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Data Example

Working Memory in Schizophrenia Patients

N=28 subjects: 15 schizophrenia patients and 13 healthy controls

fMRI Tasks: Serial Item Recognition Paradigm (SIRP)

Encoding set: Subjects asked to memorize 1, 3, or 5 target digits.
Probing set: Subjects sequentially shown single digit probes and asked
to press a button:

with their index finger, if the probe matched
with their middle finger, if not.

6 runs per subject: (177 scans per run for each subject)

3 runs of working memory tasks on each of 2 days

Objective: Compare working memory-related brain activity between

patients and controls.

Data from the Biomedical Informatics Research Network (BIRN) [1]: Potkin et al. (2002), Proc. 41st Annu. Meeting Am.

College Neuropsychopharm.

Bowman (Emory University) Spatial Modeling of Neuroimaging Data UF Winter Workshop 2011 5 / 36



Introduction Spatial activation modeling Spatial prediction model Summary

Data Characteristics

Massive data sets

N = 28 subjects, V ≈ 900, 000 voxels, S = 177 scans per run, 3 runs

each day, 2 days (sessions)

Almost 1 billion spatio-temporal data points per subject! 26 billion

for all subjects!!

Temporal correlations

Complex spatial correlations
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Common Neuroimaging Objectives

1 Activation studies: localize regions of the brain activity when

performing an experimental task

2 Connectivity studies: identify what brain areas show similar patterns

of activity over time ⇒ distributed networks of brain function

3 Prediction studies: use functional brain images to

predict neural activity

predict experimental conditions, behavior or a subject’s group
membership (e.g. psychiatric condition, treatment response)
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General Analysis Approach

Fit a linear model separately for each subject (at each voxel)
Address correlations between scans using AR models (+ white noise)

Pre-coloring/temporal smoothing [Worsley and Friston, 1995]
Pre-whitening [Bullmore et al, 1996; Purdon and Weisskoff, 1998]
Alternative structures available for PET [Bowman and Kilts, 2003]

Fit Stage II linear model that combines subject-specific estimates
A two-stage (random effects) model

Simplifies computations*
Sacrifices efficiency

Compute t-statistics at each voxel and threshold

Consider a multiple testing adjustment (Bonferonni-type, FDR, RFT)
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Stage II Model Properties

Voxel-by-voxel analyses

Assumes independence between brain activity measures at different

brain locations

Targets activation analyses

Disregards functional connectivity
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Spatial Correlations

Distances

Physical (Geometric)

Anatomical

Functional

The complex
neuroanatomy and
neurophysiology make
basic assumptions of
many spatial methods
questionable for
neuroimaging

(a) Functional (b) Geometric
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Figure: Selected axial slice of the
cerebellum.

Bowman (2007), JASA.
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Spatial Modeling Framework

Stage I: perform voxel-level GLM analyses for each individual (AR

model for temporal correlations).

Stage II: we propose models that address spatial correlations

Define brain regions using
neuroanatomic parcellation (e.g.
Brodmann or AAL)

Spatial correlations

Within regions
Between regions

Inferences

Voxel-level
Regional
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BSMac

Stage II: Bayesian Spatial Model for Activation and Connectivity (BSMac):

Yigj | µgj , αigj , σ
2
gj ∼ Normal(µgj + 1αigj , σ

2
gj I)

µgj | λ2
gj ∼ Normal(1µ0gj , λ

2
gj I)

σ−2
gj ∼ Gamma(a0, b0)

αij | Γj ∼ Normal(0,Γj)

λ−2
gj ∼ Gamma(c0, d0)

Γ−1
j ∼ Wishart

{
(h0H0j)

−1, h0

}
Yigj = (Yigj1, . . . ,YigjVg )′,µgj = (µgj1, . . . , µgjVg )′, and

αij = (αi1j , . . . , αiGj)
′

Bowman et al. (2008), NeuroImage
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BSMac

MCMC via Gibbs Sampler

Exchangeable correlation structure between voxels within the same

brain region

Γj yields (unstructured) correlation model between regions

Relatively fast estimation

MATLAB Software available at www.sph.emory.edu/bios/CBIS/

Related Spatial Models / Extensions: Derado et al. (2010),
Biometrics

Extends model to capture temporal correlations between multiple
scanning sessions (e.g. days or treatment periods)
BUT, does not capture between region spatial correlations
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BSMac MATLAB Toolbox

GUI Interface
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BSMac MATLAB Toolbox

Basic Summary Plots
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BSMac MATLAB Toolbox

Interactive Activation Maps
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BSMac MATLAB Toolbox

Interactive Activation Maps
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BSMac MATLAB Toolbox

Task-Related Connectivity Maps: Schizophrenia Patients

Bowman (Emory University) Spatial Modeling of Neuroimaging Data UF Winter Workshop 2011 20 / 36



Introduction Spatial activation modeling Spatial prediction model Summary

BSMac MATLAB Toolbox

Task-Related Connectivity Maps: Healthy Controls
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Conclusions: BSMac

BSMac framework

Considers activation objectives and task-related functional

connectivity

Models correlations in brain activity

Within defined neuroanatomic regions
Between neuroanatomic regions

Performs global analyses (not voxel-by-voxel)

Permits voxel-level and region-level inferences

Limitations

Does not account for temporal dependence between multiple sessions

Fairly simple intra-regional correlation model
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Prediction Studies

Emerging direction in neuroimaging

Increase clinical applicability

Use imaging data to predict clinical outcomes (e.g. to distinguish
treatment responders and non-responders)

We address intermediate objective of predicting neural responses

Forecast neural representations of disease progression
Predict neural responses to various treatments

We develop a spatial modeling framework within this prediction

context
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Motivating Data Example

From the Alzheimer’s Disease Neuroimaging Initiative (ADNI)

database http://www.loni.ucla.edu/ADNI/.

Goal of ADNI project: to develop biomarkers of Alzheimer’s Disease

in elderly subjects.

Study participants receive [18F]-2-fluoro-2-deoxy-2-glucose (FDG)

PET scans at: baseline, 6 months, 12 months and 24 months.

In our analysis, we used the baseline and month 6 scans.

Participants classified as: mild cognitive impairment (MCI) patients,

Alzheimer’s disease (AD) patients, or healthy controls (HC).

Training data set: 40 AD and 40 HC subjects; Testing data set: 33

AD and 33 HC subjects.
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Bayesian spatial hierarchical model

We propose a novel Bayesian spatial hierarchical model for predicting

follow-up neural activity based on baseline functional neuroimaging

data and other patient characteristics.

Model borrows strength from the spatial correlations present in the

data.

Notation

Let i = 1, . . . , n denote subjects, v = 1, . . . ,V voxels, g = 1, . . . ,G

regions.

Let Y (v) denote the regional cerebral blood flow (rCBF) (a proxy for

brain activity) at voxel v .

Let Yig (v) =
(
Yig (v)(1),Yig (v)(2)

)T
, (1)=baseline, (2)=follow-up
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Spatial dependence: 3D neighborhood

For each voxel in the analysis, we define a 3D neighborhood as the 26

immediate neighboring voxels.

Borrow strength locally.

We consider only within-region neighbors.

This information is saved in a connectivity matrix W .
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Model

Yig (v)|βg ,φg ,αig ,γgv ,Zg ∼ N(βg (v) + φg (v) + αig + Xigγg ,Zg )

φv |φv ′ , v 6= v ′,Σ, v = 1 . . . ,V ∼ N
(
ρ
∑

wvv′
wv+

Iφv ′ ,
1

wv+
Σ
) (

MCAR(ρ,Σ)
)

βgj(v)|λ2
gj ∼ N(β0gj , λ

2
gj) (λvgj = λgj ,∀v ∈ region g)

Z−1
g ∼Wishart

(
(c1Ω1)−1, c1

)
Σ−1 ∼Wishart

(
(c2Ω2)−1, c2

)
αij |Γj ∼ N(0,Γj) (αij = α

(j)
i )

(Γj)
−1 ∼Wishart{(hjHj)

−1, hj} j = 1, 2

λ−2
gj ∼ Gamma(aj , bj)

γgjq|τ2
gjq ∼ N(0, τ2

gjq) q = 1, . . . ,Q (covariates)

τ−2
gjq ∼ Gamma(e0, f0)

ρ ∼ Uniform({0, 0.05, 0.1, ..., 0.9, 0.91, ..., 0.99 })

Model Details
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Estimation and Prediction

Estimation is performed using MCMC techniques implemented via

Gibbs sampler.

Prediction:

For region g , we can write
Yg = (YT

g ,1,Y
T
g ,2)T ∼ N

(
(µT

g ,1,µ
T
g ,2)T ,Σg

)
, where Σg = Zg ⊗ IVg .

Then Yi∗g ,2|Yi∗g ,1 ∼ N(bi∗g ,Ai∗g ), where

bi∗g = µi∗g ,2 + ΣT
12Σ−1

11 (Yi∗g ,1 − µi∗g ,1)

and µi∗g = βg + φg + 1Vg ⊗αi∗g + 1Vg ⊗ Xi∗gvγgv .

Inputting the posterior mean of the parameters obtained from the
MCMC estimation ⇒ estimated conditional mean b̂i∗g

The follow-up rCBF Yg ,2 are predicted using the mean of the

estimated conditional distribution , i.e. b̂i∗g .
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Results: Prediction for PET study of AD

Subject 1: observed Y (2) Subject 1: predicted Y (2)

Figure: Individualized observed and predicted 6 month follow-up rCBF
measurements for a test subject in the AD group (axial slice 40).
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Results cont.

Subject 19: observed Y (2) Subject 19: predicted Y (2)

Figure: Individualized observed and predicted 6 month follow-up rCBF
measurements for a test subject in the AD group (axial slice 40).

Bowman (Emory University) Spatial Modeling of Neuroimaging Data UF Winter Workshop 2011 30 / 36



Introduction Spatial activation modeling Spatial prediction model Summary

Prediction Error

We evaluate the prediction error using a scale-free (squared error) loss

function, which adjusts for local magnitude of brain activity

stPMSE
(
{Y (2)

i (v)}, {Ŷi
(2)

(v)}
)

=

√
1
N

∑N
i=1[Ŷi

(2)
(v)− Y

(2)
i (v)]2

1
N

∑N
i=1 Y

(2)
i (v)
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Comparative Analyses

Model BSPM BSMac GLM

Aver. error 0.083 0.154 (85.5% increase) 0.157 (89.2% increase)
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Simulation Study

We simulated 100 data sets for 15 subjects.

Selected 5 AAL regions with sizes ranging from 234 to 4,655 voxels.

Specified the true values for βg , φg , αi , and γg .

The rest of the (hyper)parameters drawn from their prior distributions.

Region

Param.
1 2 3 4 5

True Est. True Est. True Est. True Est. True Est.

Z 11
g 323.26 321.09 160.61 159.99 11.46 11.46 3.44 3.44 3.57 3.57

Z 22
g 120.75 120.46 45.30 45.11 37.24 37.19 10.45 10.45 3.38 3.38

Z 12
g -41.95 -41.25 -33.70 -33.40 16.32 16.30 4.08 4.08 2.40 2.40

Table: Summary of the simulation results for the parameters in the covariance
matrix Zg .
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Conclusions: Prediction Model

Our model

Incorporates both local within-region spatial correlations and

long-range correlations between neuroanatomic regions.

Accounts for temporal dependence between baseline and follow-up

brain activity.

Yields a method for predicting follow-up brain activity based on the

baseline activity and relevant subject characteristics.

Exhibits increased accuracy relative to GLM and BSMac

Limitations

Does not account for local spatial correlations across entire brain

region

Current estimation procedure computationally costly
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Summary

We propose:

1 BSMac: a spatial modeling framework for combined activation and
connectivity analyses of fMRI data

Captures spatial correlations, both between voxels in the same
anatomical region and between regions
Yields more informative analyses and more efficient estimates than
conventional methods
Recommended use for studies in which it is not important to model
correlations between multiple scanning sessions

2 A novel prediction framework for functional neuroimaging data

Captures spatial correlations, both between voxels in the same
anatomical region and between regions, as well as temporal correlations
between multiple scanning sessions
May be used for activation and task-related connectivity inferences
In context of prediction objectives, yields improved prediction error
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