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BCS History

• 2006 season: Florida win BCS beating Ohio 
State, 41-14

• 2006: Carroll gives Challis Lectures, University of 
Florida
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Outline

• Problem: Hierarchical functional data where the 
functions at the deepest level of the hierarchy 
are correlated

• Functions might be spatially correlated

• Biological background and motivating example

• Fixed effects methods

• Random Effects methods



Basic Background

• Apoptosis: Programmed cell death

• Cell Proliferation: Effectively the opposite

• p27: Differences in this marker are thought to 
stimulate and be predictive of apoptosis and cell 
proliferation

• Our experiment: understand some of the 
structure of p27 in the colon when animals are 
exposed to a carcinogen



Data Collection

• Structure of Colon

• Note the finger-like 
projections

• These are colonic 
crypts

• We measure 
expression of cells 
within colonic crypts



Another View

• Structure of Colon

• Note the finger-like 
projections

• These are colonic 
crypts

• We measure 
expression of cells 
within colonic crypts



Another View

• p27 expression: 
Measured by staining 
techniques

• Brighter intensity = higher 
expression

• Done on a cell by cell 
basis within selected 
colonic crypts

• Very time intensive



Spatial Layout of Crypts

Top View 
of the 
colon.

White dots 
are crypts

Sampling 
is done in 
a very 
small part 
of the 
colon



Data Collection

• Animals sacrificed at 4 times: 0 = control, 
12hr, 24hr and 48hr after exposure

• Rats: 12 at each time period, split into 4 diets

• Crypts: 20 are selected

• Cells: all cells collected, about 30 per crypt

• p27: measured on each cell, with logarithmic 
transformation



Nominal Cell Position

• X = nominal cell 
position

• Differentiated 
cells: at top, X = 
1.0

• Proliferating 
cells: in middle, 
X=0.5

• Stem cells: at 
bottom, X=0



Standard Model

• Hierarchical structure: cells within crypts 
within rats within times 
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Standard Model

• Hierarchical structure: cell locations within 
crypts within rats within times/diets

• In our experiment, the residuals from fits at the 
crypt level are essentially white noise

• However, we also measured the location of the 
colonic crypts



Crypt Distances to a nominal zero

Scale: 1000’s 
of microns

Our interest: 
relationships 
at between 
25-200 
microns



Standard Model

• Hypothesis: it is biologically plausible that the 
nearer the crypts to one another, the greater the 
relationship of overall p27 expression.

• Expectation: The effect of the carcinogen 
might well alter the relationship over diet

• Technically: What is different is that this is 
functional data where the functions are 
themselves correlated



Fixed Effect Methods

• Fixed Effects: Treat the rat-level functions as 
fixed effects

• Residualize: to get at the crypt level structure
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Fixed Effect Methods

• Nonparametrically: (with Yehua Li and Naisyin 
Wang) We developed kernel-based methods

• These methods assume that there are lots of 
data to estimate each rat-level function

• In our case, we have 600 observations per rat



Yehua Li as a student

Naisyin Wang, Marcia 
Ory and Raymond 
Carroll in Taiwan, 
January 1, 2008



Nonparametric Fits

• Define: = covariance between crypt-
level functions that are ∆∆∆∆ apart, one at cell 
depth x1 and the other at cell depth x2. 
• Assumed not to depend on the rat, of course

• Often convenient to assume separable 
covariance structure as well

1 2 1 2
V(x ,x ,∆)=G(x ,x ) ρ(∆)

1 2
V(x ,x ,∆)



Nonparametric Fits

• Define the rat-level deviations at cell depth x 
and crypt spatial location δ for crypt c as 

• Then when                       our function is just 
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Nonparametric Fits

• Note what we want:

• This target is just a regression function on 
the distances among crypts within a subject, 
given cells at x1 for one crypt and at x2 for the other 
crypt..

{{{{ }}}}tr 1 1 tr 2 2 1 2
E R (x , )R (x , ) | - |=∆|δ δ δ δδ δ δ δδ δ δ δδ δ δ δ

1 2 1 2
V(x ,x ,∆)=G(x ,x ) ρ(∆)



Nonparametric Fits

• Note what we want:

• Nonparametric methods (kernels for theory, 
splines, etc.) are then simple to construct

• For kernels, one takes all crypts that are ∆ 

plus or minus a target bandwidth apart

• Crossvalidation to estimate the bandwidth

{{{{ }}}}tr 1 1 tr 2 2 1 2
E R (x , )R (x , ) | - =| | ∆δ δ δ δδ δ δ δδ δ δ δδ δ δ δ



Nonparametric Fits

• Discrete Version: Pretend ∆, ∆, ∆, ∆, x1 and x2 take on 

a small discrete set of values (we actually use a 
kernel-version of this idea)

• Form the sample covariance matrix per rat at ∆, ∆, ∆, ∆, 

x1 and x2 , then average across rats.

• Call this estimate

1 2
V̂(x ,x ,∆)



Nonparametric Fits

• Separability: Now use the separability to get a 
rough estimate of the correlation surface.
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Nonparametric Fits

• The estimate                is not a proper 
correlation function

• We fixed it up using a trick due to Peter Hall 
(1994, Annals), thus forming         , a real 
correlation function

• Basic idea is to do a Fourier transform, force it 
to be non-negative, then invert

• Actually improves the look of the correlation 
function and lowers MSE

• Asymptotic theory worked out

ρ(∆)%%%%

ρ̂(∆)



Nonparametric Fits, 24 hours



Fixed Effect Methods

• Some conclusions:

• Up to 100 microns, the estimate correlations are all 
above 0.4

• The estimated correlation is non-monotone, quite odd

• We have generated data with a non-monotone shape 
in the correlation function, and the method captures it



Fixed Effect Methods

• Many methods: There are also many 
parametric ways to get at the crypt-level 
structure after residualizing

• We have done more or less clever things such as 
spline structure on the crypt functions with 
separable Matern correlations of the coefficients

trc t t trtr rcc
Y (x) - (x)- (x)= (x)+εQZ (x)µµµµ



Fixed Effect Methods

• Scaling: The operative feature though of fixed 
effects methods is that they require enough 
data per rat to estimate the marginal rat-
level functions

• This works for our example, maybe not for 
others

• Plus we lose the “borrow strength” aspects of 
hierarchical models



Random Effect Methods

• Random Effects: We have developed a variety 
of random effect methods that deal with the 
entire structure of the data

• One method is completely Bayesian (with Veera 
Baladandayuthapani and Bani Mallick)

• All functions are treated as regression splines, 

with fixed or random coefficients



Bani Mallick

Veera 
Baladandayuthapani as 
a student



Bayesian Model

• Crypt-Level: A regression spline, with few 
knots, in a parametric mixed-model 
formulation
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Bayesian Model

• Crypt-Level: regression spline, few knots

• Separable covariance structure with a parametric 
(Matern) correlation structure
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Bayesian Model

• Correlation: The correlation is directly 
interpretable and at same cell positions, identical
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Bayesian Model

• Correlation: However, the correlation is not the 
same across arbitrary cell locations
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Bayesian Model

• Matlab Code: There is Matlab code for this 
methodology available from Veera

• The method works well in simulations and gives 
answers that fit with the nonparametric method 
where the two can be compared

• Seamless Bayesian inference for important 
questions such as the effects of diets, variability 
of the correlation estimates, etc.



Bayesian Model

• Our Implementation can handle small 
numbers of observations per subject, unlike the 
fixed effect methods



Bayesian Model

• Our Implementation is slow

• It is not clear how well it scales up to having 
many subjects

• To handle many knots it requires an ad hoc  
dimension reduction

• Need multiple processors to see if one animal 
drives the results (leave one out, etc.)



Parametric Mean Fits



Parametric Mean Fits



Parametric and Nonparametric Fits



Other Hierarchical Methods

• For computational reasons then, we have worked 
out principal component approaches to the 
problem

• The methods are flexibly parametric with some 
nonparametric flavor

• Parametric bootstrap for inference, although 
technical issues remain, see e.g., N. Wang’s talk 



Other Hierarchical Methods

• The major issue with frequentist inference in PC 
methods is the model selection inherent in them

• Model selection methods cannot be analyzed by 
the bootstrap, because they are not 
asymptotically normally distributed at contiguous 
alternatives



Other Hierarchical Methods

• We hope soon to report on Bayesian methods 
that account for the model selection in the PC 
methods

• I will next talk about one such PC method



Basis Functions

• The essential issue with basis functions is 
dimensionality

• What distributions are assumed for the random 
effects, while accounting for spatial correlation? 
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Basis Functions

• In the usual mixed model formulation, massive 
dimension reduction is made. “Effectively”,

• There is no real reason to assume this is true. If 
there are 10 basis functions, 55 free parameters 
become 1 free parameter. Convenient!
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Basis Functions

• In Veera B., et al., we allowed a general 
covariance matrix           but only a few knots

• EM implementations have the same issue: 
number of parameters is about the square of the 
number of knots

• Ruppert shows that 20 knots with regression 
splines solve all problems, but that is a lot of 
parameters!

S
ΣΣΣΣ



Basis Functions

• Dimension reduction of covariance matrices has 
to be done (or I think it does!)

• This means assumptions of one brand or 
another, none perfect

• We have two approaches, and I will outline one 
that is still massive dimension reduction, but 
relies on nothing more than the method of 
moments



Ana-Maria Staicu Ciprian Crainiceanu



Simple Model

• Remember

• Force spatial correlation at locations δtrc as  
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Simple Model

• In the spline approach, the spatial 
correlation is the correlation of                 
and              at same cell locations

• In the new simple model, the spatial feature 
is the covariance of                 and              
independent of cell location
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Simple Model

• Now use a functional PCA approach to 
reduce dimension, i.e., 
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Simple Model

• Similarly
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Summary of the Simple Model

• With independence, etc., 
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Method of Moments

• Everything can be pushed through if we can 
estimate

• Like Li, et al, this is nonparametric 
regression, although we use KNN averaging 
rather than kernels
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Method of Moments

• We have developed a series of method of 
moments based calculations to fit this model

• There are some large covariance matrices 
that need to be inverted (BLUP) to compute 
estimates of the random effects, but we 
have developed dimension-reduction 
techniques to get around this



Method of Moments

• The method is fast

• On our data, the Bayesian method takes about 5  
hours on a very fast processor

• Ours takes 12 seconds, including estimation of 
the number of principal components

• The speed allows us to do leave-one-subject 
out analyses, e.g., to see the sensitivity to 
individual subjects



Method of Moments, 40NN



Method of Moments, 80NN



Method of Moments, 100NN



Method of Moments

Simulations: Mean fits for spatial structure as in the data:
Black = true, 
Blue = estimated



Other PC Approaches

• There are at least two other ways to use a PC 
approach that has a structure like the previous 
approaches

• Old Method
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Other PC Approaches

• Also
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Other PC Approaches

• New Method
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Other PC Approaches

• Also
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Other PC Approaches

• However,

• Not necessarily separable
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Other PC Approaches

• There are technical difficulties with this due to 
the construction of the principal component 
functions

• We are developing an alternative approach, 
more like Bsplines but with a PC flavor, that 
avoids this construction

kW
(x)φφφφ



Summary

• We have studied the problem of crypt-signaling 
in colon carcinogenesis experiments

• Technically, this is a problem of hierarchical 
functional data where the functions are not 
independent in the standard manner

• We developed constructive semiparametric and 
nonparametric methods

• The correlations we see in the functions are 
surprisingly large.


