

STA 6246 Linear Models

Spring 2026

Instructor Hani Doss—222 Griffin-Floyd; email: doss@stat.ufl.edu (email is primarily for administrative purposes, not for questions regarding the course material; for such questions, talk to me during office hours). Office Hours: Tu 12:50pm–1:40pm, Th 1:55pm–2:45pm. If you plan to see me during office hours, then please come to my office as soon as possible after the start of office hours.

Course Description This course covers the theory of the general linear model, including regression and analysis of variance models, least squares estimates, and distribution theory when the errors are normally distributed. A geometric approach is emphasized.

Orientation of the Course This course covers a specific body of material in the theory of linear models that every Ph.D. student in Statistics should know, regardless of the research area of his/her dissertation. This is not a course on experimental design, nor is it a course on applied regression. If what you are looking for is a course on these topics, you should drop this course immediately.

Prerequisites Prerequisites—in substance, as opposed to by catalog number—are:

- A course in regression at the graduate level (STA 6207 fulfills this requirement)
- A one-year sequence in theoretical statistics at the graduate level (having taken STA 6326 and currently taking STA 6327 fulfills this requirement)
- Familiarity with standard definitions and material on linear algebra (at least at the undergraduate level)
- Some familiarity with R

Text R. Christensen, *Plane Answers to Complex Questions: The Theory of Linear Models* (5th edition, 2020), Springer. (The fourth edition is OK also.)

We will use the statistical computing language R (which can be downloaded for free from <http://www.r-project.org>), and a student who is not familiar with it is strongly advised to become so by the fourth week of the semester.

We will not use the book by Christensen much. However, it is an excellent text, and the approach used in that book is close to the approach we will use. You may not wish to buy it, but you need to be advised that every serious doctoral student in Statistics must own a good book on linear models.

Course Web Page <https://users.stat.ufl.edu/~doss/Courses/lm>

Grading Your final course grade will be based on the four components below, with the stated weights:

Exam 1:	Thursday February 19, 8:20pm; covers everything up to and including the lectures of Tuesday February 17. Note the evening time slot.	25%
Exam 2:	Thursday March 26, 8:20pm; covers all material after Exam 1 up to and including the lectures of Tuesday March 24. Note the evening time slot.	25%
Final:	Comprehensive. April 27, 10:00am–12:00pm.	35%
HW:	About 7 or 8 homework assignments.	15%

The solutions to the homework assignments must be entirely your own (this applies also to R code).

For Exams 1 and 2, you will have two hours for a 50-minute exam.

Topics

- Overview of general linear models.
- Review of basic linear algebra, including projections, eigenvalues and eigenvectors, and spectral decomposition of symmetric matrices.
- The multivariate normal distribution.
- Least squares estimates: their derivation and basic properties for models of full rank. Relationship between the normal equations and projection operator approaches. Weighted least squares.
- Distribution of least squares estimates under normal errors.
- One-way and two-way analysis of variance.
- Linear regression.
- Implementation in R.
- Introduction to nonparametric regression (local linear smoothing, regression splines, smoothing splines); generalized additive models; implementation of these in R.
- Hypothesis testing. The general linear hypothesis. Discussion of full-rank and less-than-full-rank models. The F test; the likelihood ratio test and connections with the classical tests in large sample theory for parametric models.
- Penalized regression, including ridge regression and lasso.
- Multiple comparisons.
- Bayesian analysis of linear models.

Initial Assignment

- 1 Read Appendix A of PACQ. You need to have read the first half before the second lecture.
- 2 Do all the exercises in Appendix A (but for exercises with long lists only do a few parts). This is not to be handed in. You should do this before the third lecture.
- 3 Read pages 13–22 of the class notes. You should do this before the third lecture. Note: some of this material duplicates, or elaborates on, what is in Appendix A of PACQ.
- 4 Start to get familiar with R if you aren't already.

Note: Items 1–3 above should be a review.

General Course Policies

- All emails to me *must* have the string “LM” in the subject line (so I can retrieve emails quickly) and must be sent from your official UF mail account.
- Cell phones may not be used during class; they should be set on silent. Laptops must be shut.
- If you have a disability and will request accommodations you should see me as early in the semester as possible.