Good Smoothing

Jim Albert
Bowling Green State University

March 15, 2010

Outline

Introduction

Good's 1967 paper

Example

Illustrations of Good smoothing

Introduction

- General problem in categorical data analysis is how to handle small counts.
- Wald confidence interval for a proportion

$$
\left(\hat{p}-1.96 \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}, \hat{p}+1.96 \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right)
$$

does not work well for small n.

- P (interval covers p) is not uniformly 0.95 .

Ad-hoc solution

- Add small counts to data, and apply frequentist methods to the adjusted data.
- John Tukey suggested "starting" counts by 1/6.
- Agresti and Coull suggest adding " 2 successes and 2 failures" to data, and then apply Wald interval estimate.
- In contingency tables with zero counts, common to add $1 / 2$ to each cell.

Why not Bayes?

- Adding imaginary counts corresponds to prior information.
- Leads to a Bayesian analysis.
- I. J. Good was one of the first to discuss the choice of imaginary counts in smoothing categorical data.
- Famous 1967 paper by Good "A Bayesian significance test for multinomial distributions" discusses his general approach.

Good's Testing problem

- Observe $y=\left(y_{1}, \ldots, y_{t}\right)$ from multinomial distribution with sample size n and probabilities $p=\left(p_{1}, \ldots, p_{t}\right)$.
- Test hypothesis $H: p_{1}=\ldots=p_{t}=\frac{1}{t}$
- Usual test procedure is Pearson's statistic:

$$
X^{2}=\sum_{j=1}^{t} \frac{\left(y_{j}-\frac{n}{t}\right)^{2}}{\frac{n}{t}}
$$

which is asymptotically $\chi^{2}(t-1)$.

Motivation for Bayes

- Accuracy of chi-square approximation for small counts is questionable.
- Desirable to develop an "exact" Bayesian test free from asymptotic theory.
- Use procedure with confidence for all t and n.

Bayes factor

- Ratio of marginal densities under the hypotheses H and $A($ not $H)$.
- Under H, have

$$
m(y \mid H)=\frac{n!}{\prod_{j=1}^{t} y_{j}!}(1 / t)^{n}
$$

- Under A, put prior $g(p)$ on p and have

$$
m(y \mid A)=\frac{n!}{\prod_{j=1}^{t} y_{j}!} \int \prod_{j=1}^{t} p_{j}^{y_{j}} g(p) d p
$$

- Bayes factor $B F=m(y \mid A) / m(y \mid H)$.

How to choose prior under $A, g(p)$?

- "Johnson's postulate": Posterior mean for p_{j} should depend only on the multinomial count y_{j} (not other y_{k}).
- This postulate implies that

$$
E\left(p_{j} \mid y\right)=\frac{y_{j}+k}{n+t k}
$$

for some choice of "flattening constant" k.

- This implies that p has a symmetric Dirichlet distribution:

$$
g(p \mid k)=\frac{\Gamma(t k)}{\Gamma(k)^{t}} \prod_{j=1}^{t} p_{j}^{k-1}
$$

Choice for flattening parameter k ?

- Maximum likelihood estimate assumes $k=0$.
- Uniform prior assumes $k=1$.
- Jeffreys' prior assumes $k=1 / 2$.
- Good argues that none of these are appropriate.

Assumes a hierarchical prior

- k given a density $\phi(k)$
- Prior for p is given by

$$
g(p)=\int_{0}^{\infty} \frac{\Gamma(t k)}{\Gamma(k)^{t}} \prod_{j=1}^{t} p_{j}^{k-1} \phi(k) d k
$$

- Good uses a log Cauchy density for k.

Expression for Bayes factor

- Compare models: H : equiprobability, $A: p$ has symmetric Dirichlet with parameter k.
- Bayes factor in support of A is

$$
B F(k)=\frac{m(y \mid A)}{m(y \mid H)}=t^{n} \frac{D(y+k)}{D(k)}
$$

where $D(a)$ is the Dirichlet function.

- If k is assigned a density $\phi(k)$

$$
B F=\int_{0}^{\infty} B F(k) \phi(k) d k
$$

Other test statistics

- Useful to plot $B F(k)$ as function of k (like a likelihood function).
- Alternative test statistic

$$
B F_{\max }=\max _{k} B F(k) .
$$

Provides estimate for the proportion
 vector p

- Estimate of p_{j} is

$$
\hat{p}_{j}=\frac{y_{j}+\hat{k}}{n+t \hat{k}},
$$

where \hat{k} is posterior mode.

- Smooth rates $\left\{y_{j} / n\right\}$ towards equiprobability value $1 / t$.

An example

- Counts of new visits to my book website during one week in March 2009.
Sun Mon Tue Wed Thu Fri Sat

14	25	16	11	22	12	6

- Want to test hypothesis that the probabilities are equiprobable.

$$
H: p_{1}=\ldots=p_{7}
$$

Traditional approach

- The Pearson statistic $X^{2}=16.96$ (p -value $=$ 0.0094).
- If we view p-value as $P(H)$, and H and A have equal prior probabilities

$$
\log _{10} B F=-\log _{10} B F=2.23
$$

Good's approach

- Plot $\log _{10} B F(k)$ as function of $\log k$.
- Bayes factor maximized at $\log k=2.05$ and

$$
\log _{10} B F_{\max }=1.06
$$

- Compare with evidence suggested by p-value.
- Compute $B F$ by averaging $B F_{k}$ over prior.

Smoothed estimates at proportions

- Have $\hat{k}=\exp (2.05)=7.8$.
- Bayes estimate at proportion is

$$
E\left(p_{j} \mid y\right)=\frac{y_{j}+7.8}{n+7(7.8)}
$$

Notable aspects of Good's approach

- Smoothing problem related to test of a model
- Degree of smoothing depends on agreement of data with model
- Effort to compare with frequentist methods
- New test statistics (like $k_{\text {max }}$) evolve from Bayesian model
- Advocated hierarchical priors

Applications

- Apply Good's smoothing strategy to some problems with small counts.
- Estimating a proportion.
- Estimating probabilities in a two-way contingency table.
- In each case, we will be smoothing counts towards a particular model.

Estimating a proportion

- Observe y from a binomial (n, p) distribution.
- When $y=0$ or $y=n$, typical estimate y / n is undesirable.
- Can adjust estimate by applying beta($a, b)$ density.
- Let $\eta=a /(a+b), K=a+b$.
- Smoothed estimate is $(y+K \eta) /(n+K)$.

Unknown K

- Suppose one can make intelligent guess at η.
- K unknown, assigned a log Cauchy density.
- Posterior density of $\log K$ is

$$
g(\log K \mid y) \propto \frac{B(K \eta+y, K(1-\eta)+n-y)}{B(K \eta, K(1-\eta))} \frac{1}{\left(1+(\log K)^{2}\right)} .
$$

- Estimate $\log K$ by its posterior mode.

An example

- Sample size $n=20$
- Guess at η is 0.5 .
- Estimate for K is 0.6 at extreme values $y=0,20$.
- Estimate for K is 1.41 when $y=10$.
- Bayesian procedure is "add 0.3 to 0.7 to number of successes and number of failures"
- Similar to "add a half count" rule of thumb.

Both K, η unknown

- Assign a vague prior: η assigned Jeffreys' prior, K assigned a log Cauchy density.
- Find posterior mode of joint density.
- Estimate of η shrinks proportion y / n towards 0.5 .
- Get estimates that approximate "add a half count" rule of thumb.

Look at "add 2 successes and 2 failures"

algorithm from Bayes perspective

- Algorithm says "add $2+2$ pseudo counts" to data.
- Apply standard algorithm to adjusted data.
- Equivalent to assigning p a beta $(2,2)$ prior and estimating p from the posterior.
- Example: $y=0, n=10$, posterior is beta(2, 12).
- 90% interval estimate for p is $(0.028,0.316)$.

Since adding $2+2$ is arbitrary, better to use a hierarchical prior

- Construct a prior on (K, η) that reflects the desire to add 2 successes and 2 failures.
- Assign $\log K$ a Cauchy density with location $\log 4$ and scale 1 (want to add 4 observations).
- Assign η a beta prior with mean 0.5 and precision $K_{0}=80$ (want to divide pseudo counts equally between successes and failures).

Interval estimates for proportion p

- If $y=0, n=10,90 \%$ "hierarchical" interval estimate for p is $(0.000,0.336)$.
- The "add $2+2$ interval" was $(0.028,0.316)$.
- Hierarchical interval is wider since it reflects uncertainty in adding 2 successes and 2 failures.

Smoothing a 2 by 2 table

- Observe independent counts $y_{1} \sim B\left(n_{1}, p_{1}\right)$, $y_{2} \sim B\left(n_{2}, p_{2}\right)$.
- Want to smooth counts in table

Successes Failures

Pop 1	y_{1}	$n_{1}-y_{1}$
Pop 2	y_{2}	$n_{2}-y_{2}$

Prior beliefs

- Suppose p_{1}, p_{2} are assigned common beta (η, K) prior.
- We wish to add the "prior counts"

	Successes	Failures
Pop 1	$K \eta$	$K(1-\eta)$
Pop 2	$K \eta$	$K(1-\eta)$

- Assign vague priors to K, η.

Smoothed estimates

- Posterior mean of p_{1} given by

$$
\hat{p}_{1}=\frac{y_{1}}{n_{1}}\left(1-\frac{\hat{K}}{n_{1}+\hat{K}}\right)+\hat{\eta} \frac{\hat{K}}{n_{1}+\hat{K}},
$$

- $\hat{\eta}$ is pooled estimate of proportions under "independence" model where $p_{1}=p_{2}$
- estimate \hat{K} reflects agreement of counts with independence model
- For table [0, 20; 20 0] (far from independence), $\hat{K}=0.3$
- For table [10, 10; 10 10] (close to independence), $\hat{K}=4.0$

Smoothing in a $/$ by J table

- Observe Poisson counts $\left\{y_{i j}\right\}$ with means $\left\{\lambda_{i j}\right\}$
- Want to smooth towards log linear model $\log \lambda_{i j}=\log x_{i j} \beta$
- Ex: $\log \lambda_{i j}=\beta_{0}$ (smoothing towards constant frequencies)
- Ex: $\log \lambda_{i j}=\beta_{0}+u_{i}+v_{j}$ (smoothing towards independence model)

Model

- $\lambda_{i j}$ are independent Gamma $\left(\alpha, \alpha / \mu_{i j}\right)$
- $\left\{\mu_{i j}\right\}$ satisfy the log-linear model

$$
\log \lambda_{i j}=x_{i} \beta
$$

- α and β are independent with β distributed uniform, α distributed \log Cauchy density with location $\log \mu$ and scale σ

Posterior Estimates

- Estimate at $\lambda_{i j}$ given by

$$
\hat{\lambda}_{i j}=\frac{y_{i j}+\hat{\alpha}}{1+\hat{\alpha} / \hat{\mu}_{i j}}
$$

- $\hat{\mu}_{i j}$ and $\hat{\alpha}$ are respectively posterior estimates at $\mu_{i j}$ and α
- estimate $\hat{\alpha}$ is the number of pseudo-counts added to each cell

An Example

Crosstabulation of student teachers rated by two supervisors.

		Rating of Sup 2		
		Auth	Dem	Perm
Rating of	Auth	17	4	8
Sup 1	Dem	5	12	0
	Perm	10	3	13

Posterior estimates

Clear pattern of dependence in the table; obtain only modest shrinkage of the counts towards independence ($\hat{\alpha}=1.84$)

		Rating of Sup2		
		Auth	Dem	Perm
Rating of	Auth	16.3	4.8	7.9
Sup 1	Dem	5.5	10.2	1.3
	Perm	10.2	4	11.8

Bayesian smoothing of large tables

- Batting data collected for 487 nonpitchers in 2008 season.
- Simultaneously estimate performance for all hitters.
- Simultaneously estimate "situational effects" for all hitters. (Compare performance, say at home games versus away games.)
- Hard to interpret individual hitting measures due to varying sample sizes.
- Smoothing by exchangeable models is helpful.

Smoothing model

- Observe independent $y_{j} \sim \operatorname{binomial}\left(n_{j}, p_{j}\right)$
- Assume p_{1}, \ldots, p_{N} random sample from beta(η, K)
- (η, K) assigned prior

$$
g(\eta, K) \propto \frac{1}{\sqrt{\eta(1-\eta)}} \frac{1}{(1+K)^{2}}
$$

- Estimate p_{j} by posterior mean.

Batting averages against the root sample

 sizes

Posterior means

Looking further

- Is an exchangeable model appropriate?
- Unusual batting rates?
- Examine predictive residuals

$$
r_{j}=\frac{y_{j} / n_{j}-\hat{\eta}}{\sqrt{\hat{\eta}(1-\hat{\eta})\left(1 / n_{j}+1 /(\hat{K}+1)\right)}},
$$

Residual plot

Estimating situational effects

- How do players perform in different situations?
- Obvious biases - players tend to play better at home, batters hit better against pitchers of the opposite arm
- Situational data for j th player:

	Hits	Outs
Home	$s_{j H}$	$f_{j H}$
Away	$s_{j A}$	$f_{j A}$

Exchangeable model

- Hits in two situations are independent binomial with parameters $p_{j H}$ and $p_{j A}$
- Odds ratio for j th player

$$
\alpha_{j}=\frac{p_{j H} /\left(1-p_{j H}\right)}{p_{j A} /\left(1-p_{j A}\right)}
$$

- Assume $\alpha_{1}, \ldots, \alpha_{N}$ are iid $\mathrm{N}\left(\mu, \sigma^{2}\right), \mu, \sigma^{2}$ are given vague priors

Example

- Have home/away data for 195 players
- Posterior estimate for μ is positive (batters tend to hit better at home)
- Posterior estimates of α_{j} shrink $82-93 \%$ towards overall mean
- Half of the estimates fall between 0.058 and 0.090
- Conclusion: players have essentially same hitter advantage at home vs away

Summing up

- Bayes is a natural way of handling small counts in a contingency table
- Good's approach based on a Bayesian test of an underlying model.
- Hierarchical priors are suitable for smoothing tables.
- These type of models are very suitable in looking for patterns in large collections of counts.

