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Multivariate Response Regression Model

Observations (X1,Y1), . . . , (Xm,Ym) ∈ Rn × Rp related via
regression model

Y = XA + E

X : m × p design matrix of rank q

A: p × n matrix of unknown coefficients of unknown rank r

E : m × n matrix of independent N(0, σ2) errors Eij
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Aim of Our Study

The aim is to estimate a low-rank approximation of A.

Standard least squares estimation under no constraints =
regressing each response on the predictors separately.

It completely ignores the multivariate nature of the possibly
correlated responses.

Estimators restricted to have rank equal to a fixed number
k ≤ n ∧ p were introduced to remedy this drawback.
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A historical perspective and existing results

Estimation under the constraint rank(A) = r , with r known.

Anderson (1951, 1999, 2002)

Robinson (1973, 1974)

Izenman (1975; 2008)

Rao (1979)

Reinsel and Velu (1998)

All theoretical results (distribution of the reduced rank estimates
and rank selection procedures) are asymptotic, m →∞, everything
else fixed.

There are no theoretical results on the properties of the selected
reduced rank estimate.
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A finite sample approach to dimension reduction

We derive reduced rank estimates Â, without prior specification of
the rank.

We propose a computationally efficient method that can
handle matrices of large dimensions.

We provide a finite sample analysis of the resulting estimates.

Our analysis is valid for any m, n, p and r .
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Methodology

We propose to estimate A by the penalized least squares estimator

Â = arg min
B

{‖Y − XB‖2
F + µ · r(B)}

= arg min
B

{‖PY − XB‖2
F + µ · r(B)}

for P = X (X ′X )−X ′.
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Set k̂ = r(Â) and let B̂k be the restricted LSE of rank k. Then

‖Y − XÂ‖2
F + µ · k̂ = min

B
{‖Y − XB‖2

F + µ · r(B)}

= min
k
{‖Y − XB̂k‖2

F + µ · k}
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Closed form solutions

Our first result states that both Â and k̂ = r(Â) have a closed form
solution and can be efficiently computed based on the SVD of PY .

Proposition

k̂ is the number of singular values of PY that exceed
√

µ

Â is the rank restricted LSE (of rank k̂)
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Efficient Computation of B̂k (Reinsel and Velu, 1998).

Let M = X ′X be the Gram matrix, and let P = XM−X ′.

1 Compute the eigenvectors V = [v1, v2, · · · , vn], corresponding
to the ordered eigenvalues arranged from largest to smallest,
of the symmetric matrix Y ′PY .

2 Compute B̂ = M−X ′Y .
Construct W = B̂V and G = V ′.
Form Wk = W [ , 1 : k] and Gk = G [1 : k, ].

3 Compute the final estimator B̂k = WkGk .
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Consistent Effective Rank Estimation

Theorem

Suppose that there exists an index s ≤ r such that

ds(XA) > (1 + δ)
√

µ

and
ds+1(XA) < (1− δ)

√
µ,

for some δ ∈ (0, 1]. Then we have

P
{

k̂ = s
}
≥ 1− P {d1(PE ) ≥ δ

√
µ} .
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We can consistently estimate the index s provided we use a
large enough value for µ to guarantee that the probability of
the event

{
d1(PE ) ≤ δ

√
µ
}

approaches one.

We call s the effective rank of A relative to µ, and denote it
by re = re(µ).

We can only hope to recover those singular values of the
signal XA that are above the noise level d1(PE ). Their
number, re , will be the target rank of the approximation of
the mean response, and can be much smaller than r = r(A).

The largest singular value d1(PE ) is our relevant indicator of
the strength of the noise.
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Lemma

Let q = r(X ) and assume that Eij are independent N(0, σ2)
random variables. Then

E [d1(PE )] ≤ σ
(√

n +
√

q
)

and, for all t > 0,

P {d1(PE ) ≥ E[d1(PE )] + σt} ≤ exp
(
−t2/2

)
.
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In view of this result, we take

µ = C0σ
2(
√

q +
√

n)2

as our measure of the noise level, for some C0 > 1.

Summarizing,

Corollary

If dr (XA) > 2
√

µ, then P{k̂ = r} → 1 as q + n →∞.
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The condition for correct rank selection is TIGHT

Figure: Tightness of the consistency condition.
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Risk Bounds for the Restricted Rank LSE

Theorem

Let B̂k be the restricted LSE of rank k. For every k we have

‖XB̂k − XA‖2
F ≤ 3

∑
j>k

d2
j (XA) + 4kd2

1 (PE )


with probability one.
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Risk Bounds for the Restricted Rank LSE

We bound the error ‖XB̂k − XA‖2
F by an approximation error,∑

j>k d2
j (XA), and a stochastic term, kd2

1 (PE ).

The approximation error is decreasing in k and vanishes for
k > r(XA).

The stochastic term can be bounded by Cσ2k(n + q) with
large probability, and is increasing in k.

k(n + q) is essentially the number of free parameters of the
restricted rank problem as the parameter space consists of all
p × n matrices B of rank k and each matrix has k(n + q − k)
free parameters.

The obtained risk bound is the squared bias plus the
dimension of the parameter space.
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Risk Bound for the RSC Estimator

Theorem

We have, for any µ,

P
[
‖XÂ− XA‖2

F ≤ 3
{
‖XB − XA‖2

F + µr(B)
}]

≥ 1− P [2d1(PE ) >
√

µ] ,

for all p × n matrices B.
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Risk Bound for the RSC Estimator

Theorem

In particular, we have, for µ = C0σ
2(q + n) and some C0 > 1,

E
[
‖XÂ− XA‖2

F

]
≤ C min

k

∑
j>k

d2
j (XA) + σ2(q + n)k

 .
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Remarks

RSC achieves optimal bias-variance trade-off.

RSC is minimax adaptive.

Minimizer of
∑

j>k d2
j (XA) + µk is effective rank re .

RSC adapts to re .

The smaller r , the smaller the prediction error.

Bounds valid for all m, n, p, q, r .
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Unknown σ2

Theorem

For large n + q and large n(m − q) and

pen(B) = C0(
√

n +
√

q)2
‖Y − PY ‖2

F

mn − qn
r(B),

we have

E
[
‖XÂ− XA‖2

F

]
. min

k

∑
j>k

d2
j (XA) + σ2(

√
n +

√
q)2k

 .
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Nuclear Norm Penalized Estimators

We compare our RSC estimator Â with the alternative estimator Ã
that minimizes

‖Y − XB‖2
F + 2τ‖B‖1

over all p × n matrices B.

Theorem

On the event d1(X
′E ) ≤ τ , we have, for any B,

‖XÃ− XA‖2
F ≤ ‖XB − XA‖2

F + 4τ‖B‖1.
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Nuclear Norm Penalized Estimators

Theorem

For τ = (1 + θ)σd1(X )(
√

n +
√

q),

P
{
‖XÃ− XA‖2

F ≤ ‖XB − XA‖2
F + 4τ‖B‖1

}
≥ 1− exp

{
−1

2
θ2(n + q)}

}
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It is possible to obtain an oracle inequality for Ã that
resembles the oracle inequality for Â.

Our bounds for Â are much cleaner and obtained under fewer
restrictions on the design matrix.

We need that the condition number
c0(X

′X ) = λ1(X
′X )/λp(X

′X ) is finite.

Proof uses arguments similar to Negahban and Wainwright
(2009) and Rohde and Tsybakov (2010)

NNP fails to select the correct rank.
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Rank Recovery
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Figure: The MSE and rank of the estimators RSC (left) and NNP (right) as a function of the tuning parameter.
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Rank Recovery

We suggest

k̃ = max{k : dk(X ′XÃ) > 2τ}.

Theorem

Let r = r(A) and assume that dr (X
′XA) > 4τ . Then

P{k̃ 6= r} ≤ P{d1(X
′E ) > τ}

≤ exp

{
−1

2
θ2(n + q)

}
for τ = (1 + θ)σd1(X )(

√
n +

√
q).
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Simulations

RSC with µ = 2S2(n + q).

X = [x1, x2, · · · , xm]′ by generating its rows xi i.i.d. from
MVN(0,Σ), with Σjk = ρ|j−k|, ρ > 0, 1 ≤ j , k ≤ p.

A = bB0B1, with b > 0, B0 is a p × r matrix and B1 is a
r × n matrix. All entries in B0 and B1 are i.i.d. N(0, 1).

Each row in Y = [y1, · · · , ym]′ is then generated as
yi = x ′

i A + Ei , 1 ≤ i ≤ m, with Ei the i-th row of E with
N(0, 1) i.i.d. entries.
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Each simulated model is characterized by the following control
parameters : m (sample size), p (number of independent
variables), n (number of response variables), r (rank of A), ρ
(design correlation), and b (signal strength).

Experiment 1: number of predictors p < sample size m.
m = 100, p = 25, n = 25, r = 10, correlation coefficient
ρ = 0.1, 0.5, 0.9 and signal strength b = 0.1, 0.2, 0.3, 0.4.

Experiment 2: p > m.
m = 20, p = 100, n = 25, r = 10, correlation ρ = 0.1, 0.5, 0.9
and signal strength b = 0.1, 0.2, 0.3
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Performance comparisons of Experiment 1

RSC|adap RSC|val NNP|val NNP(c)|val
b = 0.1

ρ = 0.9
MSE(XA), MSE(A) 16.6, 5.3 16.3, 5.2 11.5, 3.0 16.5, 5.3
RE, RRP 6, 0% 6, 0% 12, 0% 6, 0%

ρ = 0.5
MSE(XA), MSE(A) 18.7, 1.4 18.1, 1.4 16.2, 1.1 18.1, 1.4
RE, RRP 8, 0% 9, 40% 16.5, 0% 9, 35%

ρ = 0.1
MSE(XA), MSE(A) 19.3, 1.0 18.0, 0.9 16.9, 0.8 18.0, 0.9
RE, RRP 9, 0% 10, 75% 17, 0% 10, 65%

b = 0.2

ρ = 0.9
MSE(XA), MSE(A) 18.4, 7.0 17.9, 7.1 15.9, 5.4 17.9, 7.1
RE, RRP 8, 0% 9, 20% 16, 0% 9, 15%

ρ = 0.5
MSE(XA), MSE(A) 16.7, 1.3 16.7, 1.3 18.9, 1.5 16.7, 1.3
RE, RRP 10, 100% 10, 100% 19, 0% 10, 100%

ρ = 0.1
MSE(XA), MSE(A) 16.5, 0.9 16.5, 0.9 19.2, 1.0 16.5, 0.9
RE, RRP 10, 100% 10, 100% 18, 0% 10, 100%
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Performance comparisons of Experiment 1

RSC|adap RSC|val NNP|val NNP(c)|val
b = 0.3

ρ = 0.9
MSE(XA), MSE(A) 17.4, 7.0 17.3, 6.9 17.7, 6.7 17.3, 7.0
RE, RRP 10, 65% 10, 95% 18, 0% 10, 80%

ρ = 0.5
MSE(XA), MSE(A) 16.4, 1.3 16.4, 1.3 19.8, 1.6 16.4, 1.3
RE, RRP 10, 100% 10, 100% 19, 0% 10, 100 %

ρ = 0.1
MSE(XA), MSE(A) 16.4, 0.9 16.4, 0.9 19.9, 1.1 16.4, 0.9
RE, RRP 10, 100% 10, 100% 19, 0% 10, 100%

b = 0.4

ρ = 0.9
MSE(XA), MSE(A) 16.8, 6.6 16.8, 6.7 18.7, 7.4 16.8, 6.8
RE, RRP 10, 100% 10, 100% 18, 0% 10, 85%

ρ = 0.5
MSE(XA), MSE(A) 16.3, 1.3 16.3, 1.3 20.3, 1.7 16.3, 1.3
RE, RRP 10, 100% 10, 100% 20, 0% 10, 100%

ρ = 0.1
MSE(XA), MSE(A) 16.3, 0.9 16.3, 0.9 20.3, 1.1 16.3, 0.9
RE, RRP 10, 100% 10, 100% 20, 0% 10, 100%
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Performance comparisons of Experiment 2

RSC|adap RSC|val NNP|val NNP(c)|val
b = 0.1

ρ = 0.9
MSE(XA), MSE(A) 29.4, 3.9 29.4, 3.9 36.4, 3.9 29.4, 3.9
RE, RRP 5, 100% 5, 100% 10, 0% 5, 100%

ρ = 0.5
MSE(XA), MSE(A) 29.1, 3.9 29.1, 3.9 37.2, 3.9 29.1, 3.9
RE, RRP 5, 100% 5, 100% 10, 0% 5, 100%

ρ = 0.1
MSE(XA), MSE(A) 29.0, 3.9 29.0, 3.9 37.2, 4.0 29.0, 3.9
RE, RRP 5, 100% 5, 100% 10, 0% 5, 100%

b = 0.2

ρ = 0.9
MSE(XA), MSE(A) 28.9, 15.7 28.9, 15.7 38.7, 15.7 28.9, 15.7
RE, RRP 5, 100% 5, 100% 10, 0% 5, 100%

ρ = 0.5
MSE(XA), MSE(A) 28.6, 15.7 28.6, 15.7 39.0, 15.7 28.6, 15.7
RE, RRP 5, 100% 5, 100% 10, 0% 5, 100%

ρ = 0.1
MSE(XA), MSE(A) 28.7, 15.8 28.7, 15.8 38.7, 15.8 28.7, 15.8
RE, RRP 5, 100% 5, 100% 10, 0% 5, 100%

b = 0.3

ρ = 0.9
MSE(XA), MSE(A) 28.8, 35.3 28.8, 35.3 39.2, 35.3 28.8, 35.3
RE, RRP 5, 100% 5, 100% 10, 0% 5, 100%

ρ = 0.5
MSE(XA), MSE(A) 28.5, 35.4 28.5, 35.4 39.5, 35.4 28.5, 35.4
RE, RRP 5, 100% 5, 100% 10, 0% 5, 100 %

ρ = 0.1
MSE(XA), MSE(A) 28.6, 35.5 28.6, 35.5 39.3, 35.5 28.6, 35.5
RE, RRP 5, 100% 5, 100% 10, 0% 5, 100%
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Conlcusions of our Simulation Study

1 RSC with adaptive choice performs well - as well as with
optimally tuned µ.

2 For moderate or high SNR= dr (XA)/(
√

n +
√

q) and for low
to moderate correlation between the predictors, RSC has
excellent behavior.

3 For low SNR, or for high correlation between some covariates,
NNP may be slightly more accurate than the RSC.

4 The correct rank, 10, is always overestimated by NNP.

5 A two-staged estimator, NNP(c), provides a successful
improvement over NNP, for rank selection.

6 RSC is much more computationally efficient than NNP(c).
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Summary: Our Contribution

RSC criterion is easy to compute (closed form).

Appropriate notion of signal and noise.

Correct rank identification.

Finite sample oracle inequalities for fit of XÂ for all A and X .

Finite sample analysis valid for all m, n, p and rank r .

NNP has similar theoretical properties, under more stringent
conditions on X . NNP is not the most parsimonious estimator.
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Thanks!
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