mathbf{x}) \Sigma_{\mathrm{S}} \mathbf{C}^{\mathrm{T}}(\mathbf{x}) \bullet \mathbf{C}(\mathbf{t}) \Sigma_{\mathrm{S}} \mathbf{C}^{\mathrm{T}}(\mathbf{t})}}
\end{aligned}
$$

Bayesian Model

- Matlab Code: There is Matlab code for this methodology available from Veera
- The method works well in simulations and gives answers that fit with the nonparametric method where the two can be compared
- Seamless Bayesian inference for important questions such as the effects of diets, variability of the correlation estimates, etc.

Bayesian Model

- Our Implementation can handle small numbers of observations per subject, unlike the fixed effect methods

Bayesian Model

- Our Implementation is slow
- It is not clear how well it scales up to having many subjects
- To handle many knots it requires an ad hoc dimension reduction
- Need multiple processors to see if one animal drives the results (leave one out, etc.)

Parametric Mean Fits

Parametric Mean Fits

Parametric and Nonparametric Fits

Other Hierarchical Methods

- For computational reasons then, we have worked out principal component approaches to the problem
- The methods are flexibly parametric with some nonparametric flavor
- Parametric bootstrap for inference, although technical issues remain, see e.g., N. Wang's talk

Other Hierarchical Methods

- The major issue with frequentist inference in PC methods is the model selection inherent in them
- Model selection methods cannot be analyzed by the bootstrap, because they are not asymptotically normally distributed at contiguous alternatives

Other Hierarchical Methods

- We hope soon to report on Bayesian methods that account for the model selection in the PC methods
- I will next talk about one such PC method

Basis Functions

- The essential issue with basis functions is dimensionality

$$
\begin{aligned}
& \mathbf{Y}_{\mathrm{trc}}(\mathbf{x})=\eta_{\mathrm{t}}(\mathbf{x})+Z_{\mathrm{tr}}(\mathbf{x})+\mathrm{Q}_{\mathrm{trc}}(\mathbf{x})+\varepsilon_{\mathrm{trc}}(\mathbf{x}) \\
& \mathbf{Z}_{\mathrm{tr}}(\mathbf{x})=\mathrm{C}(\mathbf{x}) \gamma_{\mathrm{tr}} \\
& Q_{\mathrm{trc}}(\mathbf{x})=\mathbf{C}(\mathbf{x}) \theta_{\mathrm{trc}}
\end{aligned}
$$

- What distributions are assumed for the random effects, while accounting for spatial correlation?

Basis Functions

- In the usual mixed model formulation, massive dimension reduction is made. "Effectively",

$$
\begin{aligned}
& Q_{\text {trc }}(\mathbf{x})=\mathbf{C}(\mathbf{x}) \theta_{\text {trc }} \\
& \operatorname{cov}\left(\theta_{\text {trc }}\right)=\Sigma_{\mathrm{S}}=\sigma_{\theta}^{2} K \\
& K=\text { known }
\end{aligned}
$$

- There is no real reason to assume this is true. If there are 10 basis functions, 55 free parameters become 1 free parameter. Convenient!

Basis Functions

- In Veera B., et al., we allowed a general covariance matrix $\quad \Sigma_{S}$ but only a few knots
- EM implementations have the same issue: number of parameters is about the square of the number of knots
- Ruppert shows that 20 knots with regression splines solve all problems, but that is a lot of parameters!

Basis Functions

- Dimension reduction of covariance matrices has to be done (or I think it does!)
- This means assumptions of one brand or another, none perfect
- We have two approaches, and I will outline one that is still massive dimension reduction, but relies on nothing more than the method of moments

Ana-Maria Staicu

Ciprian Crainiceanu

Simple Model

- Remember

$$
Y_{\mathrm{trc}}(\mathbf{x})=\mu_{\mathrm{t}}(\mathbf{x})+Z_{\mathrm{tr}}(\mathbf{x})+\mathrm{Q}_{\mathrm{trc}}(\mathbf{x})+\varepsilon_{\mathrm{trc}}(\mathbf{x})
$$

- Force spatial correlation at locations $\delta_{\text {trc }}$ as

$$
\begin{aligned}
& \mathrm{Q}_{\mathrm{trc}}(\mathbf{x})=\mathrm{W}_{\mathrm{trc}}(\mathbf{x})+\mathrm{U}_{\mathrm{tr}}\left(\delta_{\mathrm{trc}}\right) \\
& \mathbf{W}_{\mathrm{trc}}(\mathbf{x})=\text { independent across crypts } \\
& \mathrm{U}_{\mathrm{tr}}\left(\delta_{\mathrm{trx}}\right)=\text { isotropic spatial process }
\end{aligned}
$$

Simple Model

- In the spline approach, the spatial correlation is the correlation of $Q_{\text {trc }}(\mathbf{x})$ and $\mathbf{Q}_{\mathrm{trj}}(\mathbf{x})$ at same cell locations
- In the new simple model, the spatial feature is the covariance of $Q_{t r c}(\mathbf{x})$ and $Q_{t r j}(\mathbf{x})$ independent of cell location

Simple Model

- Now use a functional PCA approach to reduce dimension, i.e.,

$$
\begin{aligned}
& \mathbb{Z}_{\mathrm{tr}}(\mathrm{x})=\sum_{\mathrm{k}=1}^{\mathrm{K}_{\mathrm{z}}} \phi_{\mathrm{kZ}}(\mathrm{x}) \gamma_{\mathrm{trk}} \\
& \phi_{\mathrm{kZ}}(\bullet)=\operatorname{orthogonal} \\
& \gamma_{\mathrm{trk}}=\operatorname{Normal}\left(0, \sigma_{\mathrm{kZ}}^{2}\right) \text { and independent } \\
& \operatorname{cov}\left\{Z_{\mathrm{tr}}(x), Z_{\mathrm{tr}}(s)\right\}=\sum_{\mathrm{k}=1}^{\mathrm{K}_{\mathrm{z}}} \sigma_{\mathrm{kZ}}^{2} \phi_{\mathrm{kZ}}(x) \phi_{\mathrm{kZ}}(\mathrm{~s})
\end{aligned}
$$

Simple Model

- Similarly
$\mathbf{W}_{\mathrm{trc}}(\mathbf{x})=\sum_{\mathrm{k}=1}^{\mathrm{K}_{\mathrm{W}}} \phi_{\mathrm{kW}}(\mathbf{x}) \beta_{\text {trck }}$
$\phi_{\mathrm{kW}}(\bullet)=$ orthogonal
$\beta_{\text {trck }}=\operatorname{Normal}\left(0, \sigma_{\mathrm{kW}}^{2}\right)$ and independent
$\operatorname{cov}\left\{\mathbf{W}_{\mathrm{trc}}(\mathbf{x}), \mathbf{W}_{\mathrm{trc}}(\mathbf{s})\right\}=\sum_{\mathrm{k}=1}^{\mathrm{K}_{\mathrm{w}}} \sigma_{\mathrm{kW}}^{2} \phi_{\mathrm{kW}}(\mathbf{x}) \phi_{\mathrm{kW}}(\mathbf{s})$

Summary of the Simple Model

- With independence, etc.,

$$
\begin{aligned}
\mathbf{Y}_{\mathrm{trc}}(\mathbf{x})= & \mu_{\mathrm{t}}(\mathbf{x}) \\
& +\sum_{\mathrm{k}=1}^{\mathrm{K}_{\mathrm{z}}} \phi_{\mathrm{kZ}}(\mathbf{x}) \gamma_{\mathrm{trk}} \\
& +\sum_{\mathrm{k}=1}^{\mathrm{K}_{\mathrm{W}}} \phi_{\mathrm{kW}}(\mathbf{x}) \beta_{\mathrm{trck}} \\
& +\mathrm{U}_{\mathrm{tr}}\left(\delta_{\mathrm{trc}}\right) \\
& +\varepsilon_{\mathrm{trc}}(\mathbf{x})
\end{aligned}
$$

Method of Moments

- Everything can be pushed through if we can estimate

$$
\begin{aligned}
& \mathbf{K}_{\text {within }}\left(\mathbf{x}, \mathbf{s},\left|\delta_{\mathbf{i}}-\delta_{\mathrm{j}}\right|=\Delta\right) \\
& =\operatorname{cov}\left\{\mathrm{W}_{\mathrm{tri}}(\mathbf{x})-\mathrm{W}_{\mathrm{trj}}(\mathbf{x}), \mathrm{W}_{\mathrm{tri}}(\mathbf{s})-\mathrm{W}_{\mathrm{trj}}(\mathbf{s})| | \delta_{\mathbf{i}}-\delta_{\mathbf{j}} \mid=\Delta\right\}
\end{aligned}
$$

- Like Li, et al, this is nonparametric regression, although we use KNN averaging rather than kernels

Method of Moments

- We have developed a series of method of moments based calculations to fit this model
- There are some large covariance matrices that need to be inverted (BLUP) to compute estimates of the random effects, but we have developed dimension-reduction techniques to get around this

Method of Moments

- The method is fast
- On our data, the Bayesian method takes about 5 hours on a very fast processor
- Ours takes 12 seconds, including estimation of the number of principal components
- The speed allows us to do leave-one-subject out analyses, e.g., to see the sensitivity to individual subjects

Method of Moments, 40NN

correlation estimator k -nn

correlation estimator $\mathbf{k}-\mathrm{nn}$

Method of Moments, 80NN

Method of Moments, 100NN

correlation estimator k-nn

Method of Moments

Simulations: Mean fits for spatial structure as in the data: Black = true,
Blue = estimated

Other PC Approaches

- There are at least two other ways to use a PC approach that has a structure like the previous approaches
- Old Method

$$
\begin{aligned}
& \mathrm{Q}_{\mathrm{trc}}(\mathbf{x})=\mathrm{W}_{\mathrm{trc}}(\mathrm{x})+\mathrm{U}_{\mathrm{tr}}\left(\delta_{\mathrm{trc}}\right) \\
& \mathrm{W}_{\mathrm{trc}}(\mathrm{x})=\text { independent across crypts } \\
& \mathrm{U}_{\mathrm{tr}}\left(\delta_{\mathrm{trx}}\right)=\text { isotropic spatial process }
\end{aligned}
$$

Other PC Approaches

- Also
$\mathbf{W}_{\mathrm{trc}}(\mathbf{x})=\sum_{\mathrm{k}=1}^{\mathrm{K}_{\mathrm{w}}} \phi_{\mathrm{kW}}(\mathbf{x}) \beta_{\text {trck }}$
$\phi_{\mathrm{kW}}(\bullet)=$ orthogonal
$\beta_{\text {trck }}=\operatorname{Normal}\left(\mathbf{0}, \sigma_{\mathrm{kW}}^{2}\right)$ and independent
$\operatorname{cov}\left\{W_{\mathrm{trc}}(\mathbf{x}), \mathbf{W}_{\mathrm{trc}}(\mathbf{s})\right\}=\sum_{\mathrm{k}=1}^{\mathrm{K}_{\mathrm{W}}} \sigma_{\mathrm{kW}}^{2} \phi_{\mathrm{kW}}(\mathbf{x}) \phi_{\mathrm{kW}}(\mathbf{s})$

Other PC Approaches

- New Method

$$
\begin{aligned}
& \mathrm{Q}_{\mathrm{trc}}(\mathbf{x})=\mathrm{W}_{\mathrm{trc}}(\mathbf{x}) \\
& \mathrm{W}_{\mathrm{trc}}(\mathbf{x})=\text { NOT independent across crypts }
\end{aligned}
$$

Other PC Approaches

- Also
$\mathbf{W}_{\mathrm{trc}}(\mathbf{x})=\sum_{\mathrm{k}=1}^{\mathrm{K}_{\mathrm{w}}} \phi_{\mathrm{kW}}(\mathbf{x}) \beta_{\text {trck }}$
$\phi_{\mathrm{kW}}(\bullet)=$ orthogonal
$\beta_{\text {trck }}=\operatorname{Normal}\left(\mathbf{0}, \sigma_{\mathrm{kW}}^{2}\right)$ and independent
$\operatorname{cov}\left\{W_{\mathrm{trc}}(\mathbf{x}), \mathbf{W}_{\mathrm{trc}}(\mathbf{s})\right\}=\sum_{\mathrm{k}=1}^{\mathrm{K}_{\mathrm{W}}} \sigma_{\mathrm{kW}}^{2} \phi_{\mathrm{kW}}(\mathbf{x}) \phi_{\mathrm{kW}}(\mathbf{s})$

Other PC Approaches

- However,

$$
\begin{aligned}
& \mathbf{W}_{\text {trc }}(x)=\sum_{\mathrm{k}=1}^{\mathrm{K}_{\mathrm{w}}} \phi_{\mathrm{kW}}(\mathbf{x}) \beta_{\text {trck }} \\
& \operatorname{cov}\left(\beta_{\text {trck }}, \beta_{\text {trjk }}\right)=\rho_{\mathrm{k}}(\Lambda) \sigma_{\mathrm{kW}}^{2}
\end{aligned}
$$

- Not necessarily separable

Other PC Approaches

- There are technical difficulties with this due to the construction of the principal component functions

$$
\phi_{\mathrm{kW}}(\mathrm{x})
$$

- We are developing an alternative approach, more like Bsplines but with a PC flavor, that avoids this construction

Summary

- We have studied the problem of crypt-signaling in colon carcinogenesis experiments
- Technically, this is a problem of hierarchical functional data where the functions are not independent in the standard manner
- We developed constructive semiparametric and nonparametric methods
- The correlations we see in the functions are surprisingly large.

