1.1 Fisher "The Arrangement of Field Trials" (1926),
Journal of the Ministry of Agriculture 33:503-513
(Science Library - S3.J871)
3 Fundamentals of Experimental Design

1. Local Control - Reduction of Experimental Error
 By placing competing treatments in similarly located plots (locations)

2. Replication - Necessary to obtain estimates of experimental error variance (standard errors)

3. Randomization - For valid estimates of experimental error variance

1.2 Research Plan
- Objectives
- Identifying important factors & choosing which to vary & which to hold constant
- Characteristics to be measured (outcomes, responses, endpoints)
- Procedures for conducting tests and obtaining observations
- Number of replications (sample sizes)
- Available resources and materials (budget, capacity, ...)

1.3 Experiments, Treatments, Experimental Units

- Comparative Experiments - Data collection process used to compare two or more competing circumstances
- Treatments - Circumstances or conditions created for experiment. Basis of comparison
- Experimental Unit - Subject or item or location that is independently exposed to treatment - replication.
EXPERIMENTAL Error - Error variation among experimental units receiving identical treatments

- Natural Variation (Subjects vary, soil conditions vary...)
- Variability in Measurement (Measurement error)
- Irreproducibility of Treatment conditions (Variation due...)
- Interaction of Treatments and Experimental Units
- Extraneous Factors (Environmental conditions)

Observational Studies - "EXPERIMENTS" WHERE TREATMENT ASSIGNMENT TO SAMPLING UNITS IS NOT CONTROLLED BY EXPERIMENTER, BUT RATHER BY NATURE (SELF-SELECTED OR SUBJECT TO TREATMENTS). ETHICAL CONSIDERATIONS

**Similar Method of Analysis for Controlled Experiments and Observational Studies. More Difficult to Claim "CAUSE-AND-EFFECT" For Observational Studies (Alternative Explanations)

Research Hypotheses

- Objective of Experiment is typically to test theories regarding treatments (Research Hypotheses)
- When active (biological or behavioral) interventions are treatments, they need to be compared to a control treatment, or benchmark (e.g., placebo in drug trials, no fertilizer in ag trials, no manipulation in behavior trials)
- One-at-a-time versus multi factor experiments. Multi-factor trials allow for simultaneous measurement of effects of multiple factors (sets of treatments) and their interaction.
1.5 Local Control of Experimental Errors

Goal: Powerful tests! Precise estimates of mean of experimental conditions (treatments). Want reduced experimental error (or control it).

1. **Technique** - Proper application of treatments to units, accurate measurement of outcomes.

2. **Selection of Experimental Units** - Want homogeneous experimental units. Reflective of target population.
 - Similar environmental conditions in field trials.
 - Physical in drug trials.
 - Can't be too restrictive or lose external validity.

3. **Blocking** - Experimental units grouped into homogeneous groups, all units represented in each block (or groups of units). Goal is to remove variation in blocks.
 - Criteria: Proximity (geographic), physical characteristics, time (e.g., day), managing tasks in experiment (batches), (technicians).

4. **Matching Strategies based on influential factors**:
 - Pair matching (exact value vs. caliper value).
 - Non-Pair Matching (frequency-based vs. mean-based).

Experiment Design - Arrangement of experimental units to control experimental error and handle the desired treatment design.
Experiment Design without Blocking

- **Treatments**
- **Replicates per treatment** \(N = r k \)
- Randomly assign tests to experimental units.

Completely Randomized Design

Book Example:
- \(t = 3 \) Engine additives
- \(r = 2 \) rep (engines) per additive.

Experiment w/ one blocking criteria

- **Block 1**
 - A
 - C
 - Unit 2
 - Unit 3
- **Block 2**
 - B
 - C
 - Unit 4
 - Unit 5
 - Unit 6

Randomized Complete Block Design

Covariates for Statistical Control of Variation

- Data consists of \(n \) pairs: \((x_i, y_i)\)
- Suppose \(x_i \) is pre-test score for subject \(i \)
- \(y_i \) is post-test score for subject \(i \)

2 Tests are to be compared

- \(\bar{y}_1 \) mean post-test score for treatment 1
- \(\bar{y}_2 \) mean post-test score for treatment 2

Want to adjust since mean pre-test scores differ.
Replication for Valid Experiments

- Independent replication =⇒ Reproducibility of results
- Insures against unexpected results due to accidental errors in experimental application
- Allows a means of estimating experimental error variance
- Increases precision of estimates of sample means.

Observational unit ≠ Experimental Unit (Plant in plot, single blind sample w/ Pen).

Variance of observations on experimental units having received treatment independently is experimental error, variance of observational units from the same experimental unit is not experimental error.

Example: 2 pens of animals receiving 2 ratios.
No real replication since pen is experimental unit.
Animals are observational units.

Solution: have multiple pens, look at std. err. among pen means (not among animals within pens).

How many replications? Power considerations

2 Independent samples. (Equal sample sizes) $\sigma^2 = \sigma_1^2 = \sigma_2^2 = \text{Error}$

$s = \text{Practical difference in group means } \mu_1 - \mu_2$

$H_0: \mu_1 - \mu_2 = 0 \quad H_1: \mu_1 - \mu_2 \neq 0$

Want: $P(1.28 \leq |\bar{x}_1 - \bar{x}_2| - 0 \geq \frac{2s}{\sqrt{V_0} \sqrt{\frac{1}{n}}}) \geq 2.8 \Rightarrow \mu_1 - \mu_2 = s$ 1 - β
Decision Rule: \(H_0: \mu_1 - \mu_2 = 0 \) if
\[
|Z_1| = \left| \frac{(\bar{y}_1 - \bar{y}_2) - 0}{\sqrt{\frac{2\sigma^2}{n}}} \right| \geq z_{\alpha/2}
\]

\(\Rightarrow |\bar{y}_1 - \bar{y}_2| \geq \frac{z_{\alpha/2}}{n} \sqrt{\frac{2\sigma^2}{n}} \)

Under \(H_A: \bar{y}_1 - \bar{y}_2 \sim N(\mu_1 - \mu_2 = \delta, \frac{2\sigma^2}{n}) \)

Want \(\beta \) we reject \(H_0 \) to be 1-\(\beta \) in this case

Let \(\delta = \) such that \(P(\delta = \delta) = \beta \)

Then \(\delta = \delta - 2\sigma \sqrt{\frac{2\sigma^2}{n}} \)

Solving for \(\delta \) gives the unique cut-off \(\delta \)

\[
\frac{z_{\alpha/2}}{\sqrt{\frac{2\sigma^2}{n}}} = \delta - 2\sigma \sqrt{\frac{2\sigma^2}{n}}
\]

\(\Rightarrow \delta = \left(\frac{z_{\alpha/2}}{\sqrt{\frac{2\sigma^2}{n}}} + 2\sigma \right) \sqrt{\frac{2\sigma^2}{n}} \)

\(\Rightarrow \delta^2 = \left(\frac{z_{\alpha/2}}{\sqrt{\frac{2\sigma^2}{n}}} + 2\sigma \right)^2 \left(\frac{2\sigma^2}{n} \right) \)

\(\Rightarrow \delta^2 = 2 \left(\frac{z_{\alpha/2}}{\sqrt{\frac{2\sigma^2}{n}}} + 2\sigma \right)^2 \left(\frac{\sigma^2}{\sigma^2} \right) \)

\(\Rightarrow \delta^2 = 2 \left(\frac{z_{\alpha/2}}{\sqrt{\frac{2\sigma^2}{n}}} + 2\sigma \right)^2 \left(\frac{\sigma^2}{\sigma^2} \right) \)

\(\Rightarrow \delta = 2 \left(\frac{z_{\alpha/2}}{\sqrt{\frac{2\sigma^2}{n}}} + 2\sigma \right) \left(\frac{\sigma^2}{\sigma^2} \right) \)

% CV known = 100 \(\frac{\delta}{\mu} \)

% \(\bar{Y} \) = 100 \(\frac{\bar{Y}}{\bar{Y}} \)
Factors that increase τ
- pCV or $\sigma^2 \uparrow$ (experimental error)
- pS or $S \downarrow$ (practical difference)
- $\alpha \downarrow$ (size)
- $1-\beta \uparrow$ (power)

1.8 Randomization for valid inferences

- Random assignment of treatments to experimental units.
- Questionable whether experimental units included in an experiment are truly a random sample from population.
- Independence unlikely to hold among adjacent units in space or time.
- Fisher showed that randomization provides appropriate reference population for inferences free of distributional assumptions on observations. Normal theory tests provide reasonable approximation.
- Random allocation of treatments to experimental units simulates effect of independence and we can analyze data as if iid Normal.

Randomization Tests
- No assumptions made regarding probability distribution of data.
- Randomization Test creates a population of experiments that could have been conducted.
- Test evaluates the test statistic for all possible amounts of treatments to units for this set of observations.
- Distribution of these values under null hypothesis of no treatment effects is Randomization Distribution.
Example of Randomization Test - see Kuehl Ex. 1.3 (pp21-23)

- Fisher shows normal theory tests are good approximation for randomization tests when:
 - Treatments have been randomly assigned to experimental units.
 - Sample sizes are reasonably large.
 - Sometimes due to cost or bad luck in randomization restriction will have to be placed on randomization.
 (e.g. Split Plot Designs)

1.9 Relative Efficiency of Experimental Designs

- Measure of effectiveness of blocking in terms of reducing experimental error.
 (e.g. Comparing RBD w/ CRD).

\[\sigma_{QQ}^2 = \frac{\sigma^2}{r} \]

Can reduce by increasing \(r \) or reducing \(\sigma^2 \) by local control.

Design 1: Experimental error variance \(\sigma_1^2 = 1 \)

Design 2: \(\sigma_2^2 = 2 \)

\[\sigma_{Q1}^2 = \frac{\sigma^2}{r_1} = \frac{1}{r_1} \]
\[\sigma_{Q2}^2 = \frac{\sigma^2}{r_2} = \frac{2}{r_2} \]

Equal if \(r_2 = 2r_1 \)

\[\frac{\text{Information}}{I} = \left(\frac{f+1}{f+3} \right) \left(\frac{1}{\frac{f}{2}} \right) \]

\[s^2 = \text{Estimated error variance w/ f d.f.} \]

\[RE(\text{Design 1 to Design 2}) = \frac{I_1}{I_2} = \frac{(f_1+1)(f_2+3)s_2^2}{(f_1+3)(f_2+1)s_1^2} \]
Relative Efficiency

RE=1 ⇒ information from 2 designs is equal
RE>1 ⇒ Design 1 more efficient

Design 2 would have to have RE times as many replications as design 1 to have the same variance of a treatment mean.