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Outline

• Longitudinal models: 
• Panel data
• Nonparametric models
• Partially linear semiparametric models

• Theme: 
• How are splines and kernels related in this 

problem?
• Correlated data: 

• Efficient methods of estimation
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Panel Data (for simplicity)

• i = 1,…,n clusters/individuals
• j = 1,…,m observations per cluster

Subject Wave 1 Wave 2 … Wave m

1 X X X

2 X X X

… X

n X X X



Panel Data (for simplicity)

• i = 1,…,n clusters/individuals
• j = 1,…,m observations per cluster
• Important points:

• The cluster size m is meant to be fixed
• This is not a multiple time series problem 

where the cluster size increases to infinity
• Some comments on the single time series

problem are given near the end of the talk



The Marginal Parametric Model

• Y = Response
• X,Z = time-varying covariates

• General Result: We can improve efficiency for
(β,Θ) by accounting for correlation: GLS

ij ij ij ij

ij

Y =Z +X +ε

cov(ε

β Θ

)=Σ



The Marginal Semiparametric Model

• Y = Response
• X,Z = time-varying covariates

• Question: can we improve efficiency for β by 
accounting for correlation?

ij ij ij ij

ij

Y =Z +Θ(X )+ε

cov(ε

β

)=Σ



The Marginal Nonparametric Model

• Y = Response
• X = time-varying covariate

• Question: can we improve efficiency by 
accounting for correlation? (GLS)

( )
ij ij ij

ij

Y =Θ(X )+ε

Θ • unknown function

cov(ε )=Σ

=



Independent Data

• Splines (smoothing, P-splines, etc.) with penalty 
parameter = λ

• Ridge regression fit

• Some bias, smaller variance

• is over-parameterized least squares

• is a polynomial regression

{ } { } { }
n

T 2
i i i i

i 1

Y (X ) Y (min i X )m tize ( ) dt
=

′′− Θ − Θ + λ Θ∑ ∫
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Independent Data

• Kernels (local averages, local linear, etc.), with 
kernel density function K and bandwidth h

• As the bandwidth h 0, only observations with 
X near t get any weight in the fit
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Kernel Regression



Independent Data

• Major methods

• Splines

• Kernels

• Smoothing parameters required for both                  

• Fits: similar in many (most?) datasets

• Expectation: some combination of bandwidths 
and kernel functions look like splines
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Independent Data

• Splines and kernels  are linear in the responses

• Silverman showed that there is a kernel function 
and a bandwidth so that the weight functions

are asymptotically equivalent 

• In this sense, splines = kernels

n
-1

n i i
i=1

ˆ ( ) = n G ( ,t X Yt )Θ ∑

nG (t , x)



The weight functions Gn(t=.25,x) in a 
specific case for independent data

Kernel Smoothing Spline

Note the similarity of shape and the locality: only X’s near t=0.25 get 
any weight



Accounting for Correlation

• Splines have an obvious analogue for non-
independent data

• Let              be a working covariance matrix
• Penalized Generalized least squares (GLS)

• GLS ridge regression
• Because splines are based on likelihood ideas, 

they generalize quickly to new problems

{ } { } { }
n

T 2
i i i i

i 1

-1
wY (X ) Y (X ) (t) dtΣ

=

′′− Θ − Θ + λ Θ∑ ∫

wΣ



Accounting for Correlation

• Splines have an obvious analogue for non-
independent data

• Kernels are not so obvious
• One can do theory with kernels

• Local likelihood kernel ideas are standard in 
independent data problems

• Most attempts at kernels for correlated data have 
tried to use local likelihood kernel methods



Kernels and Correlation

• Problem: how to define locality for kernels?

• Goal: estimate the function at t
• Let              be a diagonal matrix of standard 

kernel weights 

• Standard Kernel method: GLS pretending 
inverse covariance matrix is

• The estimate is inherently local

iK (t , X )

-1 /2 1 /
w

2
i

1
iK (t , X ) K (t , XΣ )



Kernels and Correlation
Specific case: m=3, n=35

Exchangeable correlation 
structure

Red:      ρ = 0.0

Green:  ρ = 0.4

Blue:     ρ = 0.8

Note the locality of the 
kernel method

The weight functions Gn(t=.25,x) in 
a specific case

18



Splines and Correlation
Specific case: m=3, n=35

Exchangeable correlation 
structure

Red:      ρ = 0.0

Green:  ρ = 0.4

Blue:     ρ = 0.8

Note the lack of locality of 
the spline method

The weight functions Gn(t=.25,x) in a 
specific case



Splines and Correlation
Specific case: m=3, n=35

Complex correlation 
structure

Red:      Nearly singular

Green:  ρ = 0.0

Blue:     ρ = AR(0.8)

Note the lack of locality of 
the spline method

The weight functions Gn(t=.25,x) in 
a specific case



Splines and Standard Kernels

• Accounting for correlation:

• Standard kernels remain local

• Splines are not local 

• Numerical results have been confirmed 
theoretically



Results on Kernels and Correlation

• GLS with weights

• Optimal working covariance matrix is working 
independence!

• Using the correct covariance matrix 

• Increases variance

• Increases MSE

• Splines     Kernels (or at least these kernels) 

-1 /2 1 /
w

2
i

1
iK (t , X ) K (t , XΣ )

≠
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Pseudo-Observation Kernel Methods

• Better kernel methods are possible

• Pseudo-observation: original method

• Construction: specific linear transformation of Y
• Mean = Θ(X)

• Covariance = diagonal matrix

• This adjusts the original responses without affecting 
the mean

{ }* 1
i i i i

-1/2
w= diag( )Σ

Y Y ( ) Y (X )−

Ω Λ = Ω

= + Λ Ω − Λ − Θ



Pseudo-Observation Kernel Methods

• Construction: specific linear transformation of Y
• Mean = Θ(X)

• Covariance = diagonal

• Iterative:

• Efficiency: More efficient than working 
independence

• Proof of Principle: kernel methods can be 
constructed to take advantage of correlation

{ }* 1
i i i iY Y ( ) Y (X )−= + Λ Ω − Λ − Θ



Time Series Problems

• Time series problems: many of the same issues 
arise 

• Pseudo-observation method
• Two stages

• Linear transformation

• Mean Θ(X)

• Independent errors

• Standard kernel applied

• Potential for great gains in efficiency (even 
infinite for AR problems with large correlation)
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Time Series: AR(1) Illustration,  
Pseudo Observation Method

• AR(1), correlation ρ:

• Regress Yt
0 on Xt: Efficiency of original pseudo-

observation method to working independence:

t t-1 tε - ε =u (white nρ oise)

{ }0
t t t-1 t-1Y =Y - Y -Θ(Xρ )

2

1 : as 1
1

→ ∞ ρ
ρ

→
−



Time Series: AR(1) Illustration

• The obvious question: can we do better?

• There are many possible pseudo-observations

• Obvious alternative: two separate regressions, 
plus the obvious weighted average

{ }
{ }

0 2
t t t-1 t-1 t u

0 2 2
t t-1 t t t-

-1
1 u

ρ

ρ

Y =Y - Y -Θ(X ) ,mean Θ(X ), var=

Y =Y - Y -Θ(X ) ,mean Θ(X ), var= /

= σ

= σ ρ



Time Series Problems

• AR(1) errors with correlation ρ

• Efficiency of original pseudo-observation method 
to working independence:

• Efficiency of new pseudo-observation method to 
original pseudo-observation method:

2

1 : as 1
1

→ ∞ ρ
ρ

→
−

21 : 2 as 1ρ+ → ρ →

36



Efficiency of Splines and Pseudo-
Observation Kernels 

Exchng: 
Exchangeable 
with correlation 
0.6

AR: 
autoregressive 
with correlation 
0.6

Near Sing: A 
nearly singular 
matrix 0

0.5

1

1.5

2

2.5

3

3.5

Excnhg AR Near Sing

Spline
P-kernel



What Do GLS Splines Do?

• GLS Splines are really working independence 
splines using pseudo-observations

• Let

• GLS Splines are working independence splines

( )-1 jk

jk
Σ = σ

jjweight =σs

{ }
jk

*
ij ij ik ikjjk j

σpseudo Y = Y + Y (- X )
σ

obs
≠

− Θ∑



GLS Splines and SUR Kernels

• GLS Splines are working independence splines

• Algorithm: iterate until convergence

• Idea: for kernels, do same thing

• This is Naisyin Wang’s SUR method (Biometrika, 
2003)

( )-1 jk

jk
Σ = σ jjweight =σs

{ }
jk

*
ij ij ik ikjjk j

σpseudo Y = Y + Y (- X )
σ

obs
≠

− Θ∑



SUR Kernel Methods: Motivation

• Basic idea: we have m observations per cluster.

• Suppose we know the means for observations 
j=2,…,m, i.e.,

• How would we estimate the mean for the 1st

observation, i.e.,  

• Method: local likelihood but using all the 
responses

• Wang simply sums the resulting estimating 
equations

ij j ijE(Y )= (X )Θ

i1 1 i1E(Y )= (X )Θ

i1 i2 imY , Y ,..., Y



SUR Kernel Methods

• It is well known that the GLS spline has an exact, 
analytic expression

• We have shown that the SUR kernel method has 
an exact, analytic expression

• Both methods are linear in the responses

• Nontrivial (for me!) calculations show that 
Silverman’s result still holds

• Splines = SUR Kernels



Nonlocality

• The lack of locality of GLS splines and SUR 
kernels is surprising 

• Suppose we want to estimate the function at t
• Result: All observations in a cluster contribute to 

the fit, not just those with covariates near t
• Locality: Defined at the cluster level

{ }
jk

*
ij ij ik ikjjk j

σpseudo Y =Y + Y (- X )
σ

obs
≠

− Θ∑



The Semiparametric Model

• Y = Response
• X,Z = time-varying covariates

• Question: can we improve efficiency for β by 
accounting for correlation, i.e., what method is 
semiparametric efficient?

ij ij ij ij

ij

Y =Z +Θ(X )+ε

cov(ε

β

)=Σ



Semiparametric Efficiency

• The semiparametric efficient score is readily 
worked out.

• Involves a Fredholm equation of the 2nd kind
• Effectively impossible to solve directly:

• Involves densities of each X conditional on the 
others

• The usual device of solving integral equations 
does not work here



The Efficient Score

1 m

1 m

-1
eff

m m
jk

k eff k j j
j 1 k 1

X=(X ,...,X )

Z=(Z ,...,Z )
Efficient Score 

     {X- (Z)} {Y X (Z)}
Fredholm equation :

0 E[{X (Z )}| Z z]f (t)
= =

φ Σ − β − θ

≡ σ −φ =∑ ∑

%

%

% % % % %



Profile Methods

• It is worth remembering what one would do 
here as a likelihood person.

• The profile likelihood says:
ij ij ij ijY =Z + ΘX +εβ

ij ij ij

for  every  estimate by GLS
Y -Z on X

Call this .

Maximize likelihood in {

β, θ
β

θ̂(β)
ˆβ,θ(β)}.



Profile Method: General Case

• Given β, solve for Θ, say
• Then fit GLS or W.I. to the model with mean

• In this general case, how you estimate Θ matters
• Working independence

• Standard kernel

• Pseudo-observation kernel

• SUR kernel: no surprise that this is the best!

ij ijZ + (XΘβ ,β)

ijΘ(X ,β)



Semiparametric Efficiency

• The semiparametric efficient method is profiled 
GLS with a SUR-kernel or a smoothing spline

• If you use working independence 
kernels/splines in this context, less efficiency



Age .014 .035 .010 .033

# of Smokes .984 .192 .549 .144

Drug Use? 1.05 .53 .58 .33

# of Partners -.054 .059 .080 .038

Depression? -.033 .021 -.045 .013

Longitudinal CD4 Count Data 
(Zeger and Diggle): X = time of exam

Working 
Independence
Est.             s.e. Est.             s.e.       

Semiparametric
GLS Z-D



Conclusions (1/3): Nonparametric 
Regression

• In nonparametric regression
• Kernels = splines for working independence 

(W.I.)
• Working independence is inefficient
• Personally, I think we ignore the inefficiency of 

working independence methods at some peril
• Most of the literature uses working 

independence



Conclusions (2/3): Nonparametric 
Regression

• In nonparametric regression
• Pseudo-observation methods improve upon 

working independence
• SUR kernels  =  splines for correlated data
• Splines and SUR kernels are not local
• Splines and SUR kernels are local in pseudo-

observations



Conclusions (3/3): Semiparametric 
Regression

• In semiparametric regression
• When X is time-varying, method of estimating 

affects properties of parameter estimates
• Using SUR kernels or GLS splines as the 

nonparametric method leads to efficient results

• Conclusions can change between working 
independence and semiparametric GLS



Conclusions: Splines versus Kernels

• One has to be struck by the fact that all the grief 
in this problem has come from trying to define 
kernel methods

• At the end of the day, they are no more efficient 
than splines, and harder and more subtle to 
define

• Showing equivalence as we have done suggests 
the good properties of splines



The Numbers in the Table

The decrease in s.e.’s is in accordance with our theory. The other 
phenomena are more difficult to explain. Nonetheless, they are not unique to 
semiparametric GEE methods. 

Similar discrepant outcomes occurred in parametric GEE estimation in which 
θ(t) was replaced  by a cubic regression function in time. Furthermore, we 
simulated data using the observed covariates but having responses 
generated from the multivariate normal  with mean equal to the fitted mean 
in the parametric correlated GEE estimation, and with correlation given by 
Zeger and Diggle.

The level of divergence between two sets of results in the simulated data 
was fairly consistent with what appeared in the Table. For example, among 
the first 25 generated data sets, 3 had different signs in sex partners and 7 
had the scale of drug use coefficient obtained by WI 1.8 times or larger than 
what was obtained by the proposed method. 



The Marginal Nonparametric Model

• Important assumption
• Covariates at other waves are not conditionally 

predictive, i.e., they are surrogates

• This assumption is required for any GLS fit, 
including parametric GLS

ij ij ik ijE(Y |X ,X for k j)=Θ(X )≠
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