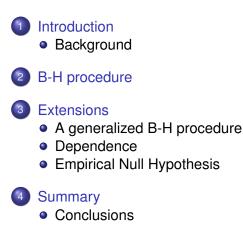
# Multiple hypothesis testing: the view using spacings

#### Debashis Ghosh

Departments of Statistics and Public Health Sciences Penn State University

イロト イポト イヨト イヨト

# Outline



(日)

프 🕨 🛛 프

Background

# Scientific Context

- High-dimensional data are now very commonplace in the medical and scientific literature
- Single nucleotide polymorphisms, next-generation sequencing, fMRI experiments
- Scientific goals: discovering new biology

ヘロン 人間 とくほ とくほ とう

Background

#### **Differential Expression**

- A very common goal: identify genes that change between two (or more) conditions
- This has been termed differential expression in the genomics and statistics literature
- This has spawned a wealth of new statistical methods and new science ("gene expression profiles" in PubMed ⇒ 7500+ citations since 1997)

ヘロト ヘアト ヘビト ヘビト

Background

## **Differential Expression in Statistics**

- Reemergence of interest in the multiple comparisons problem
- In the past, much of the literature focused on control of the familywise error rate (FWER)
- More recent interest has focused on the false discovery rate (FDR)

イロト イポト イヨト イヨト

Background

# False Discovery Rate: definition

|                  | Accept | Reject | Total          |
|------------------|--------|--------|----------------|
| True Null        | U      | V      | $n_0$          |
| True Alternative | Т      | S      | n <sub>1</sub> |
|                  | W      | Q      | n              |

- FDR = E[V/Q|Q > 0]P(Q > 0); also FDR = E(FDP), where FDP is referred to as the false discovery proportion
- Contrast with  $FWER = P(V \ge 1)$
- Control of FDR leads to rejection of more hypotheses than FWER.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Background

#### **Problem Setup**

- Assume that for each elementary hypothesis H<sub>1</sub>,..., H<sub>n</sub> only the p-values p<sub>1</sub>,..., p<sub>n</sub> are known
- Procedures: compare ordered p-values to cutoffs
- Initially, we will assume that  $p_1, \ldots, p_n$  are independent

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Background

# Procedure of Benjamini and Hochberg (1995)

- (a) Let  $p_{(1)} \le p_{(2)} \le \cdots \le p_{(n)}$  denote the ordered, observed p-values.
- (b) Find  $\hat{k} = \max\{1 \le i \le n : p_{(i)} \le \alpha i/n\}.$
- (c) If  $\hat{k}$  exists, then reject null hypotheses  $p_{(1)} \leq \cdots \leq p_{(\hat{k})}$ . Otherwise, reject nothing.

## **B-H procedure**

- Benjamini and Hochberg (1995) show that using the procedure of Simes (1986) will control the FDR when the hypotheses are independent
- They later show that the procedure is valid under positive regression dependence (Benjamini and Yekutieli, 2001)
- In the case of arbitrary dependence, they propose a Bonferroni-style correction

ヘロト 人間 とくほ とくほ とう

#### **B-H extensions**

- Direct estimation of FDR (Storey, 2002)
- FDR control under dependence (Genovese and Wasserman, 2004; Storey et al., 2004, Efron, 2010, Schwartzman and Lin, 2010)
- Our insight is to cast the B-H procedure in terms of spacings

ヘロン 人間 とくほ とくほ とう

### Spacings: a brief background

- The *p*-values are a random sample from *U*(0, 1)
- The **spacings** are defined as

$$\tilde{p}_i = p_{(i)} - p_{(i-1)}$$

・ロト ・聞 ト ・ ヨト ・ ヨト … ヨ

for  $i = 1, \ldots, n+1$ , where  $\tilde{p}_0 = 0$  and  $\tilde{p}_{n+1} = 1$ .

• The spacings are dependent, but marginally, they have a Beta(1, *n*) distribution

#### B-H procedure: a spacings view

- (a) Let  $p_{(1)} \le p_{(2)} \le \cdots \le p_{(n)}$  denote the ordered, observed p-values.
- (b) Define  $\tilde{p}_j = p_{(j)} p_{(j-1)}, j = 1, \dots, n+1$ , where  $p_{(0)} = 1$ and  $p_{(n+1)} = 1$ .
- (c) Find  $\hat{k}$ , where

$$\hat{k} = \max\{1 \le i \le n : i^{-1} \sum_{j=1}^{i} \tilde{p}_j \le \alpha n^{-1} (n+1) E(\tilde{p}_1)\}.$$

イロト 不得 とくほ とくほ とう

3

(d) If  $\hat{k}$  exists, then reject null hypotheses  $p_{(1)} \leq \cdots \leq p_{(\hat{k})}$ . Otherwise, reject nothing.

# Remarks

- The expression in (c) compares the cumulative empirical averages of the spacings relative to the expected value, scaled by the FDR plus a factor that is approximately one
- The theoretical expectation is taken with respect to the (marginal) Beta distribution
- The cumulative sum in (c) can be thought of as a type of scan statistic
- What determines rejection of hypotheses in the B-H procedure is the clustering of the spacings

ヘロト ヘアト ヘビト ヘビト

æ

A generalized B-H procedure Dependence Empirical Null Hypothesis

イロン 不同 とくほ とくほ とう

2

#### **Further Extensions**

- A generalized B-H procedure
- Dependence
- Empirical null distribution

A generalized B-H procedure Dependence Empirical Null Hypothesis

イロン 不同 とくほ とくほ とう

2

#### **Further Extensions**

#### • A generalized B-H procedure

- Dependence
- Empirical null distribution

A generalized B-H procedure Dependence Empirical Null Hypothesis

One generalization of the B-H procedure is to apply a monotonic function to the spacings: this leads to the following: **gBH procedure**: Reject  $p_{(1)}, \ldots, p_{(\hat{k})}$ , where

$$\hat{k} = \max[i: i^{-1} \sum_{j=1}^{i} g(\tilde{p}_j) \le \alpha E\{g(\tilde{p}_1)\}], \quad (1)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

*g* is some suitably chosen monotonic function, and  $\hat{k} = 0$  if the set in (1) is empty.

A generalized B-H procedure Dependence Empirical Null Hypothesis

# gBH procedure (cont'd.)

• One choice of g: for  $\lambda \geq 0$ 

$$g_{\lambda}(z) = egin{cases} z^{\lambda} & \lambda > 0, \ \log(z) & \lambda = 0. \end{cases}$$
 (2)

,

イロト 不得 とくほと くほとう

ъ

By exploiting the fact that  $\tilde{p}_1$  has a Beta distribution, it is easy to show that

$$egin{aligned} E\{g_\lambda( ilde p_1)\} &= egin{cases} B(1+\lambda,n)/B(1,n) & \lambda>0, \ \psi(1)-\psi(n+2) & \lambda=0 \end{aligned}$$

where  $B(u, v) = \Gamma(u)\Gamma(v)[\Gamma(u + v)]^{-1}$ , and

$$\psi(x) \equiv \frac{d}{dx} \log \Gamma(x) = \frac{\Gamma'(x)}{\Gamma(x)}$$

is the digamma function.

A generalized B-H procedure Dependence Empirical Null Hypothesis

イロト イポト イヨト イヨト

э.

# gBH procedure: Technical Results

- Assuming independence of p-values, can show exact control of FDR using martingale theory
- Asymptotic FDR control:
  - **Condition A:** Empirical convergence of g-transformed spacings:  $||F_n - F_0|| = \sup_{-\infty < x < \infty} ||F_n(x) - F_0(x)|| \rightarrow_p 0$  as  $n \rightarrow \infty$ , where  $F_n$  is the empirical cdf of the transformed spacings.
  - Can apply a argmax continuous mapping type result from empirical process theory to show that gBH procedure maintains asymptotic FDR control.

A generalized B-H procedure Dependence Empirical Null Hypothesis

ヘロト 人間 とくほとくほとう

э.

# Simulation example

- n = 300 hypotheses
- Test statistics are multivariate normal with correlation 0 or 0.3
- $n_1 = 20, 60, 100$
- For true null hypotheses,  $\mu = 0$ , while for true alternatives,  $\mu = 2$
- Apply all procedures at FDR = 0.05.
- Study FDR and 1 NDR, where NDR is the non-discovery rate

A generalized B-H procedure Dependence Empirical Null Hypothesis

・ロト ・聞ト ・ヨト ・ヨト

#### FDR results of simulation studies

|                          | Independent |      |       | Dependent |       |       |  |
|--------------------------|-------------|------|-------|-----------|-------|-------|--|
| Method/n <sub>1</sub>    | 20          | 60   | 100   | 20        | 60    | 100   |  |
| BH                       | 0.04        | 0.04 | 0.03  | 0.001     | 0.005 | 0.004 |  |
| Proposed, $\lambda = 2$  | 0.002       | 0.03 | 0.016 | 0.04      | 0.025 | 0.017 |  |
| Proposed, $\lambda = 4$  | 0.01        | 0.04 | 0.019 | 0.03      | 0.06  | 0.06  |  |
| Proposed, $\lambda = 16$ | 0.04        | 0.04 | 0.02  | 0.02      | 0.08  | 0.007 |  |

A generalized B-H procedure Dependence Empirical Null Hypothesis

イロト 不得 とくほ とくほとう

2

Power (1 - NDR) results of simulation studies

|                          | Inc  | Independent |      |      | Dependent |      |  |
|--------------------------|------|-------------|------|------|-----------|------|--|
| Method/n <sub>1</sub>    | 20   | 60          | 100  | 20   | 60        | 100  |  |
| BH                       | 0.60 | 0.96        | 0.99 | 0.34 | 0.63      | 0.71 |  |
| Proposed, $\lambda = 2$  | 0.94 | 1.00        | 1.00 | 0.73 | 0.89      | 0.93 |  |
| Proposed, $\lambda = 4$  | 0.89 | 0.96        | 0.99 | 0.79 | 0.91      | 0.94 |  |
| Proposed, $\lambda = 16$ | 0.17 | 0.36        | 0.49 | 0.22 | 0.32      | 0.47 |  |

A generalized B-H procedure Dependence Empirical Null Hypothesis

イロト イポト イヨト イヨト

3

#### **Further Extensions**

- A generalized B-H procedure
- Dependence
- Empirical null distribution

A generalized B-H procedure Dependence Empirical Null Hypothesis

イロト イポト イヨト イヨト

3

#### Dependence

- Intuitively, if p-values have positive correlation, the spacings will exhibit clustering smaller than in the independence case.
- Use ideas from stochastic majorization theory (Nevius et al., 1977)

A generalized B-H procedure Dependence Empirical Null Hypothesis

ヘロト ヘアト ヘビト ヘビト

3

# Dependence (cont'd.)

• Theorem: Assume that the FDP operation is monotonic in the number of rejections. If the spacings corresponding to the joint distribution of **p** is stochastically majorized by the joint distribution of spacings for *n* independent Uniform(0,1) random variables, and then the gBH procedure will provide exact control of the FDR.

A generalized B-H procedure Dependence Empirical Null Hypothesis

イロト イポト イヨト イヨト

э.

# Dependence (cont'd.)

- Example:
  - Random effects correlation between p-values
  - (2)  $\tilde{p}_i \stackrel{d}{=} a(p_{(i)} p_{(i-1)})$ , where *a* is the random effect that is shared by all p-values
  - Positive correlation does not change the relative rankings of ordered hypotheses
- This structure is also implied by positive regression dependence

A generalized B-H procedure Dependence Empirical Null Hypothesis

くロト (過) (目) (日)

ъ

# Dependence (cont'd.)

- The spacings interpretation suggests that the following correlation structures are problematic for FDR control:
  - Negative correlation
  - Long-range dependence between order statistics that does not decay

A generalized B-H procedure Dependence Empirical Null Hypothesis

イロト イポト イヨト イヨト

3

#### **Further Extensions**

- A generalized B-H procedure
- Dependence
- Empirical null distribution

A generalized B-H procedure Dependence Empirical Null Hypothesis

イロト イポト イヨト イヨト

# **Empirical Null Distribution**

- A device introduced by Efron (2004)
- The idea: in standard practice, for a **single** hypothesis, we use a standard null distribution for a test statistic (Normal,  $\chi^2$ , F, t,etc.)
- Efron (2004) argues that this is an implausible one for large-scale simultaneous inference problems

A generalized B-H procedure Dependence Empirical Null Hypothesis

# Empirical Null (cont'd.)

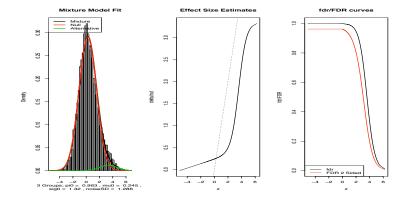
 Idea: fit a two-component mixture model to test statistics, assume normality for both component distributions, i.e.

$$T_i \stackrel{iid}{\sim} \pi_0 N(\mu_0, \sigma_0^2) + (1 - \pi_0) N(\mu_1, \sigma_1^2).$$
 (3)

ヘロト ヘアト ヘビト ヘビト

- Compute  $\operatorname{locfdr}(T) = P(H = 0|T)$  using the above mixture model and reject hypotheses for small values.
- Idea is to be more conservative (or more generally, data-adaptive) in selecting "interesting" hypotheses
- No direct way of incorporating empirical null into the original B-H procedure

A generalized B-H procedure Dependence Empirical Null Hypothesis



A generalized B-H procedure Dependence Empirical Null Hypothesis

#### Our proposal

Recall that we earlier expressed the B-H procedure as the following: reject p<sub>(1)</sub>,..., p<sub>(k)</sub>, where

$$\hat{k} = \max\{i: i^{-1} \sum_{j=1}^{i} \tilde{p}_j \le \alpha(n+1)n^{-1}E(\tilde{p}_1)\},$$
 (4)

ヘロト 人間 とくほとくほとう

1

where the expectation is taken with respect to a Beta distribution.

Our proposal: model the spacings with respect to some other distribution.

A generalized B-H procedure Dependence Empirical Null Hypothesis

ヘロン 人間 とくほ とくほ とう

# Empirical Null Distribution - Proposal # 1

- Fit a two-component Beta mixture to the spacings (in practice, use nonzero spacings)
- Compute the mean based on the mixture model, averaged over components, plug in (5)
- New rule: reject  $p_{(1)}, \ldots, p_{(\hat{k})}$ , where

$$\hat{k} = \max\{i: i^{-1}\sum_{j=1}^{i} \tilde{p}_j \leq \alpha(n+1)n^{-1}E_{\hat{G}}(\tilde{p}_1)\},\$$

where  $\hat{G}$  is the mixture model

A generalized B-H procedure Dependence Empirical Null Hypothesis

Empirical Null Distribution - Proposal # 2

- Bayesian flavor
- Requires another dataset
  - Given the original set of p-values, construct an estimator of *E*(*p*<sub>1</sub>); an obvious estimator would be the empirical average of the spacings.
  - Compute Y, the observed number of spacings in the second less than the estimator from the previous step.
  - 3 Compute  $E(\tilde{p}_1|Y = y)$ .
  - Apply the following methodology to the original set of p-values: reject p<sub>(1)</sub>,..., p<sub>(k)</sub>, where

$$\hat{k} = \max\{i : i^{-1} \sum_{j=1}^{i} \tilde{p}_{j} \le \alpha(n+1)n^{-1}E(\tilde{p}_{1}|y)\},$$
(5)

A generalized B-H procedure Dependence Empirical Null Hypothesis

ヘロン 人間 とくほ とくほ とう

э.

# Empirical Null Distribution and FDR control

- We can use stochastic ordering ideas to show FDR control
- $X <_{s.t.} Y$  if P(X > x) < P(Y > x) for all x
- If V, the distribution for spacings, is stochastically smaller than a Beta(1, n) r.v., then FDR control is achieved.
- This can be either asymptotic or exact

A generalized B-H procedure Dependence Empirical Null Hypothesis

イロト イポト イヨト イヨト

Real Data Example: Mixed lineage leukemia

- This is a type of cancer affecting red blood cells
- Data from http://www.broadinstitute.org/cgi-bin/ cancer/datasets.cgi
- Some preprocessing steps taken
- 14240 genes
- On test statistic scale, mixture model approach of Efron (2004) does not converge
- By contrast, no problem for our proposed methods

A generalized B-H procedure Dependence Empirical Null Hypothesis

ヘロト ヘアト ヘヨト ヘ

Real Data Example: Mixed lineage leukemia (cont'd.)

- BH using theoretical null: 10685 genes found "interesting"
- BH using empirical null with two-component mixture model: 10777 genes found "interesting"
- BH using Bayesian empirical null:
  - Suppose there was a second study with the same number of genes and number of spacings less than emprical average was 0 ⇒ 10238 genes interesting.
  - Suppose there was a second study with the same number of genes and number of spacings less than emprical average was 1 ⇒ 10668 genes interesting.
- Empirical null is restricted to [0, 1]

Conclusions

# Conclusions and Future Work

- The proposed spacings justification for Benjamini-Hochberg gives new insight on multiple comparisons problem.
- Ideas from scan statistics and clustering can be brought to bear to this problem
- Understanding dependence
- Innovative empirical null idea
- Lots of possible extensions
  - Looking at higher-order gaps to account for dependence
  - 2 Multivariate definitions of spacings

イロト イポト イヨト イヨト

Conclusions

# Future genomic applications

- Multivariate data integration problems
- Heterogeneity in genomic meta-analyses
- Periodicity of genes
- Multigroup differential expression
- Genomic Outlier Profile Analysis (Ghosh and Chinnaiyan, 2009)

ヘロト ヘ戸ト ヘヨト ヘヨト

æ



- Ghosh, D. (2011). Generalized Benjamini-Hochberg procedures using spacings, technical report.
- Ghosh, D. (2011). Dependence and the empirical null hypothesis within the B-H procedure, in preparation.
- Software in preparation
- First manuscript is available, second manuscript will be available at http://works.bepress.com/debashis\_ghosh/

<ロト <回 > < 注 > < 注 > 、