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Introduction

Data Example

Working Memory in Schizophrenia Patients

@ N=28 subjects: 15 schizophrenia patients and 13 healthy controls
o fMRI Tasks: Serial Item Recognition Paradigm (SIRP)

e Encoding set: Subjects asked to memorize 1, 3, or 5 target digits.
° . Subjects sequentially shown and asked
to press a button:

@ with their index finger, if the probe matched
o with their middle finger, if not.

@ 6 runs per subject: (177 scans per run for each subject)
e 3 runs of working memory tasks on each of 2 days

@ Objective: Compare working memory-related brain activity between
patients and controls.

Data from the Biomedical Informatics Research Network (BIRN) [1]: Potkin et al. (2002), Proc. 41st Annu. Meeting Am.

College Neuropsychopharm.
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Introduction

Data Characteristics

Massive data sets

N = 28 subjects, V ~ 900,000 voxels, S = 177 scans per run, 3 runs
each day, 2 days (sessions)

Almost 1 billion spatio-temporal data points per subject! 26 billion
for all subjects!!

@ Temporal correlations

Complex spatial correlations
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Introduction

Common Neuroimaging Objectives

@ Activation studies: localize regions of the brain activity when
performing an experimental task

@ Connectivity studies: identify what brain areas show similar patterns
of activity over time = distributed networks of brain function

© Prediction studies: use functional brain images to
e predict neural activity

e predict experimental conditions, behavior or a subject's group
membership (e.g. psychiatric condition, treatment response)
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Introduction

General Analysis Approach

e Fit a linear model separately for each subject (at each voxel)
o Address correlations between scans using AR models (+ white noise)

@ Pre-coloring/temporal smoothing [Worsley and Friston, 1995]
@ Pre-whitening [Bullmore et al, 1996; Purdon and Weisskoff, 1998]
o Alternative structures available for PET [Bowman and Kilts, 2003]

o Fit Stage Il linear model that combines subject-specific estimates
e A two-stage (random effects) model

o Simplifies computations*
o Sacrifices efficiency

@ Compute t-statistics at each voxel and threshold
o Consider a multiple testing adjustment (Bonferonni-type, FDR, RFT)
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Stage |l Model Properties I | e

o Voxel-by-voxel analyses

@ Assumes independence between brain activity measures at different
brain locations

@ Targets activation analyses

@ Disregards functional connectivity
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Spatial Correlations Y | e
Distances
@ Physical (Geometric)
o Anatomical (a) Functional (b) Geometric
e Functional 1
0.8
' 0.6
@ The complex o 5
neuroanatomy and
0.2

neurophysiology make
basic assumptions of
many spatial methods
questionable for
neuroimaging

Figure: Selected axial slice of the
cerebellum.

Bowman (2007), JASA.
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Spatial activation modeling
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Spatial Modeling Framework S | oo

@ Stage I: perform voxel-level GLM analyses for each individual (AR
model for temporal correlations).

@ Stage Il: we propose models that address spatial correlations

@ Define brain regions using
neuroanatomic parcellation (e.g.
Brodmann or AAL)

@ Spatial correlations

o Within regions
o Between regions
@ Inferences

o Voxel-level
o Regional

Bowman (Emory University) Spatial Modeling of Neuroimaging Data UF Winter Workshop 2011 11 / 36



Spatial activation modeling
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Imaging Statistics

N\ | ugj,aigj,aél- ~  Normal(pz; + loz,-g,-,aéjl)

g | A3 ~ Normal(1ugg, A21)
-2
&
a,-j|l'j Y Normal(O,Fj)

)\;/2 ~ Gamma(c, dp)

I'J.*1 ~ Wishart{(hoHoj)_l,hO}

o ~ Gammay(ao, bp)

° Yigi = (Yigits - Yigive)'s g = (Hgjts - - - 5 Hgjv,)'s and
a,-j = (Olilja e ,oz,'Gj)’

Bowman et al. (2008), Neurolmage
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Spatial activation modeling

@ MCMOC via Gibbs Sampler

@ Exchangeable correlation structure between voxels within the same
brain region

o I; yields (unstructured) correlation model between regions

@ Relatively fast estimation

o MATLAB Software available at www.sph.emory.edu/bios/CBIS/

@ Related Spatial Models / Extensions: Derado et al. (2010),
Biometrics
e Extends model to capture temporal correlations between multiple
scanning sessions (e.g. days or treatment periods)
o BUT, does not capture between region spatial correlations
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Spatial activation modeling
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Spatial activation modeling
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Spatial activation modeling
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Spatial activation modeling
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Spatial activation modeling
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Spatial activation modeling
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Spatial activation modeling
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Spatial activation modeling
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Task-Related Connectivity Maps: Healthy Controls
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Spatial activation modeling
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BSMac framework

o Considers activation objectives and task-related functional
connectivity
@ Models correlations in brain activity

e Within defined neuroanatomic regions
o Between neuroanatomic regions

e Performs global analyses (not voxel-by-voxel)
@ Permits voxel-level and region-level inferences
Limitations
@ Does not account for temporal dependence between multiple sessions

o Fairly simple intra-regional correlation model
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Spatial prediction model
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@ Emerging direction in neuroimaging

@ Increase clinical applicability

e Use imaging data to predict clinical outcomes (e.g. to distinguish
treatment responders and non-responders)

o We address intermediate objective of predicting neural responses

o Forecast neural representations of disease progression
@ Predict neural responses to various treatments

@ We develop a spatial modeling framework within this prediction
context
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Spatial prediction model

Motivating Data Example

@ From the Alzheimer's Disease Neuroimaging Initiative (ADNI)
database http://www.loni.ucla.edu/ADNI/.

@ Goal of ADNI project: to develop biomarkers of Alzheimer's Disease
in elderly subjects.

o Study participants receive [8F]-2-fluoro-2-deoxy-2-glucose (FDG)
PET scans at: baseline, 6 months, 12 months and 24 months.

@ In our analysis, we used the baseline and month 6 scans.

e Participants classified as: mild cognitive impairment (MCl) patients,
Alzheimer's disease (AD) patients, or healthy controls (HC).

@ Training data set: 40 AD and 40 HC subjects; Testing data set: 33
AD and 33 HC subjects.

ADNI

Alzheimer’s Disease Neuroimaging Initiative
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Spatial prediction model

Bayesian spatial hierarchical model

@ We propose a novel Bayesian spatial hierarchical model for predicting
follow-up neural activity based on baseline functional neuroimaging
data and other patient characteristics.

@ Model borrows strength from the spatial correlations present in the
data.
Notation

@ Let i=1,...,n denote subjects, v=1,...,V voxels, g =1,...,G
regions.

o Let Y(v) denote the regional cerebral blood flow (rCBF) (a proxy for
brain activity) at voxel v.

T
o Let Yig(v) = (Y,-g(v)(l), Y,-g(v)(2)> , (1)=baseline, (2)=follow-up
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Spatial prediction model

Spatial dependence: 3D neighborhood

@ For each voxel in the analysis, we define a 3D neighborhood as the 26
immediate neighboring voxels.

@ Borrow strength locally.
@ We consider only within-region neighbors.
@ This information is saved in a connectivity matrix W.
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Spatial prediction model

Yig(V)|Bg: bgs Qigs Vovs Zg ~ N(Bg(v) + ¢ (v) + cxig + Xigvg, Z)
b |b, v AV, E,v=1...,V~N( Z Wl ¢, %) (MCAR(p, X))
ﬂgi(v)’)‘gj ~ N(ﬁoga)\é) (Avgj = Agj, YV € region g)
Z,' ~ Wishart((c21) ', a1)
T ~ Wishart ()71, )
il ~N(O.1}) (a5 =a})
(F))~' ~ Wishart{(h;H,)" ", h;} j=1,2
)\;12 ~ Gamma(aj, bj)
Vejal Tgi 2- ~ N(O,ngjq) g=1,...,Q (covariates)
T_q ~ Gamma(ep, f)

8!
p ~ Uniform({0, 0.05, 0.1, ..., 0.9, 0.91, ..., 0.99 })
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Spatial prediction model

Estimation and Prediction

o Estimation is performed using MCMC techniques implemented via
Gibbs sampler.
@ Prediction:
o For region g, we can write

Ye= (Y71 Y0) " ~N((1g 1, 1g) " Xg), where Zp = Z, @y,

e Then Y,'*g’g‘Y,'*gJ ~ N(b,’*g,A;*g), where
_ Te-1
bicg = g+ ZE17 (Yig 1 — Bing 1)

and pj, = By + @, + 1y, @ g + 1y, @ Xixgy ¥,y -

e Inputting the posterior mean of the parameters obtained from the
MCMC estimation = estimated conditional mean b,

o The follow-up rCBF Y, > are predicted using the mean of the
estimated conditional distribution , i.e. bj«g.
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Spatial prediction model
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Subject 1: observed Y Subject 1: predicted Y2

Figure: Individualized observed and predicted 6 month follow-up rCBF
measurements for a test subject in the AD group (axial slice 40).

Bowman (Emory University) Spatial Modeling of Neuroimaging Data UF Winter Workshop 2011 29 / 36



Spatial prediction model

) EMORY | CB|S
RoLLins ;
Results cont. SUSSSL | imang

HEALTH

Subject 19: observed Y2 Subject 19: predicted Y

Figure: Individualized observed and predicted 6 month follow-up rCBF
measurements for a test subject in the AD group (axial slice 40).
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Spatial prediction model

Prediction Error

@ We evaluate the prediction error using a scale-free (squared error) loss
function, which adjusts for local magnitude of brain activity

% SV P W) - O
D Y%)

stPMSE({ VP (v}, (%P (v)}
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Comparative Analyses

Slice 40

Slice 45

Model

Aver. error

Bowman (Emory University)

Slice 40

Slice 45

BSMac

Spatial prediction model
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Slice 40

Slice 45

GLM

0.154 (85.5% increase)  0.157 (89.2% increase)

Spatial Modeling of Neuroimaging Data
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Spatial prediction model

Simulation Study

@ We simulated 100 data sets for 15 subjects.
@ Selected 5 AAL regions with sizes ranging from 234 to 4,655 voxels.
@ Specified the true values for B,, ¢,, a;, and v,.

@ The rest of the (hyper)parameters drawn from their prior distributions.

Region
1 2 3 4 5
True Est. True Est.| True Est.| True Est.|True Est.

Z;l 323.26 321.09]160.61 159.99 |11.46 11.46| 3.44 3.44|3.57 3.57
Zéz 120.75 120.46| 4530 45.11|37.24 37.19|10.45 10.45| 3.38 3.38
Zf -41.95 -41.25|-33.70 -33.40|16.32 16.30| 4.08 4.08|2.40 2.40

Param.

Table: Summary of the simulation results for the parameters in the covariance
matrix Z,.
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Spatial prediction model
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Our model

@ Incorporates both local within-region spatial correlations and
long-range correlations between neuroanatomic regions.

@ Accounts for temporal dependence between baseline and follow-up
brain activity.

@ Yields a method for predicting follow-up brain activity based on the
baseline activity and relevant subject characteristics.

@ Exhibits increased accuracy relative to GLM and BSMac
Limitations

@ Does not account for local spatial correlations across entire brain
region

@ Current estimation procedure computationally costly

Bowman (Emory University) Spatial Modeling of Neuroimaging Data UF Winter Workshop 2011 34 /36



Summary

Summary

We propose:

© BSMac: a spatial modeling framework for combined activation and
connectivity analyses of fMRI data

o Captures spatial correlations, both between voxels in the same
anatomical region and between regions

o Yields more informative analyses and more efficient estimates than
conventional methods

o Recommended use for studies in which it is not important to model
correlations between multiple scanning sessions
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Summary

Summary

We propose:

© BSMac: a spatial modeling framework for combined activation and
connectivity analyses of fMRI data

o Captures spatial correlations, both between voxels in the same
anatomical region and between regions

o Yields more informative analyses and more efficient estimates than
conventional methods

o Recommended use for studies in which it is not important to model
correlations between multiple scanning sessions

@ A novel prediction framework for functional neuroimaging data

o Captures spatial correlations, both between voxels in the same
anatomical region and between regions, as well as temporal correlations
between multiple scanning sessions

e May be used for activation and task-related connectivity inferences

o In context of prediction objectives, yields improved prediction error
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