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Introduction

• General problem in categorical data analysis is
how to handle small counts.

• Wald confidence interval for a proportion(
p̂ − 1.96

√
p̂(1− p̂)

n
, p̂ + 1.96

√
p̂(1− p̂)

n

)

does not work well for small n.

• P(interval covers p) is not uniformly 0.95.
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Ad-hoc solution

• Add small counts to data, and apply
frequentist methods to the adjusted data.

• John Tukey suggested “starting” counts by
1/6.

• Agresti and Coull suggest adding “2 successes
and 2 failures” to data, and then apply Wald
interval estimate.

• In contingency tables with zero counts,
common to add 1/2 to each cell.
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Why not Bayes?

• Adding imaginary counts corresponds to prior
information.

• Leads to a Bayesian analysis.

• I. J. Good was one of the first to discuss the
choice of imaginary counts in smoothing
categorical data.

• Famous 1967 paper by Good “A Bayesian
significance test for multinomial distributions”
discusses his general approach.
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Good’s Testing problem

• Observe y = (y1, ..., yt) from multinomial
distribution with sample size n and probabilities
p = (p1, ..., pt).

• Test hypothesis H : p1 = ... = pt = 1
t

• Usual test procedure is Pearson’s statistic:

X 2 =
t∑

j=1

(
yj − n

t

)2
n
t

which is asymptotically χ2(t − 1).



Introduction Good’s 1967 paper Example Illustrations of Good smoothing

Motivation for Bayes

• Accuracy of chi-square approximation for small
counts is questionable.

• Desirable to develop an “exact” Bayesian test
free from asymptotic theory.

• Use procedure with confidence for all t and n.
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Bayes factor

• Ratio of marginal densities under the
hypotheses H and A (not H).

• Under H , have

m(y |H) =
n!∏t
j=1 yj !

(1/t)n.

• Under A, put prior g(p) on p and have

m(y |A) =
n!∏t
j=1 yj !

∫ t∏
j=1

p
yj
j g(p)dp,

• Bayes factor BF = m(y |A)/m(y |H).
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How to choose prior under A, g(p)?

• “Johnson’s postulate”: Posterior mean for pj
should depend only on the multinomial count
yj (not other yk).

• This postulate implies that

E (pj |y) =
yj + k

n + tk
,

for some choice of “flattening constant” k .
• This implies that p has a symmetric Dirichlet

distribution:

g(p|k) =
Γ(tk)

Γ(k)t

t∏
j=1

pk−1j .



Introduction Good’s 1967 paper Example Illustrations of Good smoothing

Choice for flattening parameter k?

• Maximum likelihood estimate assumes k = 0.

• Uniform prior assumes k = 1.

• Jeffreys’ prior assumes k = 1/2.

• Good argues that none of these are appropriate.
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Assumes a hierarchical prior

• k given a density φ(k)

• Prior for p is given by

g(p) =

∫ ∞
0

Γ(tk)

Γ(k)t

t∏
j=1

pk−1j φ(k)dk .

• Good uses a log Cauchy density for k .
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Expression for Bayes factor

• Compare models: H : equiprobability, A : p has
symmetric Dirichlet with parameter k .

• Bayes factor in support of A is

BF (k) =
m(y |A)

m(y |H)
= tn

D(y + k)

D(k)
,

where D(a) is the Dirichlet function.

• If k is assigned a density φ(k)

BF =

∫ ∞
0

BF (k)φ(k)dk .
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Other test statistics

• Useful to plot BF (k) as function of k (like a
likelihood function).

• Alternative test statistic

BFmax = max
k

BF (k).
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Provides estimate for the proportion
vector p

• Estimate of pj is

p̂j =
yj + k̂

n + tk̂
,

where k̂ is posterior mode.

• Smooth rates {yj/n} towards equiprobability
value 1/t.
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An example

• Counts of new visits to my book website during
one week in March 2009.
Sun Mon Tue Wed Thu Fri Sat
14 25 16 11 22 12 6

• Want to test hypothesis that the probabilities
are equiprobable.

H : p1 = ... = p7



Introduction Good’s 1967 paper Example Illustrations of Good smoothing

Traditional approach

• The Pearson statistic X 2 = 16.96 (p-value =
0.0094).

• If we view p-value as P(H), and H and A have
equal prior probabilities

log10 BF = −log10BF = 2.23.
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Good’s approach

• Plot log10 BF (k) as function of log k .

• Bayes factor maximized at log k = 2.05 and

log10 BFmax = 1.06

• Compare with evidence suggested by p-value.

• Compute BF by averaging BFk over prior.
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Smoothed estimates at proportions

• Have k̂ = exp(2.05) = 7.8.

• Bayes estimate at proportion is

E (pj |y) =
yj + 7.8

n + 7(7.8)
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Notable aspects of Good’s approach

• Smoothing problem related to test of a model

• Degree of smoothing depends on agreement of
data with model

• Effort to compare with frequentist methods

• New test statistics (like kmax) evolve from
Bayesian model

• Advocated hierarchical priors
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Applications

• Apply Good’s smoothing strategy to some
problems with small counts.

• Estimating a proportion.

• Estimating probabilities in a two-way
contingency table.

• In each case, we will be smoothing counts
towards a particular model.
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Estimating a proportion

• Observe y from a binomial(n, p) distribution.

• When y = 0 or y = n, typical estimate y/n is
undesirable.

• Can adjust estimate by applying beta(a, b)
density.

• Let η = a/(a + b), K = a + b.

• Smoothed estimate is (y + Kη)/(n + K ).
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Unknown K

• Suppose one can make intelligent guess at η.

• K unknown, assigned a log Cauchy density.
• Posterior density of logK is

g(logK |y) ∝ B(Kη + y ,K (1− η) + n − y)

B(Kη,K (1− η))

1

(1 + (logK )2)
.

• Estimate logK by its posterior mode.
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An example

• Sample size n = 20

• Guess at η is 0.5.

• Estimate for K is 0.6 at extreme values
y = 0, 20.

• Estimate for K is 1.41 when y = 10.

• Bayesian procedure is “add 0.3 to 0.7 to
number of successes and number of failures”

• Similar to “add a half count” rule of thumb.
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Both K , η unknown

• Assign a vague prior: η assigned Jeffreys’ prior,
K assigned a log Cauchy density.

• Find posterior mode of joint density.

• Estimate of η shrinks proportion y/n towards
0.5.

• Get estimates that approximate “add a half
count” rule of thumb.
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Look at “add 2 successes and 2 failures”
algorithm from Bayes perspective

• Algorithm says “add 2 + 2 pseudo counts” to
data.

• Apply standard algorithm to adjusted data.

• Equivalent to assigning p a beta(2, 2) prior and
estimating p from the posterior.

• Example: y = 0, n = 10, posterior is beta(2,
12).

• 90% interval estimate for p is (0.028, 0.316).
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Since adding 2 + 2 is arbitrary, better to
use a hierarchical prior

• Construct a prior on (K , η) that reflects the
desire to add 2 successes and 2 failures.

• Assign logK a Cauchy density with location
log 4 and scale 1 (want to add 4 observations).

• Assign η a beta prior with mean 0.5 and
precision K0 = 80 (want to divide pseudo
counts equally between successes and failures).
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Interval estimates for proportion p

• If y = 0, n = 10, 90% “hierarchical” interval
estimate for p is (0.000, 0.336).

• The “add 2 + 2 interval” was (0.028, 0.316).

• Hierarchical interval is wider since it reflects
uncertainty in adding 2 successes and 2 failures.
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Smoothing a 2 by 2 table

• Observe independent counts y1 ∼ B(n1, p1),
y2 ∼ B(n2, p2).

• Want to smooth counts in table

Successes Failures
Pop 1 y1 n1 − y1
Pop 2 y2 n2 − y2
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Prior beliefs

• Suppose p1, p2 are assigned common
beta(η,K ) prior.

• We wish to add the “prior counts”

Successes Failures
Pop 1 Kη K (1− η)
Pop 2 Kη K (1− η)

• Assign vague priors to K , η.
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Smoothed estimates

• Posterior mean of p1 given by

p̂1 =
y1
n1

(
1− K̂

n1 + K̂

)
+ η̂

K̂

n1 + K̂
,

• η̂ is pooled estimate of proportions under
“independence” model where p1 = p2

• estimate K̂ reflects agreement of counts with
independence model

• For table [0, 20; 20 0] (far from independence),

K̂ = 0.3
• For table [10, 10; 10 10] (close to

independence), K̂ = 4.0
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Smoothing in a I by J table

• Observe Poisson counts {yij} with means {λij}
• Want to smooth towards log linear model

log λij = log xijβ

• Ex: log λij = β0 (smoothing towards constant
frequencies)

• Ex: log λij = β0 + ui + vj (smoothing towards
independence model)
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Model

• λij are independent Gamma(α, α/µij)

• {µij} satisfy the log-linear model

log λij = xiβ.

• α and β are independent with β distributed
uniform, α distributed log Cauchy density with
location log µ and scale σ
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Posterior Estimates

• Estimate at λij given by

λ̂ij =
yij + α̂

1 + α̂/µ̂ij
,

• µ̂ij and α̂ are respectively posterior estimates at
µij and α

• estimate α̂ is the number of pseudo-counts
added to each cell
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An Example

Crosstabulation of student teachers rated by two
supervisors.

Rating of Sup 2
Auth Dem Perm

Rating of Auth 17 4 8
Sup 1 Dem 5 12 0

Perm 10 3 13
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Posterior estimates

Clear pattern of dependence in the table; obtain
only modest shrinkage of the counts towards
independence (α̂ = 1.84)

Rating of Sup2
Auth Dem Perm

Rating of Auth 16.3 4.8 7.9
Sup 1 Dem 5.5 10.2 1.3

Perm 10.2 4 11.8
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Bayesian smoothing of large tables

• Batting data collected for 487 nonpitchers in
2008 season.

• Simultaneously estimate performance for all
hitters.

• Simultaneously estimate “situational effects”
for all hitters. (Compare performance, say at
home games versus away games.)

• Hard to interpret individual hitting measures
due to varying sample sizes.

• Smoothing by exchangeable models is helpful.
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Smoothing model

• Observe independent yj ∼ binomial(nj , pj)

• Assume p1, ..., pN random sample from
beta(η,K )

• (η,K ) assigned prior

g(η,K ) ∝ 1√
η(1− η)

1

(1 + K )2
.

• Estimate pj by posterior mean.
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Batting averages against the root sample
sizes
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Posterior means
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Looking further ...

• Is an exchangeable model appropriate?

• Unusual batting rates?

• Examine predictive residuals

rj =
yj/nj − η̂√

η̂(1− η̂)
(

1/nj + 1/(K̂ + 1)
) ,
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Residual plot
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Estimating situational effects

• How do players perform in different situations?

• Obvious biases – players tend to play better at
home, batters hit better against pitchers of the
opposite arm

• Situational data for jth player:

Hits Outs
Home sjH fjH
Away sjA fjA
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Exchangeable model

• Hits in two situations are independent binomial
with parameters pjH and pjA

• Odds ratio for jth player

αj =
pjH/(1− pjH)

pjA/(1− pjA)

• Assume α1, ..., αN are iid N(µ, σ2), µ, σ2 are
given vague priors
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Example

• Have home/away data for 195 players

• Posterior estimate for µ is positive (batters
tend to hit better at home)

• Posterior estimates of αj shrink 82-93%
towards overall mean

• Half of the estimates fall between 0.058 and
0.090

• Conclusion: players have essentially same hitter
advantage at home vs away
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Summing up

• Bayes is a natural way of handling small counts
in a contingency table

• Good’s approach based on a Bayesian test of
an underlying model.

• Hierarchical priors are suitable for smoothing
tables.

• These type of models are very suitable in
looking for patterns in large collections of
counts.
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