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Some notation and definitions

All response/outcome data, whether observed or not:

Y = {YO, YM}.
YO: observed, YM : missing.

Covariates:
X = {XO, XM}.

XO: observed, XM : missing.

Depending on the context these may all refer to one unit, or
to an entire dataset.

Define

Z= {Y,X}, ZO = {YO, XO}, and ZM = {YM , XM}
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Missing value indicator:

Corresponding to every element of Z, there is an R:

R =




1 if observed

0 if missing

with R = {R}.
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Goal: make inferences about

f(Y | X)

using YO and XO (and R).

How are these connected?

f(YO | XO) =

∫ ∫
f(YO, YM | XO, XM)f(XM | XO)dXMdYM .
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Estimation:

Suppose we have an unbiased (vector valued) estimating
equation for the complete data

U(Y; X; θ̂) =
n∑

i=1

Ui(Yi; Xi; θ̂) = 0.

then with missing responses the following estimating
equation remains unbiased (hence consistent for θ)

n∑
i=1

{RiUi + (1 − Ri)Eg(Ui)} = 0.

where the expectation is taken over the joint distribution of
the missing data ZM conditional on the observed data (the
conditional predictive distribution g(ZM)).
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This will be the score equation in the likelihood setting.

Under MAR we do not need to condition on R.
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There is an alternative method that does not require
knowledge of g(ZM).

If we know (or can estimate) the probability of observing a
complete unit, say πi, then the following weighted
estimating equations are unbiased:

n∑
i=1

RiUi

πi

= 0.
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So broadly there are two routes:

1. Correct the estimating equations using

Eg(Ui)

This requires distributional information, but is the more
precise.

[Direct empirical (likelihood) versions are called mean
score methods.]

2. Use the inverse of πi as a weight (e.g.
Horvitz-Thompson).

More robust but less precise in its simple form, but
more efficient versions have been proposed.
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• There is a sense nearly all principled approaches to
the problem missing values are variations on these two
themes.

[There is a connection between them through the
nonparametric (hot-deck) estimation of of g(Z)]

• In practice, key distributions, or probabilities of
missingness, will be unknown.

• Untestable assumptions will be made in estimating
these.

• Its important to distinguish between assumptions/models and technology for fitting
and managing these (e.g. likelihood, full Bayes, pseudo-likelihood, hybrid MCMC
methods, weighted estimating equations, multiple imputation,. . . )
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Multiple Imputation

Some References

• Gilks, W.R., Richardson, S. & Spiegelhalter, D.J.
(1996) Markov Chain Monte Carlo in Practice.
Chapman & Hall/CRC.

• Rubin, D.B. (1987) Multiple Imputation for
Nonresponse in Surveys. Wiley.

• Rubin, D.B. (1996) Multiple imutation after 18+ years.
J. Amer. Statist. Ass., 91, 473–489.

• Schafer, J.L. (1997) Analysis of Incomplete Multivariate
Data. Chapman & Hall/CRC.
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An intuitive view

Starting point:

• Analysis of a complete data set is relatively simple.

• By comparison, estimation and inference with missing
data is awkward.

• The conditional predictive distribution can be estimated
from the observed data (true under MAR).

Consider the situation with parameter θ.

We take a Bayesian approach.
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The posterior is given by

f(θ | ZO) =

∫
f(θ | ZO, ZM)f(ZM | ZO)dZM

= Eg{f(θ | ZO, ZM)},
with posterior mean

E(θ | ZO) = Eg[E{θ̃(ZO, ZM)}]

≈ 1

M

M∑
i=1

θ̃(ZO, Zi
M)

where Zi
M is drawn from g(·), and θ̃(ZO, Zi

M) is the mean of
the posterior given ZO and Zi

M .
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Similarly the posterior covariance matrix reduces to

V = Eg{V(θ | ZO, ZM )} + Vg {E(θ | ZO, ZM )}

≈ 1

M

M�

i=1

V{θ̃(ZO, Zi
M )}

+

�

1 +
1

M

��

1

M − 1

�

[

M�

i=1

{θ̃MI − θ̃(ZO, Zi
M )}{θ̃MI − θ̃(ZO, Zi

M )}T ].

for

θ̃MI =
1

M

M∑
i=1

θ̃(ZO, Zi
M).
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In practice the response model is fitted to each of M
completed datasets.

The posterior means θ̃(ZO, Zi
M) are replaced the maximum

likelihood estimates.

And the posterior covariance matrices V(θ̃ | ZO, ZM) are
estimated using the inverse information.
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So, for a single parameter MI looks like this:

For each draw from g(·) solve the score to get the ML
estimator

θ̃i and variance (inverted information) Ṽ i.

These are then combined:

θ̃ =
1

M

M∑
i=1

θ̃i

Ṽ (θ̃) =
1

M

M∑
i=1

Ṽ i +
1 + M−1

M − 1

M∑
i=1

[
θ̃i − θ̃

]2

.

Typically M can be small (say 5-10).
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What are the conditions for appropriate (proper)
imputations?

Rubin gives formal rules (1987, ch 4).

In practice these are almost never checked formally, and
the following guidelines form the basis for the justification
of the many various procedures used.
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Rubin (1987, pp.126–127):

• “Draw imputations following the Bayesian paradigm as
repetitions from a Bayesian posterior distribution of the
missing values under the chosen models for
nonresponse and data, or an approximation to this
posterior distribution that incorporates appropriate
between-imputation variability.” [proper imputations]

• ”Choose models of nonresponse appropriate for the
posited response mechanism.”

• “Choose models for the data that are appropriate for
the complete-data statistics likely to be used - if the
model for the data is correct, then the model is
appropriate for all complete-data statistics.”
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Imputer and Analyst

• MI originated in the sample survey setting.

• Many different analyses may be performed from one
multiply imputed dataset.

• The “imputer’s” model need not be the same as the
“analyst’s” model, but if the latter contains structure
that the former does not there may be serious
problems.
[Fay, R.E. (1992) Proc. Survey Res. Meth. Sec. Amer.
Statistic. Ass., 227–232.]

• For a strictly Bayesian interpretation, the imputer’s and
analysts’s models must coincide.
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• Obviously a key part of the procedure is the formulation
and use of the conditional predictive distribution.

• When only responses are missing, e.g. longitudinal
clinical trials, direct likelihood based modelling
(Bayesian or frequentist) is usually more
straightforward and transparent.

In practice, typically, MI just approximates the
inferences produced by such approaches.
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When we have missing covariates, and a well defined joint
distribution (e.g. multivariate normal) direct estimation may
still be relatively easy: e.g. obtain ML estimates of the
parameters of the conditional distribution

f(Y | X)

from those of the the joint distribution

f(Y, XM | XO).

But what about precision?

The conditional framework is awkward: but is
accommodated by the variance formula in MI.
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Do imputations have to incorporate the uncertainty in
the model parameters?

• It’s not obvious why it is wrong to impute from

ZM | ZO(, R).

with parameters fixed at appropriate values (consistent
estimators).

• In a sense there is nothing wrong with it, this approach
can produce consistent estimators for the substantive
model: but estimates of precision are not as simple as
with MI.
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For a rigorous discussion of proper and improper
imputation, and variance estimation, with these types of
stochastic imputation procedures, see

Wang N and Robins JM (1998) Large-sample thoery for
parametric multiple imputation procedures. Biometrika, 85,
935–948.

Robins JM and Wang N (2000) Inference for imputation
estimators. Biometrika, 85, 113–124.
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Conclusions for our setting:

• With missing outcomes only - use direct modelling
approaches (likelihood, estimating equations...)

• For smaller problems where covariates are missing, do
formal Bayesian analyses using WinBugs.

• For larger problems with missing covariates (the
majority) MI provides a practical general basis for
calculating variances and subsequent inference for
regression models.

An additional advantage is the separation of the
substantive and imputation model.
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Imputation methods for simple cross-sectional data

(Unsurprisingly) much of the work in MI surrounds the
choice of, and sampling from, the conditional predictive
distribution:

g(ZM) = f(YM , XM | YO, XO, R).

MAR is nearly always assumed meaning that we can use

g(ZM) = f(YM , XM | YO, XO).

It has been suggested that inferences are fairly robust to
this (e.g. Schafer, 2000).
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In sufficiently large samples we can often do acceptably
well by approximating the posterior predictive distribution
using a multivariate normal with mean and covariance
matrix taken from the maximum likelihood estimates.

MCMC methods can (and are) also used to obtain draws
from the appropriate posterior(s).
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In real problems we will usually be faced with the problem
of imputing among a set of mixed variable types, for

both response and covariate: {YM , XM | YO, XO}
• continuous

• binary

• categorical: ordinal

• categorical: nominal
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Joint modelling of such variables in a general, flexible, way
is far from trivial.

There are two main classes of approach in MI, both involve
approximation.

• (I) Use a convenient class of multivariate model as an
approximation. This usually implies:

• multivariate normal (or Gaussian) for continuous,
ordinal and binary variables,

• a loglinear model for nominal categorical

• (II) Use univariate conditional models in a Gibbs
sampler type approach.
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(II) Gibbs type imputation procedures

• While it can be difficult to construct an appropriate joint
imputation model without using gross approximations,
it is much simpler to model (and hence impute) each
variable separately conditional on the others.

• Indeed, this is precisely the problem often met in
Bayesian methods when sampling from the full joint
posterior.

Bayesian applications have been transformed by the
use of the Gibbs sampler.
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An imputation approach that applies the spirit of Gibbs
sampling in the MI setting is as follows.

• We want to impute from the joint posterior distribution
of {Z1, . . . , ZP}.

• Impute instead, in turn, from the (approximate)
conditional posteriors

zj | z1, . . . , zj−1, zj+1, . . . , zP , j = 1, . . . , P.

where missing values among the conditioning
variables are replaced by their previous imputations.

• Repeat the process T times.

• Use the last set of imputations to complete one MI data
set.
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A similar idea from two different groups, principally

The Sequential Regression Imputation Method

Ragnuthan TE, Lepkowski J, van Hoewyk, J and
Solenberger PW (2001) A multivariate technique for
multiply imputing missing values using a sequence of
regression models. Survey Methodology.

with associated software: IVEWARE

www.isr.urmich.edu/src/smp/ive.

An example:

Taylor MG, Cooper KL, Wei JT, Sarma AV, Raghunathan TE, Heeringa SG (2002) use of

multiple imputation to correct for nonresponse bias in a survey of urologic symptoms

among African-American men. American Journal of Epidemiology, 156, 774–782.
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Multivariate Imputation by Chained Equations

Van Buuren S, Boshuizen HC and Knook DL (1999)
Multiple imputation of missing blood pressure covariates in
survival analysis. Statistics in Medicine, 18, 681–694.

with associated S+ software package MICE

www.multiple-imputation.com

There is now a version of MICE implemented in Stata.

[Royston P (2004) Multiple imputation of missing values. The Stata Journal, 4, 227-241.]

www.stata.com/support
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What about the justification for these methods?

The existence of a joint limiting distribution is not
guaranteed.

To quote van Buuren and Oudshoorn (MICE):

“It is hard to establish convergence in the general case, but
simulation studies suggest that the coverage properties in
some important practical cases are quite good.”

Gelman and Raghunathan (2001, Statist. Sci. 268–269)

“..the study of conditional distributions is an area where
theory has not caught up with practice.”
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We know this works for multivariate normal settings.

With monotone missing data patterns and sequential
imputation (from most to least incomplete) the joint
distribution is well defined.

Simulations studies by both groups (and some of our own)
suggest it works well more generally.

A big advantage is the ability to accommodate restrictions
and bounds on particular variables.
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Imputation methods for ‘structured’ data

• We are dealing with the problem of data from a
hierarchial structure.

• Additional longitudinal structure will be common, not
necessarily with times of measurement common to all
subjects.

(Simple attrition in a wave based survey is easier to
deal with.)

• Some covariates will have missing values, possibly at
different levels of the hierarchy.
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Again, we might consider two approaches:

1. (I) Full joint modelling: need a framework for
‘structured’ multivariate data of different types.

2. (II) Gibbs type approach.
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Look at (II) first

Now each individual conditional model will be ‘structured’,
for example for

Z(i) = {Z1, . . . , Zi−1, Zi+1, . . . , ZP}
• Continuous: general linear mixed model

Zi | z(i), u ∼ N(xoβ + z(i)Γ + uH; ∆)

• Binary: generalized linear mixed model

logit{P(Zij = 1 | Z
(i)
j , u)} = xoβ + Z

(i)
j Γ + uH

Similar for ordinal.

IVEWARE accommodates complex sample design using
survey based methods for estimation of precision.
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We have taken the first route however with well defined
joint posteriors, using and developing the facilities already
available in MLwiN.

• All variables continuous: we can fit multivariate
‘structured’ data using existing tools.

• We use an unstructured covariance matrix across
variables, which can be combined with appropriate
random effects (and other implied) structures for the
hierarchical/longitudinal within-variable component.
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Finally, MLwiN has an existing MCMC tool that allows
draws from the posterior for a fitted multivariate model
(with appropriate priors).

References:

Rasbash, Steele, Browne and Prosser (2004) A user’s guide to MLwiN (version 2.0),
London: Institute of Education.

Browne (2003) MCMC estimation in MLwiN version 2.0 , London: Institute of Education.
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Schafer’s standalone package PAN (for Windows) has
similar facilities for multivariate normal data
(www.multiple-imputation.com)
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We are developing an MLwiN macro that will, for a general
multilevel model, do the following.

• Takes a chosen imputation model g(ZM) (under the
MAR assumption) and fits this using ML.

There may be additional covariates that do not appear
in the response model.

• Uses the MCMC tool to draw the required number of
imputations (allowing adequate burn-in and gaps
between draws).

• Fits the response model to each imputed set,
combines the results using Rubin’s rules and calculate
tests/CI’s.
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The macro:

• takes the defined response model Y | X;

• identifies all incomplete covariates;

• sets up a multivariate imputation model, ZM | ZO

• sets up a default covariance structure for the
imputation model based on the structure of the
response model;

• uses MCMC to draw from the posterior of the
imputation model.
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Points to note:

• The MCMC tool needs one complete response: the
macro chooses this and adds it to the multivariate
model.

• The user can modify the imputation model.

• Only multivariate normal at present.
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A simple example: the Class-Size Study

[Blatchford et al. Brit. J. Educ. Res. (2002)]

uniqueid: Unique pupil identifier

schn: School identifier

year: Year: reception (year=1) or first year (year=2).

litbase: Baseline literacy score (either pre-reception or pre-year 1,

if pupil has no reception year data)

nlit: Literacy score at the end of the reception or first year

(depending on value of year)

nmat: Maths score at the end of the reception or first year (depending

on the value of year)

csize: Size of class

fsmn: Eligible for free school meals (1=yes, 0=no)

gend: Sex (1=boys, 0=girls)

tentry: Term of school entry (1=Spring or Summer, 0=Autumn)

cons: Constant, set to 1.

– p. 44/51



Missing Values:

nlit: 105

nmat: 122

csize: 471

Analysis restricted to only those with complete data uses
only 848 out of 1408 observations
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Response Model:

i: individual, j: school

nlitij = β0 + β1litbaseij + β2csizeij + β3yearjk + β4fsmnij

+ β5genderij + β6tentryij + ej + eij

ej ∼ N(0, σ2
s)

eij ∼ N(0, σ2)
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Imputation Model:

nlitjk = β∗
12 + β∗

0yearjk + β∗
3 fsmnjk + β∗

6genderjk + β∗
9 tentryjk

+ e1j + e1jk

litbasejk = β∗
13 + β∗

1yearjk + β∗
4 fsmnjk + β∗

7genderjk + β∗
10tentryjk

+ e2j + e2jk

csizejk = β∗
14 + β∗

2yearjk + β∗
5 fsmnjk + β∗

8genderjk + β∗
11tentryjk

+ e3j + e3jk




e1j

e2j

e3j


 ∼ N(0,Σs),




e1jk

e2jk

e3jk


 ∼ N(0,Σy)
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Extensions: other types of variable.

Use an unstructured multivariate set of underlying (latent)
variables.

• Binary/ordinal.

Use a probit link.

• Nominal variables:

Broadly follow the approach of

Albert JH and Chib S (1993) Bayesian analysis of binary and polychotomous
response data. Journal of the American Statistical Association, 88, 669–679.
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Sensitivity analysis

The relative simplicity of the MI imputations follows from
the MAR assumption.

The MI route does allow a relatively simple way of
assessing sensitivity to this assumption:

modify the imputation model to allow for explicit
non-random dependencies.

(Because we generate the imputations we can allow
nonresponse to depend on ’missing values’.)
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In the current setting we can make this modified
nonresponse procedure very explicit by using a postulated
accept-reject mechanism when the imputations are drawn.

This has suggested (and done) by several authors in
particular settings.

This can be inefficient and we are proposing using a
weighted method analogous to that used for obtaining
posteriors in some settings.

It is planned to add this facility to the MLwiN macro.
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Macro References:

Carpenter and Goldstein (2004) Multilevel Imputation in
MLwiN:

http://www.lshtm.ac.uk/msu/missingdata/papers/newsletterdec04.pdf

The macro can be downloaded from

http://www.lshtm.ac.uk/msu/missingdata/software.html
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