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High Dimensional Linear Regression

Recently considerable attention has focussed on fitting the
traditional linear regression model,

Yi = β0 +

p∑

j=1

βjXij + ǫi , i = 1, . . . n, (1)

where the number of predictors, p, is large relative to the number
of observations, n. An important class of variable selection
methods utilizes penalized regression. The most well known of
these procedures is the Lasso.
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Lasso

The Lasso (Tibshirani, 1996) works by fitting a penalized least
squares regression of the form

arg min

n∑

i=1

(Yi − β0 −

p∑

j=1

βjXij)
2 + λ

n∑

j=1

|βj | (2)

This has the effect of shrinking the estimated coefficients towards
zero and also setting many of the coefficients to exactly zero,
hence performing variable selection.
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Extending in Two Directions

We wish to extend the linear regression model in two important
directions. First, we remove the additive assumption by including
interaction terms, using the standard two-way interaction model,

Yi = β0 +

p∑

j=1

βjXij +
∑

j>k

βjkXijXik + ǫi , i = 1, . . . n. (3)

Second, we extend (3) to the more general non-linear domain
using,

Yi = β0 +

p∑

j=1

fj(Xij) +
∑

j>k

fjk(Xij ,Xik) + ǫi , i = 1, . . . n. (4)
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Difficulties

While (3) and (4) are well known models, fitting them
involves estimating on the order of p2 terms, most of which,
in the case of (4), are two-variate functions.

Two possible approaches are to
1 Consider all possible two-way interactions but this will likely

result in many false positive interactions swamping the main
effects.

2 Search only for main effects and then attempt to find
interactions among the subset of selected variables. However,
this approach risks missing important interactions where the
main effects are weak.
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Difficulties

While (3) and (4) are well known models, fitting them
involves estimating on the order of p2 terms, most of which,
in the case of (4), are two-variate functions.

Two possible approaches are to
1 Consider all possible two-way interactions but this will likely

result in many false positive interactions swamping the main
effects.

2 Search only for main effects and then attempt to find
interactions among the subset of selected variables. However,
this approach risks missing important interactions where the
main effects are weak.

We wish to consider a third option which allows all
interactions to enter the model but gives preference to those
that are associated with variables that have already been
selected.
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Prior Literature

SHIM (Choi et al., 2010).
Fits non-additive but still linear model.

SpAM (Ravikumar et al., 2009).
Fits non-linear but still additive model.

Non-linear SIS (Fan et al., 2010).
Fits non-linear but still additive model.

Non-negative garrote (Yuan, 2007).
Discusses non-additive models but concentrates on additive
situation.

COSSO (Lin and Zhang, 2006).
Discusses non-additive models but concentrates on additive
situation.
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A General Penalization Approach

Our general approach is to minimize the following penalized
regression criterion,

1

2

∥∥∥∥∥∥
Y −

p∑

j=1

fj −

p∑

j=1

p∑

k=j+1

fjk

∥∥∥∥∥∥

2

+ P(f ), (5)

where fj = (fj(X1j ), ..., fj (Xnj))
T ,

fjk = (fjk(X1j ,X1k), ..., fjk(Xnj ,Xnk))T , Y and ǫ are n-dimensional
vectors respectively corresponding to the response and error terms,
and P(f ) is a penalty function on the fj and fjk terms.
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SpIn: An Intuitive Penalty

A simple approach to fit (4) would be to use a penalty function of
the form,

P(f ) = λ




p∑

j=1

‖fj‖+

p∑

j=1

p∑

k=j+1

‖fjk‖



 . (6)

This penalty is analogous to fitting a group Lasso.

It treats main effects and interactions equally which has two
problems:

1 There are many interaction terms so we will end up with a
high number of false positives.

2 Interaction terms are less interpretable so, all other things
equal, we would prefer to include main effects.
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Variable selection using Adaptive Non-linear Interaction

Structures in High dimensions

We use the following penalty function,

P(f ) = λ1

p∑

j=1



‖fj‖
2 +

p∑

k: k 6=j

‖fjk‖
2




1/2

+λ2

p∑

j=1

p∑

k=j+1

‖fjk‖. (7)

λ1 can be interpreted as the weight of the penalty for each
additional predictor included in the model, and λ2 corresponds to
an additional penalty on the interaction terms for the reduction in
interpretability of a non-additive model.
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VANISH Algorithm: Main Effects

0. Initialize f̂l = 0, f̂lk = 0 for all j , k ∈ {1, ..., p}.

For each j ∈ {1, ..., p},

1. Compute the residual: Rj = Y −
∑

l :l 6=j f̂l −
∑

k>l f̂lk .

2. Compute P̂j = SjRj , where Sj is a linear smoother. This gives
the unshrunk estimate of fj .

3. Set f̂j = αj P̂j where 0 ≤ αj ≤ 1 is the shrinkage parameter
defined below.

When all ‖̂fjk‖ = 0 then the shrinkage parameter can be

computed in closed form using αj =
(
1 − λ1/‖P̂j‖

)

+
.
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VANISH Algorithm: Interaction Terms

For each (j , k) with 1 ≤ j < k ≤ p,

4. Compute residual: Rjk = Y −
∑p

l=1 f̂l −
∑

m>l , (l ,m)6=(j ,k) f̂lm

5. Set P̂jk = SjkRjk . P̂jk is the projection of the residuals, Rjk ,
and corresponds to the unshrunk estimate of fjk .

6. Let f̂jk = αjk P̂jk where 0 ≤ αjk ≤ 1 is a shrinkage parameter.

When the main effects associated with variables j and k are
missing from the model then

αjk =
(
1 − (2λ1 + λ2)/‖P̂jk‖

)

+
.
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Effect of the VANISH Algorithm

The VANISH algorithm will add variabiles to the model iff the
norms of their unshrunk estimates are above a given threshold. For
the main effect fj the threshold is given by

Threshold for fj to enter =

{
λ1 , ‖fjk‖ = 0 for all k

0 , otherwise.

The threshold for adding the interaction term fjk is as follows,

Threshold for fjk to enter = λ2 +






2λ1 , ‖fj‖ = ‖fk‖ = 0

λ1 , either ‖fj‖ 6= 0 or ‖fk‖ 6= 0

0 , ‖fj‖ 6= 0 and ‖fk‖ 6= 0,
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Methods

VANISH Our approach

SpAM (Ravikumar et al., 2009)

SpAMLS : least squares fits based on each SpAM model

SpIn: SpAM with interactions, using penalty (6)

SpInLS : least squares fits based on each SpIn model

Oracle: least squares fit on the correct model

Note: we use an independently generated validation set to select
the tuning parameters for each method
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Linear Simulation Study

Generated 100 training data sets, each with n = 75
observations, and p = 100 predictors.

The p = 100 case corresponded to 100 × 101/2 = 5, 050
possible main effects and interactions.

sm = 5 of the regression coefficients were randomly set to
either ±0.5, or to ±1.

Each generated model contained sint = 0, sint = 2 or sint = 6
interaction terms produced by multiplying together two main
effects with non-zero coefficients.

The main effects as well as the error terms came from an
uncorrelated standard normal distribution.
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Linear Simulation Results
Simulation Statistic VANISH SpInLS SpIn SpAMLS SpAM Oracle

False-Pos Main 0.81 0.16 0.7 0.74 13.38 −

β = ±1 False-Neg Main 0 0.17 0.08 0 0 −

False-Pos Inter 0.67 5.8 31.42 − − −

Sint = 0 False-Neg Inter 0 0 0 − − −

L2-sq 0.125 0.739 1.54 0.11 0.376 0.068
False-Pos Main 2.41 0.2 0.53 1.71 12.88 −

β = ±1 False-Neg Main 0.01 1.24 0.88 0.25 0.07 −

False-Pos Inter 2.03 8.52 27.62 − − −

Sint = 2 False-Neg Inter 0.06 0.63 0.49 − − −

L2-sq 0.408 3.048 3.846 2.79 3.188 0.118
False-Pos Main 5.81 0.19 0.34 3.03 11.79 −

β = ±1 False-Neg Main 0.22 2.99 2.52 1.25 0.58 −

False-Pos Inter 6.62 9.99 25.42 − − −

Sint = 6 False-Neg Inter 1.18 3.85 3.46 − − −

L2-sq 2.758 14.674 12.313 8.613 8.253 0.221
False-Pos Main 4.67 0.11 0.27 2.75 9.93 −

β = ±0.5 False-Neg Main 1.07 4.08 3.62 2.09 1.24 −

False-Pos Inter 5.06 5.77 16.94 − − −

Sint = 6 False-Neg Inter 2.86 5.19 4.68 − − −

L2-sq 1.671 4.345 2.996 2.804 2.321 0.199
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Non-Linear Simulation Study

Generated 100 training data sets, with either
n = 300/pm = 50 or n = 75/pm = 100 observations/main
effects, each independently sampled from a Uniform
distribution on the [0, 1] interval.

The responses were produced, either using the non-linear basis
function model,

Y = f1(x1)+f2(x2)+f3(x3)+f4(x4)+f5(x5)+f12(x1, x2)+f13(x1, x3)+ǫ,

or else the same model without the interaction terms.

For some simulations fj and fjk were generated from the same
Fourier basis used by the candidate methods.

For other simulations the functions had a different functional
form than the Fourier basis used by the candidate methods.
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Non-Linear Simulation Results
Simulation Statistic VANISH SpInLS SpIn SpAMLS SpAM Oracle

False-Pos Main 0.04 0 0 0.1 15.12 −

Basis False-Neg Main 0.23 1.42 0.9 0.23 0 −

model False-Pos Inter 0.51 1.14 9.69 − − −

Sint = 2 False-Neg Inter 0.06 0.21 0.06 − − −

L2-sq 0.38 0.879 1.848 1.276 1.437 0.267
False-Pos Main 0 0 0 0.08 15.48 −

Non Basis False-Neg Main 0 0.65 0.33 0 0 −

model False-Pos Inter 0.48 1.96 9.72 − − −

Sint = 2 False-Neg Inter 0 0.2 0.07 − − −

L2-sq 0.333 1.023 2.100 1.217 1.405 0.277
False-Pos Main 0 0 0 0.03 16.58 −

Non Basis False-Neg Main 0 0.05 0.01 0 0 −

model False-Pos Inter 0.06 0.72 11.37 − − −

Sint = 0 False-Neg Inter 0 0 0 − − −

L2-sq 0.116 0.223 1.064 0.114 0.232 0.112

False-Pos Main 0.05 0 0 0.22 7.47 −

Basis model False-Neg Main 0.17 1.94 1.85 0.13 0.01 −

p = 100 False-Pos Inter 0.04 0.03 1.69 − − −

n = 75 False-Neg Inter 0.27 0.94 0.85 − − −

L2-sq 0.452 2.221 1.793 0.771 0.882 0.217
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True and Estimated Main Effects
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True and Estimated Interaction Effects
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Application on Boston Housing Data

There are 506 observations and 10 predictors, with the
response corresponding to the median house value in each
neighborhood.

We add 30 noise variables, 20 drawn from a Uniform(0, 1)
distribution and the remainder generated by permuting the
rows of the design matrix.

Hence the data contained a total of 820 potential main effects
and interactions of which 765, or 93%, corresponded to noise
terms.

We used ten-fold cross-validation to select the tuning
parameters.

We first randomly divided the data into a training set of 400
observations and used the remainder as a test set. We then
fitted both VANISH and SpIn to the training data, using
ten-fold cross-validation to select the tuning parameters.
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Boston Housing Results

VANISH correctly excluded the 765 noise terms and selected a
model containing four main effects and one interaction term.

The main effects corresponded to percentage of lower status
of the population (lstat), the average number of rooms per
dwelling (rm), pupil-teacher ratio by town (ptratio), and nitric
oxides concentration in parts per 10 million (nox).

The interaction term corresponded to lstat and nox.

By comparison SpInLS selected only the lstat variable, while
the shrunk version of SpIn selected a large 27 variable model
including 17 noise variables.

The five variable VANISH model was superior to the one
variable SpInLS model on 99 of 100 random partitions of the
data (MSE of 16.22 vs 29.15).
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Interaction Term
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Summary

In order to make this problem feasible we model a sparse
response surface in terms of the main effects and the
interactions.

Simulations show that in practice it can produce significant
improvements in performance over simpler alternatives.

Even when the true model is additive VANISH is competitive
relative to the purely additive SpAM approach.

The VANISH fitting algorithm is very efficient, allowing it to
search through thousands of non-linear two-dimensional
surfaces.

Finally, VANISH is sparsistent (asymptotically selects the
correct model), provided the signal and noise variables are not
too highly correlated. The exact condition on the design
matrix is similar to that for the Lasso and SpAM methods.
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