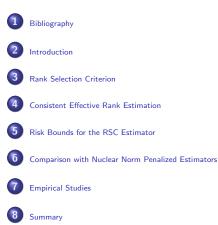
Optimal selection of reduced rank estimators of high-dimensional matrices

Marten Wegkamp

Department of Statistics, Florida State University

14 January 2011, Gainesville

イロン 不同と 不同と 不同と



・ロン ・回と ・ヨン ・ヨン

æ

> Empirical Studies Summary

Talk based on:

Florentina Bunea, Yiyuan She and Marten Wegkamp. Optimal selection of reduced rank estimators of high-dimensional matrices. arXiv:1004.2995v1, 18 April 2010. To appear in AoS.

イロン イヨン イヨン イヨン

Multivariate Response Regression Model

Observations $(X_1, Y_1), \ldots, (X_m, Y_m) \in \mathbb{R}^n \times \mathbb{R}^p$ related via regression model

$$Y = XA + E$$

- X: $m \times p$ design matrix of rank q
- A: $p \times n$ matrix of unknown coefficients of unknown rank r
- E: $m \times n$ matrix of independent $N(0, \sigma^2)$ errors E_{ij}

・ロン ・回と ・ヨン・

Aim of Our Study

The aim is to estimate a low-rank approximation of A.

- Standard least squares estimation under no constraints = regressing each response on the predictors separately.
- It completely ignores the multivariate nature of the possibly correlated responses.
- Estimators restricted to have rank equal to a fixed number k ≤ n ∧ p were introduced to remedy this drawback.

(日) (部) (注) (注) (言)

A historical perspective and existing results

Estimation under the constraint rank(A) = r, with r known.

- Anderson (1951, 1999, 2002)
- Robinson (1973, 1974)
- Izenman (1975; 2008)
- Rao (1979)
- Reinsel and Velu (1998)

All theoretical results (distribution of the reduced rank estimates and rank selection procedures) are asymptotic, $m \to \infty$, everything else fixed.

A finite sample approach to dimension reduction

We derive reduced rank estimates \widehat{A} , without prior specification of the rank.

- We propose a computationally efficient method that can handle matrices of large dimensions.
- We provide a finite sample analysis of the resulting estimates.
- Our analysis is valid for any *m*, *n*, *p* and *r*.

Methodology

We propose to estimate A by the penalized least squares estimator

$$\widehat{A} = \arg\min_{B} \{ \|Y - XB\|_{F}^{2} + \mu \cdot r(B) \}$$
$$= \arg\min_{B} \{ \|PY - XB\|_{F}^{2} + \mu \cdot r(B) \}$$

for $P = X(X'X)^{-}X'$.

・ロト ・回ト ・ヨト ・ヨト

Set
$$\widehat{k} = r(\widehat{A})$$
 and let \widehat{B}_k be the restricted LSE of rank k . Then

$$\|Y - X\widehat{A}\|_F^2 + \mu \cdot \widehat{k} = \min_B \{\|Y - XB\|_F^2 + \mu \cdot r(B)\}$$
$$= \min_k \{\|Y - X\widehat{B}_k\|_F^2 + \mu \cdot k\}$$

< □ > < □ > < □ > < □ > < □ > < □ > = □

Closed form solutions

Our first result states that both \widehat{A} and $\widehat{k} = r(\widehat{A})$ have a closed form solution and can be efficiently computed based on the SVD of *PY*.

Proposition

- \widehat{k} is the number of singular values of PY that exceed $\sqrt{\mu}$
- \widehat{A} is the rank restricted LSE (of rank \widehat{k})

・ロン ・回 と ・ ヨ と ・ ヨ と

Efficient Computation of \widehat{B}_k (Reinsel and Velu, 1998).

Let M = X'X be the Gram matrix, and let $P = XM^{-}X'$.

- Compute the eigenvectors V = [v₁, v₂, ..., v_n], corresponding to the ordered eigenvalues arranged from largest to smallest, of the symmetric matrix Y'PY.
- Compute $\widehat{B} = M^{-}X'Y$. Construct $W = \widehat{B}V$ and G = V'. Form $W_{k} = W[, 1:k]$ and $G_{k} = G[1:k,]$.
- **3** Compute the final estimator $\widehat{B}_k = W_k G_k$.

Consistent Effective Rank Estimation

Theorem

Suppose that there exists an index $s \leq r$ such that

 $d_s(XA) > (1+\delta)\sqrt{\mu}$

and

$$d_{s+1}(XA) < (1-\delta)\sqrt{\mu},$$

for some $\delta \in (0,1]$. Then we have

$$\mathbb{P}\left\{\widehat{k}=s\right\}\geq 1-\mathbb{P}\left\{d_1(PE)\geq\delta\sqrt{\mu}\right\}.$$

・ロン ・回と ・ヨン ・ヨン

- We can consistently estimate the index s provided we use a large enough value for μ to guarantee that the probability of the event $\{d_1(PE) \le \delta \sqrt{\mu}\}$ approaches one.
- We call s the effective rank of A relative to μ, and denote it by r_e = r_e(μ).
- We can only hope to recover those singular values of the signal XA that are above the noise level $d_1(PE)$. Their number, r_e , will be the target rank of the approximation of the mean response, and can be much smaller than r = r(A).
- The largest singular value $d_1(PE)$ is our relevant indicator of the strength of the noise.

(ロ) (同) (E) (E) (E)

Lemma

Let q = r(X) and assume that E_{ij} are independent $N(0, \sigma^2)$ random variables. Then

$$\mathbb{E}\left[d_1(PE)\right] \leq \sigma\left(\sqrt{n} + \sqrt{q}\right)$$

and, for all t > 0,

$$\mathbb{P}\left\{ d_1(\mathsf{PE}) \geq \mathbb{E}[d_1(\mathsf{PE})] + \sigma t
ight\} \leq \exp\left(-t^2/2
ight) \, .$$

< □ > < □ > < □ > < □ > < Ξ > < Ξ > = Ξ

In view of this result, we take

$$\mu = C_0 \sigma^2 (\sqrt{q} + \sqrt{n})^2$$

as our measure of the noise level, for some $C_0 > 1$.

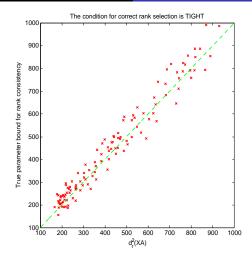
Summarizing,

Corollary

If
$$d_r(XA) > 2\sqrt{\mu}$$
, then $\mathbb{P}\{\widehat{k} = r\} \to 1$ as $q + n \to \infty$.

・ロン ・回 と ・ヨン ・ヨン

æ



Risk Bounds for the Restricted Rank LSE

Theorem

Let \widehat{B}_k be the restricted LSE of rank k. For every k we have

$$\|X\widehat{B}_k - XA\|_F^2 \leq 3\left[\sum_{j>k} d_j^2(XA) + 4kd_1^2(PE)\right]$$

with probability one.

・ロン ・回 と ・ ヨ と ・ ヨ と

Risk Bounds for the Restricted Rank LSE

- We bound the error $||X\widehat{B}_k XA||_F^2$ by an approximation error, $\sum_{i>k} d_i^2(XA)$, and a stochastic term, $kd_1^2(PE)$.
- The approximation error is decreasing in k and vanishes for k > r(XA).
- The stochastic term can be bounded by $C\sigma^2 k(n+q)$ with large probability, and is increasing in k.
- k(n + q) is essentially the number of free parameters of the restricted rank problem as the parameter space consists of all p × n matrices B of rank k and each matrix has k(n + q k) free parameters.
- The obtained risk bound is the squared bias plus the dimension of the parameter space.

Risk Bound for the RSC Estimator

Theorem

We have, for any μ ,

$$\mathbb{P}\left[\|X\widehat{A} - XA\|_F^2 \leq 3\left\{\|XB - XA\|_F^2 + \mu r(B)\right\}\right]$$

$$\geq 1 - \mathbb{P}\left[2d_1(PE) > \sqrt{\mu}\right],$$

for all $p \times n$ matrices B.

・ロン ・回 と ・ ヨン ・ ヨン

æ

Risk Bound for the RSC Estimator

Theorem

In particular, we have, for $\mu = C_0 \sigma^2 (q + n)$ and some $C_0 > 1$,

$$\mathbb{E}\left[\|X\widehat{A} - XA\|_{F}^{2}\right] \leq C \min_{k} \left\{ \sum_{j>k} d_{j}^{2}(XA) + \sigma^{2}(q+n)k \right\}.$$

・ロン ・四マ ・ヨマ ・ヨマ

Remarks

- RSC achieves optimal bias-variance trade-off.
- RSC is minimax adaptive.
- Minimizer of $\sum_{j>k} d_j^2(XA) + \mu k$ is effective rank r_e .
- RSC adapts to r_e.
- The smaller r, the smaller the prediction error.
- Bounds valid for all *m*, *n*, *p*, *q*, *r*.

・ロット (四) (日) (日)

Unknown σ^2

Theorem

For large n + q and large n(m - q) and

$$\operatorname{pen}(B) = C_0(\sqrt{n} + \sqrt{q})^2 \frac{\|Y - PY\|_F^2}{mn - qn} r(B)$$

we have

$$\mathbb{E}\left[\|X\widehat{A}-XA\|_{F}^{2}\right] \lesssim \min_{k}\left\{\sum_{j>k}d_{j}^{2}(XA)+\sigma^{2}(\sqrt{n}+\sqrt{q})^{2}k\right\}.$$

・ロン ・回と ・ヨン・

æ

Nuclear Norm Penalized Estimators

We compare our RSC estimator \widehat{A} with the alternative estimator \widetilde{A} that minimizes

$$||Y - XB||_F^2 + 2\tau ||B||_1$$

over all $p \times n$ matrices B.

Theorem

On the event $d_1(X'E) \leq \tau$, we have, for any B,

$$\|X\widetilde{A} - XA\|_F^2 \le \|XB - XA\|_F^2 + 4\tau \|B\|_1.$$

・ロン ・回と ・ヨン・

Nuclear Norm Penalized Estimators

Theorem

For
$$au = (1+ heta)\sigma d_1(X)(\sqrt{n}+\sqrt{q}),$$

$$\mathbb{P}\left\{\|X\widetilde{A}-XA\|_F^2 \le \|XB-XA\|_F^2 + 4\tau\|B\|_1\right\}$$

$$\ge 1 - \exp\left\{-\frac{1}{2}\theta^2(n+q)\right\}\right\}$$

・ロン ・回 と ・ヨン ・ヨン

- It is possible to obtain an oracle inequality for \widetilde{A} that resembles the oracle inequality for \widehat{A} .
- Our bounds for \widehat{A} are much cleaner and obtained under fewer restrictions on the design matrix.
- We need that the condition number $c_0(X'X) = \lambda_1(X'X)/\lambda_p(X'X)$ is finite.
- Proof uses arguments similar to Negahban and Wainwright (2009) and Rohde and Tsybakov (2010)
- NNP fails to select the correct rank.

(日) (部) (注) (注) (言)

Rank Recovery

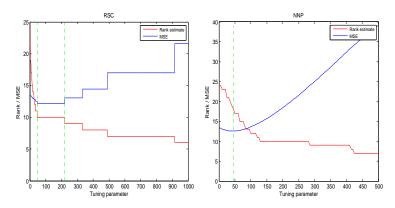


Figure: The MSE and rank of the estimators RSC (left) and NNP (right) as a function of the tuning parameter.

・ロン ・回と ・ヨン ・ヨン

æ

Rank Recovery

We suggest

$$\widetilde{k} = \max\{k: d_k(X'X\widetilde{A}) > 2\tau\}.$$

Theorem

Let r = r(A) and assume that $d_r(X'XA) > 4\tau$. Then

$$\mathbb{P}\{\tilde{k} \neq r\} \leq \mathbb{P}\{d_1(X'E) > \tau\} \\ \leq \exp\left\{-\frac{1}{2}\theta^2(n+q)\right\}$$

for $\tau = (1 + \theta)\sigma d_1(X)(\sqrt{n} + \sqrt{q}).$

Optimal selection of reduced rank estimators of high-dimension

Simulations

- RSC with $\mu = 2S^2(n+q)$.
- $X = [x_1, x_2, \cdots, x_m]'$ by generating its rows x_i i.i.d. from MVN($\mathbf{0}, \Sigma$), with $\Sigma_{jk} = \rho^{|j-k|}$, $\rho > 0$, $1 \le j, k \le p$.
- $A = bB_0B_1$, with b > 0, B_0 is a $p \times r$ matrix and B_1 is a $r \times n$ matrix. All entries in B_0 and B_1 are i.i.d. N(0, 1).
- Each row in $Y = [y_1, \dots, y_m]'$ is then generated as $y_i = x'_i A + E_i$, $1 \le i \le m$, with E_i the *i*-th row of *E* with N(0, 1) i.i.d. entries.

- Each simulated model is characterized by the following control parameters : *m* (sample size), *p* (number of independent variables), *n* (number of response variables), *r* (rank of *A*), *ρ* (design correlation), and *b* (signal strength).
- Experiment 1: number of predictors p < sample size m. m = 100, p = 25, n = 25, r = 10, correlation coefficient $\rho = 0.1, 0.5, 0.9$ and signal strength b = 0.1, 0.2, 0.3, 0.4.
- Experiment 2: p > m. m = 20, p = 100, n = 25, r = 10, correlation $\rho = 0.1, 0.5, 0.9$ and signal strength b = 0.1, 0.2, 0.3

(ロ) (同) (E) (E) (E)

Performance comparisons of Experiment 1

		RSC _{adap}	RSC val	NNP _{val}	NNP ^(c) _{val}		
b = 0.1							
ho = 0.9 ·	MSE(XA), MSE(A)	16.6, 5.3	16.3, 5.2	11.5, 3.0	16.5, 5.3		
	RE, RRP	6, 0%	6, 0%	12, 0%	6, 0%		
ho = 0.5 ·	MSE(XA), MSE(A)	18.7, 1.4	18.1, 1.4	16.2, 1.1	18.1, 1.4		
	RE, RRP	8, 0%	9, 40%	16.5, 0%	9, 35%		
$\rho = 0.1$	MSE(XA), MSE(A)	19.3, 1.0	18.0, 0.9	16.9, 0.8	18.0, 0.9		
	RE, RRP	9, 0%	10, 75%	17, 0%	10, 65%		
b = 0.2							
ho = 0.9	MSE(XA), MSE(A)	18.4, 7.0	17.9, 7.1	15.9, 5.4	17.9, 7.1		
	RE, RRP	8, 0%	9, 20%	16, 0%	9, 15%		
ho = 0.5	MSE(XA), MSE(A)	16.7, 1.3	16.7, 1.3	18.9, 1.5	16.7, 1.3		
	RE, RRP	10, 100%	10, 100%	19, 0%	10, 100%		
ho = 0.1	MSE(XA), MSE(A)	16.5, 0.9	16.5, 0.9	19.2, 1.0	16.5, 0.9		
	RE, RRP	10, 100%	10, 100%	18, 0%	10, 100%		

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Performance comparisons of Experiment 1

		RSC _{adap}	RSC val	NNP val	NNP ^(c) val	
b = 0.3						
ho = 0.9 ·	MSE(XA), MSE(A)	17.4, 7.0	17.3, 6.9	17.7, 6.7	17.3, 7.0	
	RE, RRP	10, 65%	10, 95%	18, 0%	10, 80%	
ho = 0.5 ·	MSE(XA), MSE(A)	16.4, 1.3	16.4, 1.3	19.8, 1.6	16.4, 1.3	
	RE, RRP	10, 100%	10, 100%	19, 0%	10, 100 %	
ho = 0.1	MSE(XA), MSE(A)	16.4, 0.9	16.4, 0.9	19.9, 1.1	16.4, 0.9	
	RE, RRP	10, 100%	10, 100%	19, 0%	10, 100%	
b = 0.4						
ho = 0.9	MSE(XA), MSE(A)	16.8, 6.6	16.8, 6.7	18.7, 7.4	16.8, 6.8	
	RE, RRP	10, 100%	10, 100%	18, 0%	10, 85%	
ho = 0.5	MSE(XA), MSE(A)	16.3, 1.3	16.3, 1.3	20.3, 1.7	16.3, 1.3	
	RE, RRP	10, 100%	10, 100%	20, 0%	10, 100%	
ho = 0.1	MSE(XA), MSE(A)	16.3, 0.9	16.3, 0.9	20.3, 1.1	16.3, 0.9	
	RE, RRP	10, 100%	10, 100%	20, 0%	10, 100%	

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Performance comparisons of Experiment 2

		RSC _{adap}	RSC val	NNP val	NNP ^(c) val			
b = 0.1								
$\rho = 0.9$	MSE(XA), MSE(A)	29.4, 3.9	29.4, 3.9	36.4, 3.9	29.4, 3.9			
	RE, RRP	5, 100%	5, 100%	10, 0%	5, 100%			
ho = 0.5	MSE(XA), MSE(A)	29.1, 3.9	29.1, 3.9	37.2, 3.9	29.1, 3.9			
	RE, RRP	5, 100%	5, 100%	10, 0%	5, 100%			
ho = 0.1	MSE(XA), MSE(A)	29.0, 3.9	29.0, 3.9	37.2, 4.0	29.0, 3.9			
	RE, RRP	5, 100%	5, 100%	10, 0%	5, 100%			
b = 0.2								
$\rho = 0.9$	MSE(XA), MSE(A)	28.9, 15.7	28.9, 15.7	38.7, 15.7	28.9, 15.7			
$\rho = 0.9$	RE, RRP	5, 100%	5, 100%	10, 0%	5, 100%			
p = 0.5	MSE(XA), MSE(A)	28.6, 15.7	28.6, 15.7	39.0, 15.7	28.6, 15.7			
	RE, RRP	5, 100%	5, 100%	10, 0%	5, 100%			
ho = 0.1	MSE(XA), MSE(A) RE, RRP	28.7, 15.8	28.7, 15.8	38.7, 15.8	28.7, 15.8			
	RE, RRP	5, 100%	5, 100%	10, 0%	5, 100%			
b = 0.3								
p = 0.5	MSE(XA), MSE(A)	28.8, 35.3	28.8, 35.3	39.2, 35.3	28.8, 35.3			
	RE, RRP	5, 100%	5, 100%	10, 0%	5, 100%			
ho = 0.5	MSE(XA), MSE(A) RE, RRP	28.5, 35.4	28.5, 35.4	39.5, 35.4	28.5, 35.4			
		5, 100%	5, 100%	10, 0%	5, 100 %			
	MSE(XA), MSE(A)	28.6, 35.5	28.6, 35.5	39.3, 35.5	28.6, 35.5			
	RE, RRP	5, 100%	5, 100%	• 10, 0% 🗇 🕨 🔹 🖹 🕨	5,100% 🖹 🔊 ९ ९			

Marten Wegkamp

Optimal selection of reduced rank estimators of high-dimension

Conlcusions of our Simulation Study

- RSC with adaptive choice performs well as well as with optimally tuned µ.
- For moderate or high SNR= $d_r(XA)/(\sqrt{n} + \sqrt{q})$ and for low to moderate correlation between the predictors, RSC has excellent behavior.
- For low SNR, or for high correlation between some covariates, NNP may be slightly more accurate than the RSC.
- The correct rank, 10, is always overestimated by NNP.
- A two-staged estimator, NNP^(c), provides a successful improvement over NNP, for rank selection.
- RSC is much more computationally efficient than NNP(c).

Summary: Our Contribution

- RSC criterion is easy to compute (closed form).
- Appropriate notion of signal and noise.
- Correct rank identification.
- Finite sample oracle inequalities for fit of $X\widehat{A}$ for all A and X.
- Finite sample analysis valid for all *m*, *n*, *p* and rank *r*.
- NNP has similar theoretical properties, under more stringent conditions on X. NNP is not the most parsimonious estimator.

・ロン ・回 と ・ ヨ と ・ ヨ と

Thanks!

Marten Wegkamp Optimal selection of reduced rank estimators of high-dimension

<ロ> (四) (四) (三) (三) (三) (三)