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Scientific Context

High-dimensional data are now very commonplace in the
medical and scientific literature
Single nucleotide polymorphisms, next-generation
sequencing, fMRI experiments
Scientific goals: discovering new biology
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Differential Expression

A very common goal: identify genes that change between
two (or more) conditions
This has been termed differential expression in the
genomics and statistics literature
This has spawned a wealth of new statistical methods and
new science ("gene expression profiles" in PubMed⇒
7500+ citations since 1997)
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Differential Expression in Statistics

Reemergence of interest in the multiple comparisons
problem
In the past, much of the literature focused on control of the
familywise error rate (FWER)
More recent interest has focused on the false discovery
rate (FDR)
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False Discovery Rate: definition

Accept Reject Total
True Null U V n0

True Alternative T S n1
W Q n

FDR = E [V/Q|Q > 0]P(Q > 0); also FDR = E(FDP),
where FDP is referred to as the false discovery proportion
Contrast with FWER = P(V ≥ 1)

Control of FDR leads to rejection of more hypotheses than
FWER.
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Problem Setup

Assume that for each elementary hypothesis H1, . . . ,Hn
only the p-values p1, . . . ,pn are known
Procedures: compare ordered p-values to cutoffs
Initially, we will assume that p1, . . . ,pn are independent
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Procedure of Benjamini and Hochberg (1995)

(a) Let p(1) ≤ p(2) ≤ · · · ≤ p(n) denote the ordered, observed
p-values.

(b) Find k̂ = max{1 ≤ i ≤ n : p(i) ≤ αi/n}.

(c) If k̂ exists, then reject null hypotheses p(1) ≤ · · · ≤ p(k̂).
Otherwise, reject nothing.
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B-H procedure

Benjamini and Hochberg (1995) show that using the
procedure of Simes (1986) will control the FDR when the
hypotheses are independent
They later show that the procedure is valid under positive
regression dependence (Benjamini and Yekutieli, 2001)
In the case of arbitrary dependence, they propose a
Bonferroni-style correction
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B-H extensions

Direct estimation of FDR (Storey, 2002)
FDR control under dependence (Genovese and
Wasserman, 2004; Storey et al., 2004, Efron, 2010,
Schwartzman and Lin, 2010)
Our insight is to cast the B-H procedure in terms of
spacings
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Spacings: a brief background

The p−values are a random sample from U(0,1)

The spacings are defined as

p̃i = p(i) − p(i−1)

for i = 1, . . . ,n + 1, where p̃0 = 0 and p̃n+1 = 1.
The spacings are dependent, but marginally, they have a
Beta(1,n) distribution
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B-H procedure: a spacings view

(a) Let p(1) ≤ p(2) ≤ · · · ≤ p(n) denote the ordered, observed
p-values.

(b) Define p̃j = p(j) − p(j−1), j = 1, . . . ,n + 1, where p(0) = 1
and p(n+1) = 1.

(c) Find k̂ , where

k̂ = max{1 ≤ i ≤ n : i−1
i∑

j=1

p̃j ≤ αn−1(n + 1)E(p̃1)}.

(d) If k̂ exists, then reject null hypotheses p(1) ≤ · · · ≤ p(k̂).
Otherwise, reject nothing.
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Remarks

The expression in (c) compares the cumulative empirical
averages of the spacings relative to the expected value,
scaled by the FDR plus a factor that is approximately one
The theoretical expectation is taken with respect to the
(marginal) Beta distribution
The cumulative sum in (c) can be thought of as a type of
scan statistic
What determines rejection of hypotheses in the B-H
procedure is the clustering of the spacings

2011 UF Winter Workshop Multiple Testing



Introduction
B-H procedure

Extensions
Summary

A generalized B-H procedure
Dependence
Empirical Null Hypothesis

Further Extensions

A generalized B-H procedure
Dependence
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Dependence
Empirical Null Hypothesis

One generalization of the B-H procedure is to apply a
monotonic function to the spacings: this leads to the following:
gBH procedure: Reject p(1), . . . ,p(k̂), where

k̂ = max[i : i−1
i∑

j=1

g(p̃j) ≤ αE{g(p̃1)}], (1)

g is some suitably chosen monotonic function, and k̂ = 0 if the
set in (1) is empty.

2011 UF Winter Workshop Multiple Testing



Introduction
B-H procedure

Extensions
Summary

A generalized B-H procedure
Dependence
Empirical Null Hypothesis

gBH procedure (cont’d.)

One choice of g: for λ ≥ 0

gλ(z) =

{
zλ λ > 0,
log(z) λ = 0.

(2)

By exploiting the fact that p̃1 has a Beta distribution, it is easy to
show that

E{gλ(p̃1)} =

{
B(1 + λ,n)/B(1,n) λ > 0,
ψ(1)− ψ(n + 2) λ = 0

,

where B(u, v) = Γ(u)Γ(v)[Γ(u + v)]−1, and

ψ(x) ≡ d
dx

log Γ(x) =
Γ′(x)

Γ(x)

is the digamma function.
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gBH procedure: Technical Results

Assuming independence of p-values, can show exact control of
FDR using martingale theory

Asymptotic FDR control:

Condition A: Empirical convergence of g-transformed spacings:
‖Fn − F0‖ = sup−∞<x<∞ ‖Fn(x)− F0(x)‖ →p 0 as n→∞,
where Fn is the empirical cdf of the transformed spacings.

Can apply a argmax continuous mapping type result from
empirical process theory to show that gBH procedure maintains
asymptotic FDR control.
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Simulation example

n = 300 hypotheses

Test statistics are multivariate normal with correlation 0 or 0.3

n1 = 20,60,100

For true null hypotheses, µ = 0, while for true alternatives,
µ = 2

Apply all procedures at FDR = 0.05.

Study FDR and 1− NDR, where NDR is the non-discovery rate
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FDR results of simulation studies

Independent Dependent
Method/n1 20 60 100 20 60 100
BH 0.04 0.04 0.03 0.001 0.005 0.004
Proposed, λ = 2 0.002 0.03 0.016 0.04 0.025 0.017
Proposed, λ = 4 0.01 0.04 0.019 0.03 0.06 0.06
Proposed, λ = 16 0.04 0.04 0.02 0.02 0.08 0.007
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Power (1− NDR) results of simulation studies

Independent Dependent
Method/n1 20 60 100 20 60 100
BH 0.60 0.96 0.99 0.34 0.63 0.71
Proposed, λ = 2 0.94 1.00 1.00 0.73 0.89 0.93
Proposed, λ = 4 0.89 0.96 0.99 0.79 0.91 0.94
Proposed, λ = 16 0.17 0.36 0.49 0.22 0.32 0.47
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Further Extensions

A generalized B-H procedure

Dependence

Empirical null distribution
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Dependence

Intuitively, if p-values have positive correlation, the spacings will
exhibit clustering smaller than in the independence case.

Use ideas from stochastic majorization theory (Nevius et al.,
1977)
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Dependence (cont’d.)

Theorem: Assume that the FDP operation is monotonic in the
number of rejections. If the spacings corresponding to the joint
distribution of p is stochastically majorized by the joint
distribution of spacings for n independent Uniform(0,1) random
variables, and then the gBH procedure will provide exact
control of the FDR.
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Dependence (cont’d.)

Example:

1 Random effects correlation between p-values

2 p̃i
d
= a(p(i) − p(i−1)), where a is the random effect that is shared

by all p-values

3 Positive correlation does not change the relative rankings of
ordered hypotheses

This structure is also implied by positive regression
dependence
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Dependence (cont’d.)

The spacings interpretation suggests that the following
correlation structures are problematic for FDR control:

1 Negative correlation

2 Long-range dependence between order statistics that does not
decay
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Empirical Null Distribution

A device introduced by Efron (2004)

The idea: in standard practice, for a single hypothesis, we use
a standard null distribution for a test statistic (Normal, χ2, F,
t,etc.)

Efron (2004) argues that this is an implausible one for
large-scale simultaneous inference problems
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Empirical Null (cont’d.)

Idea: fit a two-component mixture model to test statistics,
assume normality for both component distributions, i.e.

Ti
iid∼ π0N(µ0, σ

2
0) + (1− π0)N(µ1, σ

2
1). (3)

Compute locfdr(T ) = P(H = 0|T ) using the above mixture
model and reject hypotheses for small values.

Idea is to be more conservative (or more generally,
data-adaptive) in selecting "interesting" hypotheses

No direct way of incorporating empirical null into the original
B-H procedure
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Mixture Model Fit

3 Groups; pi0 =  0.963 , mu0 =  0.245 , 
 sig0 =  1.32 , noiseSD =  1.286

Den
sity
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Our proposal

Recall that we earlier expressed the B-H procedure as the
following: reject p(1), . . . ,p(k̂), where

k̂ = max{i : i−1
i∑

j=1

p̃j ≤ α(n + 1)n−1E(p̃1)}, (4)

where the expectation is taken with respect to a Beta
distribution.

Our proposal: model the spacings with respect to some other
distribution.
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Empirical Null Distribution - Proposal # 1

Fit a two-component Beta mixture to the spacings (in practice,
use nonzero spacings)

Compute the mean based on the mixture model, averaged over
components, plug in (5)

New rule: reject p(1), . . . ,p(k̂), where

k̂ = max{i : i−1
i∑

j=1

p̃j ≤ α(n + 1)n−1EĜ(p̃1)},

where Ĝ is the mixture model
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Empirical Null Distribution - Proposal # 2

Bayesian flavor

Requires another dataset

1 Given the original set of p-values, construct an estimator of
E(p̃1); an obvious estimator would be the empirical average of
the spacings.

2 Compute Y , the observed number of spacings in the second
less than the estimator from the previous step.

3 Compute E(p̃1|Y = y).
4 Apply the following methodology to the original set of p-values:

reject p(1), . . . ,p(k̂), where

k̂ = max{i : i−1
i∑

j=1

p̃j ≤ α(n + 1)n−1E(p̃1|y)}, (5)

5 We call this a Bayesian empirical null hypothesis2011 UF Winter Workshop Multiple Testing
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Empirical Null Distribution and FDR control

We can use stochastic ordering ideas to show FDR control

X <s.t . Y if P(X > x) < P(Y > x) for all x

If V , the distribution for spacings, is stochastically smaller than
a Beta(1,n) r.v., then FDR control is achieved.

This can be either asymptotic or exact
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Real Data Example: Mixed lineage leukemia

This is a type of cancer affecting red blood cells

Data from http://www.broadinstitute.org/cgi-bin/
cancer/datasets.cgi

Some preprocessing steps taken

14240 genes

On test statistic scale, mixture model approach of Efron (2004)
does not converge

By contrast, no problem for our proposed methods
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Real Data Example: Mixed lineage leukemia (cont’d.)

BH using theoretical null: 10685 genes found “interesting”

BH using empirical null with two-component mixture model:
10777 genes found ”interesting"

BH using Bayesian empirical null:

1 Suppose there was a second study with the same number of
genes and number of spacings less than emprical average was
0⇒ 10238 genes interesting.

2 Suppose there was a second study with the same number of
genes and number of spacings less than emprical average was
1⇒ 10668 genes interesting.

Empirical null is restricted to [0,1]
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Conclusions and Future Work

The proposed spacings justification for Benjamini-Hochberg
gives new insight on multiple comparisons problem.

Ideas from scan statistics and clustering can be brought to bear
to this problem

Understanding dependence

Innovative empirical null idea

Lots of possible extensions

1 Looking at higher-order gaps to account for dependence

2 Multivariate definitions of spacings
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Future genomic applications

Multivariate data integration problems

Heterogeneity in genomic meta-analyses

Periodicity of genes

Multigroup differential expression

Genomic Outlier Profile Analysis (Ghosh and Chinnaiyan, 2009)
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Software in preparation

First manuscript is available, second manuscript will be
available at
http://works.bepress.com/debashis_ghosh/
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